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Abstract: Structural diversity is a key feature of forest ecosystems that influences ecosystem functions
from local to macroscales. The ability to measure structural diversity in forests with varying ecological
composition and management history can improve the understanding of linkages between forest
structure and ecosystem functioning. Terrestrial LiDAR has often been used to provide a detailed
characterization of structural diversity at local scales, but it is largely unknown whether these same
structural features are detectable using aerial LiDAR data that are available across larger spatial
scales. We used univariate and multivariate analyses to quantify cross-compatibility of structural
diversity metrics from terrestrial versus aerial LiDAR in seven National Ecological Observatory
Network sites across the eastern USA. We found strong univariate agreement between terrestrial
and aerial LiDAR metrics of canopy height, openness, internal heterogeneity, and leaf area, but
found marginal agreement between metrics that described heterogeneity of the outermost layer of
the canopy. Terrestrial and aerial LiDAR both demonstrated the ability to distinguish forest sites
from structural diversity metrics in multivariate space, but terrestrial LiDAR was able to resolve
finer-scale detail within sites. Our findings indicated that aerial LiDAR could be of use in quantifying
broad-scale variation in structural diversity across macroscales.
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1. Introduction

Forest structural diversity is the physical arrangement and variability of the living and non-living
biotic elements within forest stands that support many essential ecosystem functions [1]. As a critical
driver of forest function, estimates of structural diversity are a useful proxy for predicting forest
ecosystem functions. For example, structural diversity can be used to predict light interception [2],
microclimate [3], hydrology [4], and resilience to disturbance [5]. Forest structural diversity arises
from the complex interactions of a range of abiotic and biotic factors that influence the growth and
the quantity of vegetation [6–8]. A wide variety of structural diversity metrics can be estimated using
methods that range from traditional forest inventory approaches (e.g., basal area [9]) to next-generation
remote sensing techniques (e.g., canopy traits or multivariate structural types [7]). The complex and
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dynamic nature of forest structure has proven challenging to measure accurately across scales and
forest structure types [10,11], but such measurements could substantially improve predictions of forest
ecosystem functions [12].

LiDAR remote sensing may be particularly useful in quantifying structural diversity by providing
detailed three-dimensional data on the vegetative features and canopy elements within forest stands, but
each LiDAR platform has trade-offs in resolution [13]. A LiDAR is a useful tool for the multi-dimensional
characterization of forest structure that has versatile terrestrial and aerial deployment platforms
spanning a multiple of spatial extents and resolutions [14–18]. Terrestrial laser scanning (TLS) and
aerial laser scanning (ALS) have both been shown to be effective at quantifying components of forest
structural diversity [14–20]; however, each LiDAR platform has trade-offs for data resolution and
spatial coverage. Stationary TLS instruments and ALS scan the forest from opposite angles, and
occlusion by the canopy constrains the capacity of each to obtain data from portions of the canopy
distal to the instrument [21] (Figure 1). TLS measures the forest from within, providing high-resolution
data on complex, fine-scale internal features of canopy structural diversity [22]. However, TLS data
are less reliable for the upper canopy due to occlusion by intervening foliage [23]. Conversely, ALS
measures the forest from above, providing the highest level of detail on the outer canopy surface
with the declining capacity to resolve canopy features with increasing canopy depth [23]. ALS can
delineate vertical stratification and understory layers of vegetation [24], but the accuracy of measuring
the sub-canopy with ALS can depend upon the orientation of the overstory [25] and the metrics being
used [26,27]. Furthermore, it has been shown that ALS instrumentation specifications, such as point
density, can influence the ability to access sub-canopy elements [28,29].
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returns from each platform). 

Figure 1. Comparison of aerial laser scanning (ALS) and terrestrial laser scanning (TLS) point clouds for
the Great Smoky Mountains site of the National Ecological Observatory Network at plot 053 (40 × 40 m)
from oblique, overhead, and side angles. Vertical profiles of return heights from raw LiDAR returns
demonstrate the occlusion experienced by both LiDAR methods as a result of their respective view
angles (return density refers to the proportion of total points or relative densities of returns from
each platform).

Despite past work examining whether it is possible to obtain similar estimates of structural
diversity with high-density TLS data and low-density ALS data [23,30–32], little is known about how
these compare across ecologically heterogeneous macroscales. TLS and ALS may not always be able
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to resolve the same aspects or metrics of structural diversity well due to their opposing viewing
angles [23,33]. Previous studies within a single site or forest type dominated by one tree species
demonstrated that TLS and ALS estimates of forest structural diversity were correlated [23,34–36].
However, forests vary in structure and species composition substantially from local to regional
scales [37]. The ability to scale high-resolution TLS metrics of structural diversity with spatially
extensive ALS data could help improve the understanding of links between structural diversity
and ecosystem function across scales. It is, therefore, necessary to compare their ability to estimate
forest structural diversity across different forest types that may vary in their structural types within
ecologically heterogeneous macroscales.

We compared the quantification of structural diversity using metrics from TLS and ALS across
seven forested sites in the eastern USA from the National Ecological Observatory Network (NEON)
(Table 1, Figure 2). We focused on the types of structural diversity metrics (i.e., canopy structural
traits) that could be measured by LiDAR methods. First, we examined the univariate correlations
of computationally comparable ALS and TLS structural diversity metrics. Second, we tested for
intercorrelations between ALS and TLS suites of structural diversity metrics. Third, we compared the
multivariate suites of ALS and TLS structural diversity metrics to compare their relative abilities to
categorize plots from different forest types. Our study results had implications for providing a reliable
remote sensing toolkit for linking structural diversity and ecosystem functions in forest macrosystems.

Table 1. Seven forested National Ecological Observatory Network sites measured using both terrestrial
laser scanning (TLS) and aerial laser scanning (ALS).

Site (ID) Ecoclimatic Domain Dominant Forest Type NPlots

Harvard Forest (HARV) Northeast Mixed temperate 19
Smithsonian Conservation Biology Institute (SCBI) Mid-Atlantic Mixed temperate 6

Smithsonian Environmental Research Center (SERC) Mid-Atlantic Temperate deciduous 13
Ordway-Swisher Biological Station (OSBS) Southeast Pine Savannah 20

University of Notre Dame Environmental Research
Center East (UNDE) Great Lakes Mixed temperate 8

Great Smoky Mountain National Park (GRSM) Appalachians and
Cumberland Plateau Temperate rainforest 10

Talladega National Forest (TALL) Ozarks Complex Pine savannah 12
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2. Materials and Methods

2.1. LiDAR Data Collection and Structural Diversity Metrics

To evaluate the potential for combining TLS and ALS structural diversity metrics into a more
comprehensive assessment of forest structural diversity at large spatial scales, we analyzed data
acquired using both platforms within 40 m × 40 m distributed sampling plots (n = 88) at seven NEON
sites in the eastern USA (Table 1, Figure 2). These sites were located in 6 ecoclimatic domains that span
a wide gradient of structural diversity and forest community composition. Structural diversity metrics
derived from both ALS and TLS were grouped into four different categories that all described traits of
the canopy [10]. These categories include (1) canopy height, (2) canopy cover and openness, and (3)
canopy heterogeneity (internal and external; [1]), and (4) vegetation area.

We measured canopy structural diversity with 21 different metrics (Table 2) from TLS data.
TLS data were collected using a portable canopy LiDAR (a type of TLS) (Riegl LD90-3100VHS-FLP;
Table 3) from each site in the summer of 2016. The system consisted of an upward-facing 900 nm
laser rangefinder mounted on a wearable frame that was moved along a 40 m pre-defined transect
through the plot. The data collected corresponded to a vertical two-dimensional cross-section through
the canopy with approximately 500–2000 data points collected per linear meter (Figure 1). The full
description of the design, operation, and validation of the TLS system is found in Parker et al. [22]. For
this study, three parallel transects of 40 m each in length were measured per NEON plot (Figure 1;
see [2] for data collection methods). In order to reduce seasonal differences in forest structural diversity,
plots were sampled at each site or very near peak greenness; the exact dates of sampling for each site can
be found in Atkins et al. [38]. This TLS data was then used to characterize canopy structural diversity
from a suite of 21 metrics (Table 2) in the forestr 1.0.1 package [10] in R v.3.5.2 [39], which created 1 m2

bins of returns along the 40 m 2D LiDAR point cloud to quantify the 21 structural diversity metrics.

Table 2. Categories of forest structural diversity and metrics from terrestrial laser scanning (TLS) and
aerial laser scanning (ALS) platforms. Details on the derivation and R functions used to calculate
structural metrics can be found in Atkins et al. [10] for TLS and Supplementary Materials Table S1 for
ALS. The abbreviations of metric names are listed in parentheses.

Category ALS Metric TLS Metric

Height
Mean canopy height (H), Mean
outer canopy height (MOCH),

Maximum canopy height (Hmax)

Mean leaf height (Mean H), Mean outer
canopy height (MOCH), Maximum canopy
height (Max.can.ht), Mean of squared leaf

height model (Mode.2), Mode.el (Model.el),
Mean height of maximum VAI (Max.el),
Root mean square height (meanHRMS),

Mean height variability (meanHvar), SD of
mean height (Height.2)

Cover and openness
Deep gaps (DG), Deep gap

fraction (DGF), Cover fraction
(CF), Gap fraction profile (GFP)

Deep gaps (DG), Deep gap fraction (DGF),
Sky fraction (SF), Cover fraction (CF)

Heterogeneity

External Top rugosity (TR), Rumple
(Rumple) Top rugosity (TR), Rumple (Rumple)

Internal

SD of vertical SD of height
(StdStd), Entropy (Entropy),

Height SD (HSD: rLiDAR), Height
SD (StdH: lidR), Vertical
complexity index (VCI)

Canopy rugosity (Rugosity), Mean of
vertical SD (MeanStd), SD of vertical SD

(StdStd), Effective number of layers (ENL)

Vegetation area Vegetation area index (VAI) Mean VAI (Mean.VAI), Mean peak VAI
(Mean.peak.VAI)
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Table 3. LiDAR system specifications for aerial laser scanning (ALS) and terrestrial laser scanning
(TLS) platforms.

System Specifications Optech ALTM Gemini (ALS) Riegl LD90-3100VHS-FLP (TLS)

Returns per Pulse Four Five
Wavelength 1064 nm 900 nm

Measurement Range 150–4000 m 60 m (ρ ≥ 0.1)–200 m (ρ ≥ 0.8)
Range Accuracy (typical) ± 5–30 cm ±2.5 cm
Bean Divergence Angle 0.25 mrad × 0.8 mrad 3 mrad × 5 mrad

Measurement Rate (per second) 0–70 (programmable) 2000
Average Point Density 1–4 points per m2 500–2000 points per linear meter

Laser Product Classification Class IV (US FDA 21 CFR) IEC 60825–1:2007 (Eye-safe)

We derived a suite of 15 structural diversity metrics (Table 2) from level-1 discrete return ALS
data (Product No. DP1.30003.001) that was collected by the NEON Aerial Observation Platform. This
ALS consisted of a 1064 nm whiskbroom scanning laser (Optech ALTM Gemini; Table 3) flown over
the study sites at 1000 m above ground level, producing a three-dimensional point cloud with a final
point density of 1–4 points m2 (Table 3). Detailed methods on the NEON ALS data collection methods
and all data can be found on the NEON Data Portal [40]. ALS data were collected for each site in
2016 (TALL, OSBS, GRSM, HARV, UNDE; definitions in Table 1) or 2017 (SCBI, SERC). All NEON
Aerial Observation Platform data were collected during peak growing season (maximum canopy
greenness). The exact dates for data collection of ALS data used here are available through the NEON
data portal [40]. Extreme outlier points were visually screened in the 1 km2.laz files provided by
NEON, and if outliers were found, they were manually filtered out using the readLAS function in the
lidR package [41]. Return heights were corrected for topographic variation using a digital terrain model
(DTM). The DTM was created from the grid_terrain function and was then used to correct return heights
for topographic variation in the lasnormlize function of the lidR package [41]. A 100 m buffer zone was
included around each plot center to minimize potential edge effects when correcting for topographic
variation. A point cloud encompassing the 1600 m2 plot area was then clipped from the buffer point
cloud. We used the lidR [41] and rLiDAR R packages [42] to measure 15 structural diversity metrics
(Table 2). The definitions and R functions used to calculate each of the 15 structural diversity metrics are
found in Supplementary Materials Table S1. There were fewer ALS than TLS metrics because the point
density of ALS is much lower than TLS. Therefore, low-density ALS cannot be used to describe some of
the TLS metrics that require fine-scale data on the absence of laser pulses intersecting vegetation in the
subcanopy (e.g., the porousness of gaps between vegetative materials, such as leaves [10]). Finally, we
compared the data collection methods of ALS and TLS by measuring the distance at which structural
diversity metrics stabilized from slices of varying widths taken from ALS data (see the Supplementary
Materials Section 1). The analysis supported our approach of averaging multiple 2D canopy slices of
TLS data to estimate plot structural diversity so that we could then compare these values to whole plot
ALS metrics of structural diversity.

2.2. Data Analysis

To investigate the univariate strength and direction of correlations between ALS and TLS
structural diversity metrics, we calculated a non-parametric Spearman’s correlation coefficient (r)
between equivalently estimated structural diversity metrics and each pairwise combination of metrics
between LiDAR platforms. To facilitate interpretation, we considered an | r |≥ 0.7 as a strong correlation,
| r | ≥ 0.5 as a moderate correlation, and a | r | ≤ 0.5 as a weak correlation.

We performed multivariate analyses to assess differentiation in the clustering of plots from
different sites based on all the structural diversity metrics provided by the two LiDAR methods. First,
we performed non-metric multidimensional scaling (NMS) ordination on plot-level data sets of the TLS
and ALS suites of structural diversity metrics. Ordinations were conducted in the software PC-ORD
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v.5.31 [43] with Sorensen’s distance measure and the “slow-and-thorough” auto-pilot setting, using
250 runs of real data and 250 Monte Carlo randomizations to assess the robustness of the solution [44].
Ordinations were conducted on matrices with all metrics first relativized to the maximum value that the
metric obtained to scale all metrics equivalently. We tested for differences among groupings in each data
set (TLS, ALS) in multivariate suites of canopy structural metrics using multiple response permutation
procedure (MRPP) with Sorensen’s distance measure in PC-ORD [44]. We performed hierarchical
agglomerative clustering on matrices of structural diversity metrics to determine the clustering of plots
into canopy structural types [7]. Clustering was performed with PC-ORD using Ward’s method and
Euclidean distance measures [44]. The optimal cluster grouping level was determined by conducting
indicator species analysis and deriving mean p-values for indicator values across all metrics for each
level of grouping [44]. The grouping level with the lowest mean p-value was selected as the optimal
grouping level or cluster for the data [44]. Finally, we compared the classification of plots between the
ALS and TLS-derived classifications by creating a confusion matrix with TLS classifications utilized as
the “ground-truth” data for assessing the classification produced by the ALS system.

3. Results

3.1. Univariate Comparison of ALS and TLS Metrics

Many metrics from ALS and TLS were correlated (r = 0.44–0.92) within and across structural
diversity categories (Figure 3). First, there were significant moderate to strong correlations of r > 0.6
among eight metrics that had equivalent measurements of the same structural aspect of canopies
(Table 4). The only exception was in the category of external heterogeneity, where there was a weak
significant correlation between ALS and TLS metrics of top rugosity (r = 0.44), but not rumple (r = 0.09)
(Table 4, Figure 3). Second, ALS and TLS metrics within the same category of structural diversity,
but not necessarily the equivalent measurement of the same metric, varied in how strongly they
were correlated (Figure 3). Height and vegetation area metrics were both moderately to strongly
positively correlated (Figure 3). Cover and openness metrics were strongly correlated between TLS
and ALS (Figure 3). When comparing ALS and TLS, heterogeneity metrics were much more variable
in their correlation strength, which varied from neutral to strongly positively correlated (Figure 3).
Third, there was significant and frequent intercorrelation among metrics of structural diversity from
different categories (Figure 3). Overall, this analysis suggested that ALS-derived metrics of structural
diversity could provide statistically similar estimates of structural diversity compared to TLS, though
the accuracy of these estimates varied depending on the specific structural metric.

Table 4. Spearman correlations between equivalently estimated structural diversity metrics with
terrestrial laser scanning (TLS) and aerial laser scanning (ALS).

Category ALS TLS r

Height
MOCH MOCH 0.80 *

H H 0.72 *
Hmax Max.can.ht 0.92 *

Cover and openness DGF DGF 0.66 *
CF CF 0.74 *

External heterogeneity Rumple Rumple 0.09
TR TR 0.44 *

Internal heterogeneity StdH MeanStd 0.61 *
StdStd Rugosity 0.74 *

Vegetation area VAI VAI 0.87 *

* values were significant at α < 0.05
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3.2. Multivariate Comparison of ALS and TLS Classifications

There was strong agreement in the general multivariate classification of plots from different forest
sites by ALS and TLS metrics of structural diversity (Figure 4), demonstrating the ability of both
systems to resolve forest type differences at the macroscale. NMS ordination of structural diversity
derived from ALS data had a two-dimensional solution with mean stress of 7.811, which was significant
relative to randomized data (p = 0.004) and explained a 98.2% of the variation in the original data
matrix (Figure 4a). The first axis explained 73.4% of the variation and was driven most strongly
by the vegetation area index (VAI) and maximum canopy height. The second axis explained an
additional 24.8% of the variation and was most strongly driven by vertical variation in canopy height.
There was a relatively strong separation between sites in the ALS-based ordination space (Figure 4a),
and MRPP analysis indicated significant differences among sites in structural diversity (A = 0.50,
p < 0.001). Classification of the TLS structural diversity metrics was also explained in two dimensions
of multivariate structural space (Figure 4b). The NMS ordination based on TLS structural diversity
metrics had a two-dimensional solution that was significant relative to randomized data (p = 0.004;
mean stress = 8.665) and explained a 97.9% of the variation in the original data matrix. The first
axis explained 80.6% of the variation and was driven by vegetation area and openness. The second
axis explained an additional 17.4% of the variation and was driven by canopy height and internal
heterogeneity. NMS ordination of structural diversity derived from TLS data illustrated differentiation
among sites (MRPP analysis A = 0.45, p < 0.001). Both ALS and TLS suites of structural diversity
metrics provided a similar two-dimensional characterization of plots from different sites (Figure 4a,b),
indicating that both LiDAR systems were able to resolve differences in structural diversity of plots
from different forest types at a sub-continental scale.
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Figure 4. Non-metric multidimensional scaling ordination, illustrating variation in multivariate
classification of plots across seven forest sites from structural diversity as measured using (a) aerial
laser scanning (ALS) and (b) terrestrial laser scanning (TLS). Site ID abbreviations can be found in
Table 1.

While there was broad agreement in the clustering of plots from structurally similar forest sites
that vary by height and openness from ALS and TLS metrics of structural diversity, the finer resolution
of TLS data provided a greater ability to distinguish plots from within sites that have subtle differences
in structural diversity (Figure 5, Table 5). Hierarchical agglomerative clustering of TLS and ALS
structural metrics produced different numbers of clusters in structural diversity space, indicating that,
as expected, TLS and ALS were sensitive to different canopy structural features. ALS structural diversity
metrics were clustered into three groups (based on iterative indicator species analysis conducted on
grouping levels; minimum average p-value in three cluster solutions: p = 0.0002) (Table 5). These three
groups separated plots from sites approximately by geography (latitude) with groups of northern
(medium height and high canopy cover), mid-Atlantic/Appalachian (tallest height and high canopy
cover), and southern sites (lowest height and open canopy) (Figure 5a). In contrast, TLS structural
diversity metrics grouped canopies into five clusters (minimum mean p-value from Indicator species
analysis [ISA] – p = 0.001) (Table 5). These clusters split the plots from the following groups of sites:
HARV/SERC, GRSM/SERC, UNDE/SCBI, OSBS, and a subset of TALL (Figure 5b). The additional
groupings distinguished by the TLS data were related to plots with very tall canopy but low complexity
(cluster 5 – TALL site), plots with short canopy but high VAI (cluster 3 – largely at HARV and UNDE),
and plots with extreme vertical complexity (cluster 2 – largely GRSM and SERC). A comparison of the
groupings of plots into clusters using the two different data sets illustrated both substantial agreement
in some regards and separation in others (Table 5). The two classification systems agreed to place the
OSBS plots into a distinct cluster group, while the other two ALS clusters aggregated plots largely
from 2 or 3 of the TLS clusters, respectively. The ability of the TLS to split plots from different sites into
clusters with plots from other sites illustrated that TLS permitted the characterization of within-site
variability of structural diversity versus the purely among-site variation that was represented in the
ALS ordination and clustering (Figure 5a,b).



Remote Sens. 2020, 12, 1407 9 of 14

Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 14 

 

analysis conducted on grouping levels; minimum average p-value in three cluster solutions: p = 
0.0002) (Table 5). These three groups separated plots from sites approximately by geography 
(latitude) with groups of northern (medium height and high canopy cover), mid-
Atlantic/Appalachian (tallest height and high canopy cover), and southern sites (lowest height and 
open canopy) (Figure 5a). In contrast, TLS structural diversity metrics grouped canopies into five 
clusters (minimum mean p-value from Indicator species analysis [ISA] – p = 0.001) (Table 5). These 
clusters split the plots from the following groups of sites: HARV/SERC, GRSM/SERC, UNDE/SCBI, 
OSBS, and a subset of TALL (Figure 5b). The additional groupings distinguished by the TLS data 
were related to plots with very tall canopy but low complexity (cluster 5 – TALL site), plots with short 
canopy but high VAI (cluster 3 – largely at HARV and UNDE), and plots with extreme vertical 
complexity (cluster 2 – largely GRSM and SERC). A comparison of the groupings of plots into clusters 
using the two different data sets illustrated both substantial agreement in some regards and 
separation in others (Table 5). The two classification systems agreed to place the OSBS plots into a 
distinct cluster group, while the other two ALS clusters aggregated plots largely from 2 or 3 of the 
TLS clusters, respectively. The ability of the TLS to split plots from different sites into clusters with 
plots from other sites illustrated that TLS permitted the characterization of within-site variability of 
structural diversity versus the purely among-site variation that was represented in the ALS 
ordination and clustering (Figure 5a,b). 

  
(a) (b) 

Figure 5. Illustration of canopy structural type groupings derived from hierarchical agglomerative 
clustering overlaid on non-metric multidimensional scaling ordination of structural diversity across 
seven studied forest sites; (a) illustrates cluster groups derived from aerial laser scanning (ALS) data 
and (b) cluster groups from terrestrial laser scanning (TLS) data. 

Table 5. Comparison of plot assignment to groupings derived from hierarchical agglomerative 
clustering of aerial laser scanning (ALS) and terrestrial laser scanning (TLS), illustrating structural 
diversity variation in multivariate space between LiDAR platforms. Cluster name indicates which 
plot was assigned to a given TLS or ALS cluster. Numbers indicate how many plots were assigned to 
each cluster. 

Cluster TLS1 TLS2 TLS3 TLS4 TLS5 Total 
ALS1 12 15 4 0 4 35 
ALS2 14 2 16 0 0 32 
ALS3 1 0 0 20 0 21 
Total 27 17 20 20 4 88 

4. Discussion 
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clustering overlaid on non-metric multidimensional scaling ordination of structural diversity across
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Table 5. Comparison of plot assignment to groupings derived from hierarchical agglomerative
clustering of aerial laser scanning (ALS) and terrestrial laser scanning (TLS), illustrating structural
diversity variation in multivariate space between LiDAR platforms. Cluster name indicates which
plot was assigned to a given TLS or ALS cluster. Numbers indicate how many plots were assigned to
each cluster.

Cluster TLS1 TLS2 TLS3 TLS4 TLS5 Total

ALS1 12 15 4 0 4 35
ALS2 14 2 16 0 0 32
ALS3 1 0 0 20 0 21

Total 27 17 20 20 4 88

4. Discussion

Despite terrestrial and aerial LiDAR systems having trade-offs in their resolution and spatial
extent for the characterization of structural diversity, the results of our study showed broad agreement
between ALS and TLS in the potential to quantify canopy structural diversity across a variety of
forest types at a sub-continental scale. We showed robust concurrence among equivalent measures
of canopy height, cover and openness, vegetation area, and internal heterogeneity. We also showed
that ALS delineated the multivariate canopy structural types among forest sites at a sub-continental
scale. Our results demonstrated that low resolution, large footprint ALS systems might be a useful
tool for classifying forests by structural diversity at landscape to sub-continental scales. However,
TLS-derived metrics may be required to resolve fine-scale structural variation within forest types, such
as that related to disturbance history, management, or successional development [34,45]. Previous
studies have focused on comparisons of ALS and TLS at a single site or forest type in a localized region,
but consistent with our results, these have found that ALS and TLS are comparable in their capacity to
delineate features, such as canopy height, cover, and vertical stratification [23,34–36]. TLS systems
are a well-established method to provide high resolution, functionally meaningful measurements
of structural diversity in forest ecosystems at the stand-scale [2,19,20,22,35,46], but these results
demonstrate that ALS could potentially be used to scale the characterization of canopy structural
diversity to much broader spatial extents.

The effects of occlusion that plague both bottom-up TLS and top-down ALS methods did not
prevent robust agreement for 8 of the 10 equivalent metrics tested here but did result in a low
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agreement for two metrics of external heterogeneity. The top-down view of ALS versus the bottom-up
viewing angle of TLS resulted in a difference in laser beam attenuation that might mean these systems
saw non-overlapping portions of the canopy volume (Figure 1). Specifically, ALS typically exhibits
decreased capacity to resolve sub-canopy vegetation relative to TLS due to increased attenuation.
However, ALS has been shown to be able to resolve layer differences in multi-level forest canopies in
combination with robust predictive models [47]. Meanwhile, TLS exhibits a decreased ability to clearly
characterize upper canopy elements relative to ALS, also due to increased attenuation [36]. The partial
occlusion of the canopy surface in TLS data was apparent in our study, as univariate analyses illustrated
only partial agreement among measures of external canopy heterogeneity that estimated structural
diversity at the outer canopy surface. A similar issue was observed by Hilker et al. [23], who found
that while TLS accurately measured canopy height from the top 10% of points, it underestimated total
canopy height by approximately a meter. This suggests a need for caution in relying on the portable
canopy TLS [22] for measuring outer canopy features (e.g., external heterogeneity), whereas ALS
seems better suited for this category of structural diversity metric. Nevertheless, the broad agreement
we observed between ALS and TLS methods for quantifying most categories of structural diversity
metrics supported the use of ALS to scale up functionally relevant measurements of canopy structure
and further suggested that structural metrics derived from ALS could serve as a reasonable proxy for
TLS-derived metrics (e.g., [47]). Recent advances in new LiDAR technologies (e.g., full-waveform
LiDAR, Geiger mode, or United States Geological Survey level-1 aggregates of a nominal pulse density
8 pts/m) and new computational algorithms are beginning to help reduce occlusion issues that hinder
ALS, which may result in an even stronger agreement between ALS and TLS for measuring structural
diversity. ALS is useful for measuring structural diversity metrics; however, future research that
incorporates these technological and computational advances could further improve the measurement
of forest structural diversity.

The relatively low resolution of ALS is sufficient to distinguish between different forest sites
based on multivariate structural diversity, but TLS is better suited to resolving within site variation.
In our study, there was a similar placement of plots from different forest types in multivariate space
based on ALS and TLS structural diversity metrics. These seven forest sites spanned an ecological
gradient across six of NEON’s ecoclimatic domains, which might enhance our ability to identify unique
clusters of structural diversity types. However, there were both similarities and differences in the
hierarchical agglomerative clustering by TLS (five clusters) and ALS (three clusters). For example,
OSBS, a pine savannah characterized by open canopies and short trees, was always placed in its own
cluster by both LiDAR platforms. This illustrated the ability to clearly delineate general structural types
among different forests for ALS or TLS. Forest sites with denser canopies, dominated by deciduous
species (which tend to have broader, rounded crowns), did not cluster similarly and were split among
four TLS clusters and two from ALS. This indicated that studies seeking to investigate fine-scale
differences in structural diversity within a forest type or single site should rely on TLS to accurately
characterize the sub-canopy structure. There are ecological and management circumstances for which
it is desirable to resolve fine-scale structural variation and its role in forest ecosystem function; for
example, to understand differences in a local disturbance on the same forest type [34] or to assess
the effects of forest management actions [48]. However, previous studies have demonstrated that at
larger scales, greater variation in structural diversity occurs across forest types and sites rather than
within sites [2,18,49]. For example, canopy structural types defined using multi-dimensional metrics
of three-dimensional forest structure are useful for predicting forest productivity [7]. The applicability
of ALS to delineate structural diversity types in forest transitional zones has yet to be rigorously tested,
but we hypothesized that the within-type structural variability might be high, while the among-type
variability would be low for different forest types. Transitional forest types on a landscape-level would
likely create additional clusters to those that we found in the ALS multivariate analysis here. We
suggest that the derivation of some canopy traits and general canopy structural types across landscapes
is feasible with ALS and that ALS could be an appropriate choice for characterizing broad-scale forest
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variation in forest macrosystem studies (e.g., [50]). We also caution users of ALS to keep the context of
structural attributes of forests in mind because resolving structural diversity in the sub-canopy of open
canopies will be easier than dense, closed canopies that pose occlusion issues for low-density ALS.

5. Conclusions

The TLS and ALS systems were compared here, with each providing unique benefits for remotely
sensing forest structural diversity, and both could be robustly applied across different forest types
at a sub-continental scale. The portable canopy LiDAR TLS system we examined was extremely
portable and efficient at collecting within-canopy structural diversity data at stand scales—making
this TLS system useful in small-scale structural diversity analyses where higher point densities
are needed. The ALS system had the capacity to measure structural diversity at broader scales,
which was advantageous for investigating spatial and temporal dynamics or testing compatibility
to model simulations that use space-borne remote sensing data at larger extents than is feasible
to measure with TLS systems. Furthermore, future studies should also compare remotely sensed
measures of structural diversity with forest-inventory-based structural diversity metrics (e.g., [9])
because forest managers often make management decisions based predominantly on inventory metrics.
Advances in the open-source coding and the accessibility of ALS, from organizations, such as NEON,
have a distinct capacity to quantify forest canopy structural diversity at scales that have not been
possible until recently. These improvements allow for the incorporation of more comprehensive
structural information in ecological models, forest management, and strategic decision making for
forest macrosystems. Understanding the limitations and shortcomings of ALS and TLS LiDAR systems,
and how we can utilize the complementary strengths of these systems, is a critical step forward for
further understanding the complex dynamics that link forest structural diversity with macroscale
patterns of ecosystem functioning.
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