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Abstract: Chlorophyll-a (Chl-a) is one of the major indicators for water quality assessment and recent
developments in ocean color remote sensing have greatly improved the ability to monitor Chl-a on a
global scale. The coarse spatial resolution is one of the major limitations for most ocean color sensors
including Moderate Resolution Imaging Spectroradiometer (MODIS), especially in monitoring the
Chl-a concentrations in coastal regions. To improve its spatial resolution, downscaling techniques
have been suggested with polynomial regression models. Nevertheless, polynomial regression has
some restrictions, including sensitivity to outliers and fixed mathematical forms. Therefore, the
current study applied genetic programming (GP) for downscaling Chl-a. The proposed GP model in
the current study was compared with multiple polynomial regression (MPR) to different degrees (2nd-,
3rd-, and 4th-degree) to illustrate their performances for downscaling MODIS Chl-a. The obtained
results indicate that GP with R2 = 0.927 and RMSE = 0.1642 on the winter day and R2 = 0.763 and
RMSE = 0.5274 on the summer day provides higher accuracy on both winter and summer days than all
the applied MPR models because the GP model can automatically produce appropriate mathematical
equations without any restrictions. In addition, the GP model is the least sensitive model to the
changes in the input parameters. The improved downscaling data provide better information to
monitor the status of oceanic and coastal marine ecosystems that are also critical for fisheries and
fishing farming.

Keywords: spatial downscaling; MODIS chlorophyll-a; sentinel-2A MSI; multiple polynomial
regression; genetic programming

1. Introduction

Coastal marine ecosystems are the most important habitats for species that live in the world’s
most productive ecosystems, such as fish and marine mammals [1]. The influences of the proximity
to land, large quantities of nutrients delivered via streams, and sewage discharge lead to increased
susceptibility of these ecosystems to rapid changes in water quality through both anthropogenic and
natural mechanisms. Therefore, it is essential to monitor water quality in coastal ecosystems to mitigate
the adverse impacts of human-related activities in these environments [1,2].

A phytoplankton cell is a planktonic photosynthesizing organism [3], and phytoplankton biomass
can serve an index to provide information about marine ecosystem health. Coastal ecosystems
throughout the world are affected by the fast growth of the phytoplankton population, often resulting
from water column stratification or increases in nutrients [2]. Harmful algal blooms, like dinoflagellate,
Gymnodinium breve (commonly referred to as “red tide”) produce neurotoxins such as saxitoxin and
gonyautotoxin that cause water quality degradation, which have considerable consequences for marine
environments such as fish death [4–7]. The chlorophyll-a (Chl-a) concentration has been recognized
as a direct indicator of phytoplankton biomass because all phytoplanktons contain Chl-a and high
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Chl-a concentrations show more desirable environmental conditions for phytoplankton growth [3].
Therefore, by monitoring changes in the Chl-a concentration distribution, long-term trends in the water
quality of coastal and oceanic systems can be assessed to a point where the negative effects can be
mitigated [2,8,9]. However, traditional techniques such as in situ field sampling, moored instruments,
drifting instruments, and fluorometry used for Chl-a measurement are expensive laboratory-based
instruments and have some spatiotemporal limitations.

Over the last two decades, there has been an increase in remote sensing applications as a substitute
for traditional techniques for near-real-time measurements of global phytoplankton biomass, including
both qualitative and quantitative estimates [10,11]. However, there are two major challenges associated
with extracting information from remote sensing data: 1) the sheer amount of data, and 2) variable
precision and continuity among remote sensing-derived products. [12]. To solve such issues, many
techniques have been developed, such as reflectance-based classification algorithms [13], spectral band
ratios [14–16], spectral band-difference algorithms [17–19], bio-optical models [20,21], and analytical
techniques [22,23].

The retrieval of Chl-a concentrations in coastal areas by the abovementioned techniques is
performed using coarse spatial resolution ocean color sensors such as Moderate Resolution Imaging
Spectroradiometer (MODIS), Coastal Zone Color Scanner (CZCS), MEdium Resolution Imaging
Spectrometer (MERIS), and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Although the high
temporal resolution of these sensors (e.g., 1–2 days for MODIS, 3 days for MERIS, and 1 day for
SeaWiFS) makes them suitable for continuous monitoring, their spatial resolution (e.g., 4 km for
MODIS, 300 m for MERIS, and 1.1 km for SeaWiFS) is not satisfactory due to their orbital characteristics
and technical configurations.

Recent studies have introduced spatial downscaling algorithms as an alternative solution to
the coarse spatial resolution of ocean color sensors. Spatial downscaling has been widely used for
downscaling coarse spatial resolution data by utilizing the high-resolution remote sensing reflectance
measurements, for instance for land surface temperature [24–26], precipitation [27–30], and soil
moisture [31,32]. Fu, et al. [33] combined coarse spatial resolution MODIS Chl-a measurements
with high spatial resolution Landsat 8 OLI band combinations using a polynomial regression model
(fourth-order polynomial regression) to downscale MODIS Chl-a maps from 4 km to 30 m spatial
resolution. However, polynomial regression models have some restrictions, such as sensitivity to
outliers and the use of fixed mathematical forms to define the relationship between the predictor and
predictand variables. Machine learning (ML) approaches have been suggested to deal with these
restrictions and have received increasing attention for downscaling studies as powerful alternative
tools, but only limited applications for downscaling of Chl-a [34–36].

Among ML models, genetic programming (GP) have recently received much attention in a
number of fields including water resource management studies [37]. The idea behind the GP was
inspired by biological evolution that makes it a collection of techniques for finding the best solution in
the space of possible solutions. This unique feature of GP made it a suitable technique for various
water resource management applications, including ocean engineering and hydrology, hydrological
forecasts, and groundwater modeling [37]. Therefore, the current study assessed the accuracy of GP for
Chl-a downscaling and compared its results with the results of three multiple polynomial regression
(MPR) models, including second-order (2nd), third-order (3rd), and fourth-order (4th) polynomials.
The developed models were utilized for Chl-a downscaling over the western coast of South Korea.

2. Study Area

The study area was part of the Korean West Sea, which is located in the eastern part of the Yellow
Sea (35◦15′ − 36◦30′ N, 125◦45′ − 126◦45′ E; area of 10,705 km2) (Figure 1). The Yellow Sea is a shallow
marine ecosystem with the average and maximum water depths of 44 m and 103 m, respectively [38].
There is clear seasonality in sea surface temperature (SST) over the Yellow Sea, where January is
the coldest month with an average SST of 4–7 ◦C and July is the warmest, with an average SST of
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26–27 ◦C [39]. There are a total of 339 fish species in the Korean West Sea [40]. Over the past few
years, some fish species, such as small yellow croaker, hairtail, large yellow croaker, and flatfish have
exhibited continuous declines due to overharvesting, degraded marine ecosystem quality, and several
unknown factors [41].
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Figure 1. Location of the study region in the Korean West Sea and Chl-a sampling stations.

The increase in the level of the eutrophication, as a result of human activities such as dense
agricultural practices along the coastal area, is another reason for environmental pollution over the
study area that have significant negative effects on marine ecosystems, such as fish death, and a
loss of important protein for the people dependent upon them [1]. Furthermore, in the Yellow Sea
waters, there are other constituents than phytoplankton, such as inorganic particles and dissolved
organic matter that are the major obstacle for simple empirical algorithms to determine the statistical
relationship between Chl-a concentration and spectral bands [42]. Additionally, a very limited number
of studies have attempted to investigate the optical properties of the Yellow Sea, such as phytoplankton,
from the ocean color images. As a result, monitoring the Chl-a concentration, as an important index to
evaluate the extent of eutrophication, at fine resolution is a crucial task in this area.

3. Materials and Methods

The main objective of this research was to develop an approach for MODIS Chl-a downscaling
and produce Chl-a concentration maps for complex coastal regions. Figure 2 displays the detailed
explanation of the procedure used. The downscaling approach was accomplished in four steps:
(1) remote sensing data, including MODIS Chl-a at 4 km (defined as Y4k) and S-2A at 10 m (defined as
X10), were acquired, and S-2A data were resampled to 4 km MODIS resolution (denoted as X4k); (2) the
most important S-2A band combinations (X4k) were chosen by utilizing the support vector machine
recursive feature elimination (SVM-RFE) method; (3) MODIS Chl-a downscaling from 4 km to 10 m was
performed by regressing X4k to Y4k, calculating the residual at 4 km (ε4k), and adding the interpolated
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residual (ε10) to the estimated fine-resolution Chl-a (Ŷ10); (4) the obtained downscaled maps were
compared with visual comparison, validated with in situ data, and all the applied methods were
assessed using sensitivity analysis. A complete explanation of the aforementioned steps is described in
Section 3.1, Section 3.2, Section 3.3, Section 3.4.Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 28 

  

Figure 2. Downscaling workflow. Note that the goal of the present research is to downscale Moderate
Resolution Imaging Spectroradiometer (MODIS) Chl-a from coarse resolution (4 km) to high resolution
(10 m).

3.1. Data Description

In the current study, a downscaling approach was proposed based on GP and MPR techniques
to produce high-resolution MODIS Chl-a data by relating coarse-resolution MODIS Chl-a data to
high-resolution Sentinel-2A MSI (S-2A) data. There are some challenges associated with downscaling
Chl-a: 1) MODIS Chl-a and S-2A measurements have different revisit times of 8 and 10 days, respectively;
2) in situ data used for validation of the downscaling model are irregularly distributed in space and
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rarely accessible; 3) to obtain reasonable results for downscaling Chl-a, a remote sensing image should
have cloud coverage less than 10%. It has been reported that sea fog is frequently observed around
the Korean peninsula with a maximum occurrence in the West Sea in summer with a mean frequency
of 5.3 days in July [43]. The frequency is less than 1 day during fall and winter. Therefore, the
above-mentioned challenges imposed some limitations for selection of images on every season. Hence,
two MODIS and S-2A Level-1C (hereafter S-2A) datasets were acquired on February 2 (winter) and
August 4 (summer) in 2016. All images had less than 10% cloud coverage and were almost concurrent
with in situ measurements (±5 days).

The Chl-a concentration maps used in the current study were used from MODIS Chl-a concentration
standard mapped images (SMIs) with a 4 km resolution. The SMIs were created from bands 13
(0.653 µm),14 (0.681 µm), and 15 (0.750 µm) of the MODIS sensor (hereafter referred to as MODIS
Chl-a). Due to strong fluorescence signals from Chl-a at these spectral bands, these bands were
suitable for the detection of the Chl-a concentration [44,45]. For retrieval of Chl-a concentration,
the standard OC3/OC4 (OCx) band ratio algorithm combined with color index (CI) introduced by
Reference [46] was implemented. The MODIS Chl-a data were obtained from the Giovanni website
(https://giovanni.gsfc.nasa.gov/giovanni/).

S-2A band images (Table 1) for high-resolution data were acquired from the Copernicus Open
Access Hub (https://scihub.copernicus.eu/). S-2A products include 13 bands with the top-of-atmosphere
(TOA) Reflectance. All bands were processed by radiometric and geometric correction using a
UTM/WGS84 projection. Recent studies have reported that S-2A is more powerful than Landsat 8 OLI
in distinguishing areas affected by algal blooms because S-2A has three near-infrared (NIR) bands
and Landsat 8 OLI has only one NIR band [47–51]. The three additional NIR bands of S-2A make it
feasible to develop more suitable algorithms for the retrieval of the Chl-a concentration in intense
bloom conditions [52].

Table 1. Sentinel-2A MSI spectral band characteristics.

Band Name Central Wavelength (µm) Spatial Resolution (m)

B1-Coastal aerosol 0.443 60
B2-Blue 0.490 10

B3-Green 0.560 10
B4-Red 0.665 10

B5-Vegetation red edge 0.705 20
B6-Vegetation red edge 0.740 20
B7-Vegetation red edge 0.783 20

B8-NIR 0.842 10
B8A-Narrow NIR 0.865 20
B9-Water vapor 0.940 60

B10-SWIR-Cirrus 1.375 60
B11-SWIR 1.610 20
B12-SWIR 2.190 20

The in situ Chl-a measurements used in the analysis were obtained for seven stations from the
Korea Institute of Ocean Science and Technology (KIOST) website (http://joiss.kr). The locations of
the stations are shown in Figure 1. Multidepth sampling was used to collect water samples from
the surface layer (0–15 cm depth). A fairly large water sample was collected and the sample was
filtered to concentrate the chlorophyll-containing organisms followed by mechanical rupturing of
the collected cells, and extraction of the chlorophyll from the disrupted cells into the organic solvent
acetone. The extract was then analyzed by a spectrophotometric method using fluorescence. Therefore,
to validate the downscaling models, a total of 14 samples at two depths (Table 2) were employed.
The remote sensing and in situ data acquisition dates are shown in Table 2, with in situ data from
1 February 2016, corresponding to remote sensing data from 2 February 2016, and in situ data from
1 August 2016, corresponding to remote sensing data from 4 August 2016.

https://giovanni.gsfc.nasa.gov/giovanni/
https://scihub.copernicus.eu/
http://joiss.kr
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Table 2. Paired Dates of the Acquired Satellite Imagery and Chl-a Measurements of the Study Area.

MODIS Sentinel-2A MSI Chl-a Measurements

2016.2.2 2016.2.2 2016.2.1
2016.8.4 2016.8.4 2016.8.1

3.2. Preprocessing

The image preprocessing methods the same as (1) MODIS gap filling, (2) resampling, (3) land-water
separation, and (4) subsetting were used to prepare all satellite images for further processes. Then,
feature selection was employed to determine the most important band combinations for Chl-a prediction.
First, the grid-fill method [53] was used to fill the missing values in the MODIS Chl-a images. This
software has high computational efficiency and fills missing values in an iterative relaxation scheme
using Poisson’s equation. For validation, random removal of the original Chl-a pixel values was
conducted to provide data to validate the grid-fill method. For this purpose, 5% of the original data
were deleted from the outside boundary of the study region and preserved for cross-validation. Then,
the corresponding values of the deleted data were estimated by utilizing the grid-fill method, and the
difference between the original pixel values and the reconstructed values was evaluated. Consequently,
the spatial distribution of Chl-a concentrations was produced.

At the second step, all S-2A images were mosaicked and then resampled to a resolution of 10 m
(X10). Since the study region had a remarkable number of islands (Figure 1), the reflectance caused by
islands could decrease the accuracy of the applied models. Therefore, the third step of preprocessing
aimed to separate water from land pixels to improve the downscaling results. The most commonly
used indices, namely, the normalized difference vegetation index (NDVI) and normalized difference
water index (NDWI), have already been employed for land-water separation purposes [54–58]. In the
current study, land-water separation was performed by utilizing the NDWI index. The formula of this
index is as follows:

NDWI =
ρGreen − ρNIR

ρGreen + ρNIR
(1)

where ρGreen and ρNIR are the green and near-infrared (NIR) reflectances of S-2A with 10 m resolution.
Based on the NDWI computed images, water pixels have positive values, while negative pixels are
usually classified as vegetation or soil features.

At the fourth step, the study area boundaries were used to produce a spatial subset of both MODIS
Chl-a and S-2A images, and the S-2A dataset was resampled from 10 m (X10) to 4 km resolution of
MODIS Chl-a (X4k) using the nearest neighbor method [59]. Then, MODIS Chl-a and S-2A images at
4 km (Y4k and X4k) were used as dependent and independent variables, respectively, to develop GP
and MPR models. Additionally, the developed models were applied to S-2A images at 10 m (X10) to
estimate downscaled Chl-a at 10 m spatial resolution.

At the fifth step, the SVM-RFE feature selection method was employed to specify the most
important bands of the S-2A dataset (X4k). This method is a widely used technique for feature selection
that has been utilized in a wide variety of remote sensing research studies [60–62]. To perform
feature selection, multiple mathematical operations, including multiplication, addition, subtraction,
rationing, averaging, and square transformation, were used to calculate 597 various combinations
of the resampled S-2A bands at 4 km, and the computed combinations served as the input for the
feature selection method. Then, SVM-RFE was trained on the calculated dataset using the MODIS
Chl-a concentration (Y4k) and S-2A band combinations (X4k) as the predictand and predictor variables,
respectively. As a result, relevant combinations for the downscaling procedure were chosen.
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3.3. Downscaling

The downscaling model used in the current study was a regression-based approach considering
the statistical relationship between MODIS Chl-a and S-2A bands at 4 km and 10 m spatial resolution.
The straightforward formulation of this relationship is expressed as in Equation (2).

Ŷ = f(X) (2)

where X is the selected S-2A bands (predictor variables) at 4 km (X4k) and 10 m (X10), Ŷ is the estimated
MODIS Chl-a at 4 km (Ŷ4k) and 10 m (Ŷ10), and f represents a nonlinear regression function developed
by GP and MPR techniques.

First, a relationship between Y4k and X4k was established using all the applied methods as
2nd-degree MPR, 3rd-degree MPR, 4th-degree MPR, and GP. From the 636 pixels of the independent
(X4k) and dependent (Y4k) variables, 445 pixels were used for training, and the remaining 191 pixels
were reserved for the validation of the models. Standardization was a prerequisite step before training
all the applied methods to ensure that all variables remained on the same scale. Therefore, the
standardization of all independent variables (X4k) in the training and validation set was performed by
subtracting the mean and dividing by the standard deviation of the training set. This preprocessing
sped up the convergence and allowed efficient training of the network. Then, the estimated Chl-a at
4 km (Ŷ4k) was subtracted from the original MODIS Chl-a at 4 km (Y4k) as follows:

ε4k = Y4k − Ŷ4k (3)

where ε4k is the low-resolution residual at 4 km.
A simple kriging interpolation technique [63,64] was utilized to interpolate the ε4k to 10 m

resolution (ε10) using the center points of the MODIS Chl-a pixels. Finally, to produce the downscaled
map of Chl-a at 10 m resolution (Y10), the developed model as Ŷ10 = f(X10) in Equation (2) was added
to ε10, which is expressed in the function below (Equation (4)):

Y10 = Ŷ10 + ε10. (4)

3.4. Sensitivity Analysis

For a given mathematical model, a sensitivity analysis (SA) measures how much the uncertainty
and fluctuations of the input variable contribute to the outputs or performance of the system. In general,
SA may be performed by two different techniques, local and global SA, with the former exploring the
important model factors for a given set of factor values, and the latter apportioning the uncertainty in
outputs to the uncertainty in each input factor to identify the important factors [65]. In the current
study, the Morris method [66], as the most widely used global SA method, was employed to quantify
the sensitivity of the GP and MPR models. This method is also called the once-at-a-time (OAT) method
because, in each run, a new value is assigned to only one input variable. To carry out SA, the Morris
sensitivity measure index (µ∗) was used as in Equation (5):

µ∗i =

r∑
n=1
|EEi,n|

r (5)

where i is the number of input variables, r is the number of sample points in the parameter space
(indexed n) and EEi,n is the elementary effects (EEs) assessed for the i-th input variable using the
n-th sample point. EEs are employed to specify noninfluential inputs for a computationally costly
mathematical model or for a model with a great number of input parameters, where the costs of
evaluating other SA methods such as variance-based methods are not reasonably priced.
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3.5. Mathematical Background

3.5.1. Multiple Polynomial Regression

The polynomial model is a form of a regression method that can be used when the relationship
between an independent and dependent variable is curvilinear [67]. The nth order polynomial model
with one variable Equation (6) is the general form of the polynomial model that indicates the nonlinear
relationship between one predictand and one predictor variable.

Y = β0 + β1X + β2X2 + . . .+ βmXn + ε (6)

where β1, β2, . . . , βm are the unknown regression coefficients and ε is random error. Furthermore, MPR
can also be defined with different degrees. For instance, a quadratic (second-order, n = 2) polynomial
model can be given as in Equation (7).

Y = β0 + β1X1 + β2X2 + β11X2
1 + β22X2

2 + β12X1X2 + ε (7)

To select the best model between different MPR degrees for MODIS Chl-a downscaling, three
degrees of models, including second-order (2nd), third-order (3rd), and fourth-order (4th), were trained
and compared.

3.5.2. Genetic Programming

GP is one of the most recent data-driven techniques developed by Koza [68] and is a collection
of techniques for finding a highly fit individual in the space of possible solutions. In GP, individuals
are mathematical formulas created by combinations of functions (e.g., sin, cos, ÷, ×, +) and variables
(e.g., x, y, 6). Each individual takes the role of a possible solution for a given problem. Figure 3 shows
four simple formulas (individuals) created by functions and variables as an example. Each individual
has its fitness value to optimize. GP applies evolutionary computation to find the best individual for
optimized fitness values.
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Generally, the GP technique follows four steps to find the fittest individual: (1) an initial random
population of individuals composed of functions and variables is created; (2) the fitness of each
individual in the population is validated with a problem-specific fitness function, and the most



Remote Sens. 2020, 12, 1412 9 of 19

appropriate individuals are selected to survive in the new population as parents; (3) once parents are
selected, they create better types known as offspring or new generations by producing algorithms
known as genetic operators (i.e., crossover, mutation, and duplication); (4) then, the individuals
are assessed for fitness; (5) the process from (2) to (4) is repeated over many generations until an
individual satisfies a given success criterion (e.g., the number of generations exceeds the specified
number of iterations).

Figure 3 illustrates the crossover and mutation operations in GP. Individuals in GP are shown in
tree form with different characteristics, such as size, shape, and content. The crossover and mutation
operations are performed to produce new offspring (the panels in the lower row) from the parent (the
panels in the upper row). Additionally, Figure 3 displays how crossover and mutation change the final
functions and eliminate an input variable y at the second offspring (the lower right panel).

In the current study, the gplearn package [69] in Python software was used for GP implementation.
In general, GP has two major parameters (population size and generation size) that should be
optimized to generate high performance. The optimum values of the mentioned parameters were
computed by utilizing the harmony search (HS) algorithm introduced by Geem, et al. [70] using 10-fold
cross-validation. For more information about the HS method, readers are referred to Geem, Kim and
Loganathan [70] and Lee and Singh [59].

4. Results

4.1. Preprocessing

The scatter plots between the original MODIS Chl-a and their reconstructed values with the
grid-fill method are shown in Figure 4. According to the results, a good match between the original
MODIS Chl-a and their filled values can be seen with R2 = 0.996 for winter (panel (a)) and R2 = 0.939 for
summer (panel (b)). Therefore, it can be concluded that the grid-fill method exhibits good performance
for the reconstruction of MODIS Chl-a values. Note that the reason for the better performance of the
method on the winter day than on the summer day might be related to the presence of more missing
values in the selected scene of the summer day that occurs due to high cloudiness on the summer day.

The most important combinations of S-2A images, among the 597 cases, were chosen by utilizing
the SVR-RFE method. Four high-ranked combinations were selected as the final variables, namely,
B1/B3, B2/B3, B1/(B3+B4), and B2/(B3+B4). These selected predictors are a combination of bands 1
(Coastal aerosol), 2 (Blue), 3 (Green), and 4 (Red).Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 28 
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Figure 4. 1:1 scatter plots of the original MODIS Chl-a vs. reconstructed Chl-a by the grid-fill method
on (a) the winter day (2016.2.2) and (b) the summer day (2016.8.4).

4.2. Downscaling Results

For downscaling, MPR with three degrees (2nd, 3rd, and 4th) and GP were trained with the four
determined band combinations as predictors and MODIS Chl-a as a predictand at low-resolution (4 km).
Then, a residual correction was performed utilizing the described methodology in the downscaling
section (Section 3.3), and Equations (3)–(4) to produce high-resolution Chl-a maps (Y10). To assess the
accuracy of the downscaling technique, the final downscaled maps (i.e., Y10) were validated with the
original MODIS Chl-a maps at a pixel size of 4 km. For this purpose, sample values were extracted
from the downscaled maps (Y10) within a 3 × 3 window around the center of each MODIS Chl-a pixel,
and the mean of each sample was calculated and compared with the original MODIS Chl-a (Figure 5
and Table 3).

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 28 

 

Figure 4. 1:1 scatter plots of the original MODIS Chl-a vs. reconstructed Chl-a by the grid-fill method on the winter day (2016.2.2) and the summer day (2016.8.4). 

The most important combinations of S-2A images, among the 597 cases, were chosen by utilizing the SVR-RFE method. Four high-ranked combinations were 
selected as the final variables, namely, B1/B3, B2/B3, B1/(B3+B4), and B2/(B3+B4). These selected predictors are a combination of bands 1 (Coastal aerosol), 2 (Blue), 
3 (Green), and 4 (Red). 

4.2. Downscaling Results 

For downscaling, MPR with three degrees (2nd, 3rd, and 4th) and GP were trained with the four determined band combinations as predictors and MODIS Chl-a 
as a predictand at low-resolution (4 km). Then, a residual correction was performed utilizing the described methodology in the downscaling section (Section 3.3), 
and Equations (3)–(4) to produce high-resolution Chl-a maps (Y10). To assess the accuracy of the downscaling technique, the final downscaled maps (i.e., Y10) were 
validated with the original MODIS Chl-a maps at a pixel size of 4 km. For this purpose, sample values were extracted from the downscaled maps (Y10) within a 3×3 
window around the center of each MODIS Chl-a pixel, and the mean of each sample was calculated and compared with the original MODIS Chl-a (Figure 5 and 
Table 3).  

 
Figure 5. 1:1 scatter plots of the original MODIS Chl-a at 4 km pixel size vs. downscaled MODIS
Chl-a at 10 m pixel size; (a) the winter day (2016.2.2): (a-1) 2nd-degree MPR, (a-2) 3rd-degree MPR, (a-3)
4th-degree MPR, (a-4) GP, and (b) the summer day (2016.8.4): (b-1) 2nd-degree MPR, (b-2) 3rd-degree
MPR, (b-3) 4th-degree MPR, and (b-4) GP.
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Table 3. Comparison of Performance Indices for All Models after Residual Correction.

Date Performance Statistics Model

2nd Degree
MPR

3rd Degree
MPR

4th Degree
MPR

GP

2016.2.2 MAE 0.108 0.144 0.150 0.108
(Winter) MBE −0.014 −0.012 −0.020 0.011

RMSE 0.168 0.207 0.219 0.164
R2 0.922 0.886 0.872 0.927

2016.8.4 MAE 0.360 0.383 0.409 0.341
(Summer) MBE −0.056 −0.044 −0.068 −0.030

RMSE 0.562 0.542 0.595 0.527
R2 0.732 0.753 0.704 0.763

Notes: MAE is mean absolute error, MBE is mean bias error, RMSE is the root mean square error, and R2 is the
coefficient of determination.

On the winter day, as shown in Table 3, the performance measurements of the GP model were
slightly better than those of the 2nd-degree MPR. According to the performance indices, the accuracy
of the models was ranked as GP > 2nd-degree MPR > 3rd-degree MPR > 4th-degree MPR for the winter
day. For the summer day, the rank was GP > 3rd-degree MPR > 2nd-degree MPR > 4th-degree MPR.
Overall, the GP exhibited the best performance for the winter and summer days.

This finding shows the superiority of GP over the MPR method with different degrees of Chl-a
downscaling. The possible reason for this result might be related to the flexible structure of the GP
model compared with the fixed formulation of MPR models. While MPR models use a fixed form to
define the relationship between the predictor and predictand variables, the evolution process in GP
allows its function to take any feasible formulation. This flexibility gives GP the ability to adopt any
form of functions to capture various relationships between the predictor and predictand variables, even
highly nonlinear relations. Therefore, this unique feature of GP increases the probability of finding the
best relationship in the downscaling procedure, resulting in a better prediction than the MPR models.

The accuracy of the models is presented in Figure 5. The best match between the MODIS Chl-a
and simulated values can be seen in the GP model (see the panels in the fourth column in Figure 5),
with R2 = 0.927 and RMSE = 0.1642 on the winter day, compared to the MPR models (2nd-, 3rd-, and
4th-degree). The same result can be seen on the summer day (the best performance in the GP model),
as shown in the bottom panels of Figure 5. Furthermore, it can be seen that all the applied models
estimate Chl-a better at lower concentrations than at higher concentrations, particularly in the range of
1.5–3.5 mg m−3, as presented in Figure 5.

4.3. Model Evaluation

4.3.1. Visual Comparison

The detailed maps of the downscaling approach for the winter and summer days are shown in
Figures 6 and 7, respectively. The good agreement between the original MODIS Chl-a (the panels in the
first column in Figure 6) and the estimated Chl-a maps (the panels in the last column in Figure 6) can
be seen for the GP and 2nd-degree MPR. From Figure 6, the major trend of Chl-a is fairly modeled with
GP and 2nd-degree MPR but specific and substantially high values are not captured in both models
such as the values in the near coastal area. However, the residual model can additionally capture this
high variability and produce a reliable estimate in the final stage, as seen in the last column of Figure 6.
According to the results illustrated in Table 3, and the panels in the last column of Figure 6, 4th-degree
MPR cannot estimate the Chl-a values at 10 m resolution as accurately as the other models, especially
in coastal areas. This phenomenon indicates that the GP and 2nd-degree MPR can capture the most
variation in high Chl-a concentrations at 4 km resolution.
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Figure 6. Detailed maps showing the downscaling steps for all models on the winter day (2016.2.2);
(a) 2nd-degree MPR, (b) 3rd-degree MPR, (c) 4th-degree MPR, and (d) GP.

By estimating the Chl-a concentrations on the summer day, similar model behaviors became
obvious on the summer day compared to the winter day (Figure 7). Among all the applied models,
GP estimations in coastal areas showed better agreement with the original MODIS Chl-a on both the
winter and summer days than all the applied MPR models. Since coastal areas play a vital role in
marine ecosystems and human health, GP estimations are considerable for water quality monitoring in
coastal areas.

From Figure 7, the simulation results became worse in the sea (the second and last column panels
in Figure 7), and all models tended to underestimate some high Chl-a values. The possible reason for
this result might be the higher spatial variability of the MODIS Chl-a concentration on the summer
day than on the winter day (Figure 8), which is different from the normal distribution (δ = 0.522,
θ = 0.733). Therefore, all the applied models did not fairly estimate the Chl-a values in the sea, and
their accuracy decreased on the summer day compared to that on the winter day (Figure 5 and Table 3).
From Figures 6 and 7, the Chl-a concentration gradient follows a similar pattern with water depth in
all maps, and its concentration decreases as water depth increases. Therefore, the region close to the
seashore shows a high Chl-a concentration, while the region in the sea presents a low concentration
of Chl-a.
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Figure 7. Detailed maps showing the downscaling steps for all models on the summer day (2016.8.4);
(a) 2nd-degree MPR, (b) 3rd-degree MPR, (c) 4th-degree MPR, and (d) GP.
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4.3.2. In Situ Validation 

Figure 8. Histogram and fitted normal distribution of MODIS Chl-a for (a) the winter day (2016.2.2)
and (b) the summer day (2016.8.4). δ and θ are the coefficient of variation (COV) and skewness
coefficient, respectively. Note that the COV and skewness coefficient values for a normal distribution
are zero. The skewness coefficient indicates that the distribution of the summer day data presents more
non-normality than that of the winter day.
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4.3.2. In Situ Validation

The results of the downscaling models were assessed with the in situ Chl-a data of seven stations
along the study area (Figure 1) to validate model performances. For this purpose, sample values were
extracted within a 3 × 3 window around the center of each station point, and the mean of each sample
was calculated and compared with the in situ data. The results in terms of the R2 and RMSE are
presented in Figure 9 for the winter day (left panel) and the summer day (right panel). The computed
p-values (Figure 9) shows that R2 of all models is statistically significant (p-values lower than 0.05).
In general, the R2 of the GP model was higher than that of the other models for the winter and summer
days, which were 0.59 and 0.47, respectively, as shown in Figure 9. Additionally, the RMSE of the
GP model was smaller than that of the other models for the winter and summer days, at 0.766 and
0.483, respectively.
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Figure 9. 1:1 scatter plots of downscaled MODIS Chl-a and in situ data for all methods using two
measured data at 0–15 cm depth; (a) the winter day (2016.2.2) and (b) the summer day (2016.8.4).

These results indicate that the GP model can estimate Chl-a concentrations more accurately than
the other models on both winter and summer days. From Figures 5 and 9, one can see that the
validation of the downscaling models with the original MODIS Chl-a and the in situ data provides
different levels of accuracy. This discrepancy shows the uncertainties in remote sensing data, indicating
that the performance of the downscaling model is greatly affected by the accuracy of the remote
sensing reflectance.

4.3.3. Sensitivity Analysis

To explore the sensitivity of the applied models to the changes in input parameters, the sensitivity
measure index (µ∗) was calculated, as shown in Equation (5), for all predictor variables on both winter
and summer days (Figures 10 and 11). The results of SA indicate that all the applied models are
sensitive to the surface reflectance changes (µ∗ values range from 0 to 1.45 for the winter and 0 to
2.42 for the summer day), and this sensitivity varies between the applied models. Figures 10 and 11
show that the 2nd-degree MPR model is the most sensitive model (µ∗ values ranged from 0.09 to 1.24
for the winter and 0.94 to 2.42 for the summer day), while the GP model is the least sensitive model
(µ∗ = 1.45 and 1.4 for B2/B3 band combination in winter and summer days, respectively) to the changes
in the predictor variables. In addition, the sensitivity of the MPR models increases on the summer day
compared to that of the winter day, while the GP model shows a slight decrease to the changes of the
B2/B3 band combination on the summer day compared to that of the winter day.
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Figure 10. Sensitivity measure index (µ∗) for the winter day (2016.2.2); (a) 2nd-degree MPR, (b) 3rd-degree
MPR, (c) 4th-degree MPR, and (d) GP. Note that the higher values of µ∗ for a given parameter indicate
higher sensitivity of the model to the changes of the parameter.
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It can be concluded that although GP and 2nd-degree MPR show comparable accuracy (Figure 5
and Table 3) on both winter and summer days, the GP model with the least sensitivity to the changes in
the input parameters is more effective than the 2nd-degree MPR for downscaling Chl-a. Additionally,
SA results show that the accuracy of all models is strongly related to the accuracy of the remote sensing
data; this further confirms the need for atmospheric correction as an essential task in the downscaling
procedure [71].

5. Discussion and Conclusions

In the current study, a downscaling framework composed of GP and MPR models was developed
to downscale MODIS Chl-a from 4 km to 10 m pixel size using S-2A band combinations at 10 m as
predictor variables. The MODIS Chl-a at 4 km was downscaled in four main steps: (i) acquiring
MODIS Chl-a and S-2A images at 4 km and 10 m, respectively; (ii) applying feature selection to select
the most important S-2A band combinations as predictor variables; (iii) employing the trained MPR
with three degrees (2nd, 3rd, and 4th) and GP model to downscale MODIS Chl-a; (iv) assessment of the
results with original MODIS Chl-a maps at a pixel size of 4 km and in situ measurements.

By comparing the performance of all the models applied for downscaling, the GP model presents
more accurate results and less sensitivity to the changes in all variables for downscaling Chl-a.
The superiority of the GP model over MPR models is related to the flexible formulation structure of the
GP compared to the fixed formulation of the MPR models. The flexible structure of the GP allows
its function to take any feasible formulation so that it increases the probability of finding the best
input-output relationship between thousands of formula. Visual comparison of the applied models
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showed that although the major trend of Chl-a is fairly modeled with GP and 2nd-degree MPR, but
specific and substantially high values are not captured with both models such as the values in near
coastal areas. This drawback of the models can be solved with the residual correction that makes it an
essential procedure to improve the accuracy of the spatial downscaling model.

Among all the applied models, the GP model provided better estimations in coastal areas than
all the MPR models. Therefore, GP can serve as a feasible alternative model to estimate Chl-a
concentrations in coastal areas with complex characteristics, where water quality monitoring plays a
vital role in the protection of marine ecosystems and human health. Moreover, the results indicate
that the performance of the models greatly depends on the spatial variability of the MODIS Chl-a
concentration. Its distributional characteristics (e.g., normal or skewed) can be a good option for
model selection criteria. Therefore, to ensure the validity of the GP model in other coastal areas,
it is recommended to assess the normality to select the GP model for spatial downscaling of the
MODIS Chl-a.

Although the downscaling procedure used in the current study was applied on two selected days,
one in winter and one in summer based on data availability, it produced reasonable results due to
using the S-2A dataset with 10 m spatial resolution. Future studies can be focused on extending this
procedure at a higher temporal resolution. In addition, more research can be conducted with deep
learning techniques for downscaling Chl-a concertation. In addition to the surface reflectance, more
predictors such as NDVI and NDWI, due to the strong Chl-a absorption at red-NIR spectral regions,
may be used in determining Chl-a concentration.
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