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Abstract: Remotely-sensed Vegetation Indices (VIs) are often tightly correlated with terrestrial
ecosystem CO2 uptake (Gross Primary Production or GPP). These correlations have been
exploited to infer GPP at local to global scales and over half-hour to decadal periods, though
the underlying mechanisms remain incompletely understood. We used satellite remote sensing
and eddy covariance observations at 10 sites across a California climate gradient to explore
the relationships between GPP, the Enhanced Vegetation Index (EVI), the Normalized Difference
Vegetation Index (NDVI), and the Near InfraRed Vegetation (NIRv) index. EVI and NIRv were linearly
correlated with GPP across both space and time, whereas the relationship between NDVI and GPP
was less general. We explored these interactions using radiative transfer and GPP models forced with
in-situ plant trait and soil reflectance observations. GPP ultimately reflects the product of Leaf Area
Index (LAI) and leaf level CO2 uptake (Aleaf); a VI that is sensitive mainly to LAI will lack generality
across ecosystems that differ in Aleaf. EVI and NIRv showed a strong, multiplicative sensitivity to LAI
and Leaf Mass per Area (LMA). LMA was correlated with Aleaf, and EVI and NIRv consequently mimic
GPP’s multiplicative sensitivity to LAI and Aleaf, as mediated by LMA. NDVI was most sensitive
to LAI, and was relatively insensitive to leaf properties over realistic conditions; NDVI lacked EVI
and NIRv’s sensitivity to both LAI and Aleaf. These findings carry implications for understanding
the limitations of current VIs for predicting GPP, and also for devising strategies to improve predictions
of GPP.

Keywords: Gross Primary Production; vegetation indices; plant traits; radiative transfer model;
NDVI; EVI; NIRv

1. Introduction

Accurate estimates of Gross Primary Production (GPP, i.e., an ecosystem’s ground-area based
photosynthetic rate) are needed to better assess ecosystem function and stress, as well as the role of
terrestrial ecosystems in the global carbon cycle [1]. The eddy covariance technique provides a relatively
direct measure of GPP at scales of a few hundred meters, but the cost and time required to operate
eddy covariance sites precludes the deployment of the large network of homogenously-instrumented
towers needed to accurately sample global GPP.

Remote sensing provides a cost-effective strategy to extrapolate the GPP observations from eddy
covariance towers to larger spatial and longer temporal scales. Remote sensing approaches for GPP
extrapolation range from simple empirical relationships to complex models [2,3]. Recent developments
using Solar-Induced Fluorescence (SIF) provide a promising approach for extrapolating GPP [4], but
the satellite records required for SIF retrieval are brief and/or at coarse spatial resolution (a few years
at 10 km or larger; longer at coarser resolution). Vegetation Indices (VIs) provide an alternative, simple
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approach to extrapolate GPP, which often performs as well as comparatively complex strategies [5–9].
Time series of satellite-based VI observations extend back to at least the mid-1980s, and are available
at high spatial (30 m) and temporal resolution (bi-weekly to daily), providing a useful tool for
exploring GPP.

Previous analyses have shown strong correlations between selected VIs and GPP, and the resulting
empirical relationships are frequently used to extrapolate GPP [5,6,8,10]. Vegetation Indices have been
shown to respond to ecosystem attributes such as Leaf Area Index (LAI), fractional vegetation cover
and light interception, chlorophyll density and leaf morphology [11,12], which are also related to
GPP [13–15], but current understanding is mostly qualitative and often links VIs to poorly defined
concepts such as “greening” [16,17]. The quantitative, mechanistic linkages between VIs and GPP remain
inadequately understood and publications that trace the causal chain from VIs to spectral reflectance
to ecosystem biophysical properties to ecosystem metabolism are surprisingly sparse. Moreover,
hundreds of alternative VIs have been proposed over the last decades (https://www.indexdatabase.de/),
raising questions about whether the current knowledge is sufficient to fully understand the advantages
and disadvantages of various VIs, and underscoring the need for more detailed efforts to explore
and compare the links between VIs, ecosystem biophysical properties and GPP.

Several key issues remain unresolved, especially related to the mechanisms that link VIs and GPP,
and the implications of these mechanisms for the interpretation, generality, advantages, and limitations
of specific VIs. We explored these issues for three commonly used VIs: the Normalized Difference
Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and the Near Infrared Vegetation
(NIRv) index:

NDVI =
NIR−Red
NIR + Red

(1)

EVI = 2.5·
NIR−Red

NIR + 6·Red− 7.5·Blue + 1
(2)

NIRv = NDVI·NIR (3)

where Blue, Red, and NIR refer to the reflectance in the blue, red, and Near InfraRed (NIR) wavelengths.
Currently, there is no consensus on which of these VIs provides the most universal predictions of GPP,
with some studies showing stronger relationships with EVI and NIRv [5–7,18] while others suggest
that no single vegetation index performs best in all cases and that relationships are site-specific [8,10].
Likewise, understanding of the causal links between these VIs and GPP remains incomplete, and tends
to emphasize the importance of LAI, with less attention to a VI’s sensitivity to biophysical attributes
related to leaf level metabolism.

NDVI was one of the firsts VIs developed and remains widely used. Previous studies have
identified the main plant traits driving VIs using observational data or Global Sensitivity Analyses
(GSA) of radiative transfer models. Both data-based and GSA studies have shown that NDVI is
particularly sensitive to LAI and chlorophyll density; NDVI saturates at high LAI and is also influenced
by soil reflectance [19,20]. Given these sensitivities, some degree of correlation between NDVI and GPP
is expected because LAI and leaf chlorophyll largely determine the absorption of photosynthetically
active radiation (PAR) radiation in canopies, and also because leaf chlorophyll is a driver of leaf-level
photosynthesis [21]. Despite these potentially strong physiological linkages to GPP, NDVI has proven
to be a poor predictor of GPP in some cases [10,11]. While some studies assume this issue may be
related to NDVI’s saturation to LAI or undesired influence of environmental conditions [18], it is
unclear whether this could be related to traits not captured by NDVI.

EVI and NIRv were subsequently developed with the goals of decreasing saturation in dense
canopies and reducing cross sensitivity to soil and atmospheric conditions [6,12,22]. EVI and NIRv share
NDVI’s sensitivity to LAI, while adding sensitivity to differences in reflectance in the NIR [6,12,20,23].
Prior GSA studies have produced ambiguous relationships between plant traits, EVI and NIRv,
suggesting a strong sensitivity to either mean canopy leaf angle or to chlorophyll and leaf mass per
area [20,24]. NIR reflectance is related to scattering at air-water interfaces within leaves [25], and studies
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have shown that NIR reflectance is correlated with LAI and a suite of leaf traits including leaf mass per
area, nitrogen content, water content, and canopy traits such as mean leaf inclination angle and canopy
shape [26–30]. Some of these leaf traits are correlated with each other, as well as leaf photosynthetic
rate [27,29,31,32]. However, we are unaware of previous studies that have quantitatively assessed
which of these plant traits are the main drivers of EVI and NIRv across a broader set of biomes, and how
these traits mediate or affect the relationship between these VIs and GPP.

We explored the temporal and spatial relationships between NDVI, EVI, NIRv, and GPP across
10 homogenously-instrumented eddy covariance sites in California that spanned a range of climatic
conditions. These sites varied markedly in vegetation density and type, and sampled the local
analogues of six major terrestrial biomes (grassland, subtropical desert, shrubland, woodland/savanna,
temperate forest, and boreal/subalpine forest). We then explored these relationships using radiative
transfer and GPP models forced with in-situ plant trait and soil reflectance observations. We focused
on two questions: Which Vegetation Index or Indices are most generally correlated with GPP across
temporal and spatial scales? What biophysical property or properties mediate the relationships
between VIs and GPP?

2. Materials and Methods

2.1. Study Sites

The study focused on existing and new observations at 10 eddy covariance sites across a climate
gradient in California (Figure 1). All sites use matched instrumentation and data processing and had
existing 5-to-10 year-long eddy covariance records. The sites were located along a broad topographic
and climatic gradient ranging from 275 m to 2700 m above sea level, a mean annual precipitation
from 129 mm yr−1 to 1078 mm yr−1 and a mean annual temperature from 4.2 ◦C to 20.9 ◦C [33].
The sites sample 6 of the 10 major biomes of the world (according to [34]): grassland, subtropical desert,
shrubland, woodland/savanna, temperate forest, and boreal/subalpine forest.

2.2. Eddy Covariance and Satellite Observations

Eddy covariance data from these sites has been used to explore the patterns and trends in carbon
dioxide and evapotranspiration in California and the Southwestern US [33,35]. The ten sites share
the same instrumentation, data processing, and maintenance [36]. The eddy covariance systems
consist of a closed-path infrared gas analyzer (LI-7000, LiCor Biosciences) and a 3D sonic anemometer
(CSAT-3, Campbell Scientific). Data processing includes corrections for sensor lag, mean wind rotation,
and energy budget closure. The net CO2 fluxes were partitioned into respiration and gross uptake
(half-hour GPP) by extrapolating light-response curves to darkness. Our analysis focused on the gross
uptake during sunny, midday (11:00 to 13:00 local time) periods and we removed observations during
cloudy periods or with high vapor pressure deficits (>2 KPa). We focused on midday observations to
avoid the confounding effects of seasonal changes in sunlight duration, and the effects of meteorological
constraints on photosynthesis, such as low light or high evaporative demand.

We used surface reflectance data for the sites from the MODerate resolution Imaging Spectrometer
(MODIS) MCD43A4.006 product (downloaded from AppEEARS; https://lpdaacsvc.cr.usgs.gov/).
This product provides daily coverage of surface reflectance (atmospherically corrected) at 500 m
spatial resolution adjusted to a nadir view angle and local noon. For most sites, we extracted the time
series of the pixel containing the tower location and VIs were estimated from bands 1 (Red), 2 (NIR),
and 3 (Blue) according to Equations (1)–(3). Some sites in Southern California have relatively small areas
of homogeneous vegetation around the towers relative to the MODIS pixel, and for these sites we used
observations for nearby larger patches of well-matched vegetation [33] (Supplementary Material 1).
We selected the nearby pixels as the closest ones showing the most similar VIs values to the area
around the towers using Landsat imagery, and the similarity in vegetation type and composition
at the pixel area was confirmed by visual inspection. MODIS data were filtered for clouds, high aerosols,
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and conditions leading to poor corrections of sensor view and sun angles according to the quality
bands in the MCD43A4.006 product, and for patchy snow based on the Normalized Difference Snow
Index (NDSI).
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Figure 1. (a) Location of the study regions within California. (b) Location of Sierra Nevada and (c) Southern
California sites. The color gradient in each region indicates the mean Normalized Difference Vegetation
Index (NDVI) during 2018. Asterisks indicate the sites where we conducted field sampling for leaf traits,
photosynthesis, and soil reflectance. The numbers in parenthesis indicate the time span of eddy covariance
and satellite observations. California is highlighted in gray in (a), and water bodies are indicated by light blue
in (b) and (c).

The time spans of eddy covariance and satellite observations used are shown on Figure 1,
and ranges from 5 to 10 years of observations for each site, including all seasons of the year and all
stages of canopy development.

2.3. Plant Traits and Soil Reflectance at the Study Sites

We sampled plant species cover, LAI, leaf traits, and soil reflectance at five of the study sites
around their peak growing season between April and July 2019 (Figure 1, see Supplementary Material 2
for specific sampling dates at each site). In-situ sampling focused on a 90 m by 90 m block in
the immediate mean upwind direction from each tower. Plant species cover was measured by intercept
along three 90m line-transects in the block. LAI was measured at 5 m intervals along each transect
with a LI-COR LAI-2000 (LI-COR Biosciences, Lincoln, NE, USA). LAI measurements were made with
a 90o field of view restrictor and around sunrise or sunset to avoid direct sunlight.

Leaf samples were collected and leaf gas exchange measurements were made on five or six of
the most abundant species at each site (according to species cover data). Five mature plants were
sampled for each species, and five or six leaves (or approximately 0.2 g of leaves for small leaved
species) were collected. Fresh leaf area and weight and dry weight were measured and used to
calculate the leaf mass per area (LMA) and leaf water content (Wc) [37]. The light-saturated leaf
photosynthesis rate per leaf area (Aleaf) was measured on one sun-exposed leaf of each plant using
a LI-COR LI-6400 (LI-COR Biosciences) with a blue-red LED light. Gas exchange was measured
at near ambient temperature and humidity, 2000 µmol m−2 s−2 photosynthetically active radiation
and 400 µmol mol−1 CO2. The community weighted trait means were calculated for each site by



Remote Sens. 2020, 12, 1405 5 of 18

weighting traits by species cover [38]. The bare soil spectral reflectance was measured at five locations
using an ASD FieldSpec HandHeld 2 (ASD Inc, Boulder CO) at midday. Each measurement was
the average of five readings taken with a 34 ms integration time, corrected by dark current and calibrated
with a Spectralon panel. The median of the five measurements per site was used for further analysis.

Additional information on leaf traits and Aleaf was obtained from the TRY database [39] for
dominant species at some of the sites (specific datasets used were originally from references [32,40–49]).

2.4. Radiative Transfer and Gross Primary Production (GPP) Models

A simple canopy photosynthesis model [50] (Thornley’s model) was used to explore the links
between plant traits and GPP. This model integrates a non-rectangular hyperbola leaf photosynthetic
light response curve through the canopy. Its main inputs are incident photosynthetically active
radiation (PAR), leaf light response parameters, leaf transmittance, light saturated leaf photosynthetic
rate (Aleaf), leaf area index (LAI), and canopy light extinction coefficient.

The PROSAIL radiative transfer model was used to explore the links between plant traits
and spectral reflectance. PROSAIL couples leaf (PROSPECT 5) and canopy (4SAIL) radiative
transfer models to simulate the effects of plant traits, soil reflectance, and view and sun geometry on
land surface reflectance [51]. PROSAIL inputs include leaf chlorophyll per area (Cab), Leaf Mass per
Area (LMA), leaf structure (number of air-cell wall interfaces), carotenoid and brown pigment content,
water content per leaf area (Wc), and Leaf Area Index (LAI).

We applied variance-based global sensitivity analyses [52,53] to the Thornley and PROSAIL models
to identify the plant traits and other inputs that drive GPP and the VIs. The analysis of the Thornley model
was run using the R sensitivity package v1.18.0. The analysis on PROSAIL was run using the Global
Sensitivity Analysis module v.1.08 of the ARTMO toolbox v.3.25 [54]. Previous sensitivity analysis on
VIs have emphasized crop species, and parameter ranges has been either tailored for such ecosystems
or arbitrarily selected [20,24]. The results of global sensitivity analyses depend heavily on the range
of inputs specified, and we selected ranges that represent the variation across our study sites or from
literature datasets that covered a diverse array of species and biomes (see Appendix A for details).
The global sensitivity analyses of both models used 2000 samples per input parameter following a Sobol
sampling scheme.

Once the drivers and factors driving GPP and VIs were identified, we compared the results of
Thornley and PROSAIL models forced with in-situ information from these main drivers to further
explore how plant traits link VIs to GPP (see Appendix B for details).

All analyses used either MATLAB, including the ARTMO toolbox v.3.25 [54], or R v3.5.1. (the R
Foundation for Statistical Computing), including the hsdar v1.0.0 [55] and sensitivity v1.18.0 packages.

3. Results

3.1. Correlations between Vegetation Indices (Vis) and GPP

We analyzed the relationships between satellite VIs and midday GPP within individual sites
to assess the effects of temporal variation within sites (separate regression lines for each site in
Figure 2), and across all sites to assess the between-ecosystem type generality (dashed lines in Figure 2).
The within site relationships between GPP and both EVI and NIRv were tighter than those for NDVI
(Supplementary Material 3). The within site relationships were weakest in the three sites that were
dominated by evergreens (oak-pine, sierra mixed conifer, and subalpine forests), especially for NDVI.
Comparatively weak temporal relationships at evergreen sites could be expected given the low seasonal
variation in canopy biophysical properties [11]. The temporal relationships between GPP and both EVI
and NIRv had more consistent intercepts and slopes between sites than did those with NDVI (Figure 2,
Table S3). This resulted in stronger across-site relationships for EVI and NIRv than for NDVI.
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Figure 2. Relationship between vegetation indices and gross primary production (GPP) across
the 10 study sites based on eddy covariance and Moderate resolution Imaging Spectrometer (MODIS)
MCD43A4.006 observations. Subplots show the relationship of GPP with (a) NDVI, (b) EVI and (c) NIRv.
Colored lines indicate linear regressions for each site (temporal or within-site relationships), the dashed
line represents the linear regression across all sites. The dots are a representative sample of individual
observations at the coastal sage shrubland site.

3.2. Plant Traits Influencing GPP

Our global sensitivity analysis of Thornley’s GPP model showed that LAI (m2 leaves m−2 ground)
and leaf CO2 uptake (Aleaf; the CO2 uptake m−2 leaf) are the main determinants of short-term GPP
(CO2 uptake m−2 ground) during well-illuminated, unstressed conditions (Figure 3a). Both aspects
have a similar contribution to GPP (LAI accounts for 48%, and Aleaf accounts for 42%, of overall GPP
variation). All of the other attributes, including mean leaf angle, have a relatively minor contribution.
GPP modeled with these two traits closely matched the observed variation of GPP among sites
(Supplementary Material 4).

We further explored how LAI and Aleaf influence GPP (Figure 3b). GPP increases with increasing
LAI and the fraction of light intercepted by leaves before saturating and reaching 80% of its maximum
response around 2.5–3 m2 m−2. Conversely, increasing Aleaf caused a comparatively steady increase
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in GPP, with only minor saturation. LAI and Aleaf have a multiplicative effect over GPP, such that
the sensitivity of GPP to Aleaf increases with LAI.

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 18 

 

response around 2.5–3 m2 m-2. Conversely, increasing Aleaf caused a comparatively steady increase in 
GPP, with only minor saturation. LAI and Aleaf have a multiplicative effect over GPP, such that the 
sensitivity of GPP to Aleaf increases with LAI. 
 

 
Figure 3. (a) Global sensitivity analyses of Thornley’s model for Gross Primary Production (GPP) and 
(b) modeling analysis of the effect of Leaf Area Index (LAI) and light-saturated leaf photosynthesis 
rate (Aleaf) on GPP. We ran the Thornley GPP model varying LAI from 0–5 m2 m-2 and Aleaf across the 
range found at the field sites (see Figure 4) at an irradiance of 2000 µmol m-2 s-1 of photosynthetically 
active radiation (a typical midday illumination). 

Our analysis of leaf traits at the study sites showed that light-saturated leaf photosynthesis (Aleaf) 
was negatively correlated to LMA (log-log relationship, r2 = 0.32, p = 0.002), with relatively thick, high 
LMA leaves showing a lower Aleaf. A similar pattern occurred across sites, where community 
weighted Aleaf decreased with increasing LMA (Figure 4). Previous analyses have also reported a 
correlation between LMA and Aleaf [56,57]. The relationship between LMA and leaf photosynthesis 
reflects a series of tradeoffs and convergent evolutionary strategies along the leaf economics 
spectrum: thicker leaves are longer lived, with lower nutrient content and slower rates of 
photosynthesis [31,32]. 

 

 
Figure 4. Relationship between leaf mass per area and light-saturated leaf photosynthesis observed 
at the field sites, and also obtained from the TRY database for species that are found at the Sierra 
Nevada sites. Crosses indicate the mean values for each of the 4–7 most dominant species at each site. 
The solid line is the linear regression across all species values. Filled circles indicate the community-

Figure 3. (a) Global sensitivity analyses of Thornley’s model for Gross Primary Production (GPP)
and (b) modeling analysis of the effect of Leaf Area Index (LAI) and light-saturated leaf photosynthesis
rate (Aleaf) on GPP. We ran the Thornley GPP model varying LAI from 0–5 m2 m−2 and Aleaf across
the range found at the field sites (see Figure 4) at an irradiance of 2000µmol m−2 s−1 of photosynthetically
active radiation (a typical midday illumination).

Our analysis of leaf traits at the study sites showed that light-saturated leaf photosynthesis (Aleaf)
was negatively correlated to LMA (log-log relationship, r2 = 0.32, p = 0.002), with relatively thick,
high LMA leaves showing a lower Aleaf. A similar pattern occurred across sites, where community
weighted Aleaf decreased with increasing LMA (Figure 4). Previous analyses have also reported
a correlation between LMA and Aleaf [56,57]. The relationship between LMA and leaf photosynthesis
reflects a series of tradeoffs and convergent evolutionary strategies along the leaf economics spectrum:
thicker leaves are longer lived, with lower nutrient content and slower rates of photosynthesis [31,32].
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Figure 4. Relationship between leaf mass per area and light-saturated leaf photosynthesis observed
at the field sites, and also obtained from the TRY database for species that are found at the Sierra
Nevada sites. Crosses indicate the mean values for each of the 4–7 most dominant species
at each site. The solid line is the linear regression across all species values. Filled circles indicate
the community-weighted mean for each site, estimated by weighting mean species values by species
abundance. See Supplementary Material 2 for more details about species and site data.
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3.3. Plant Traits Influencing VIs and Their Linkage to GPP

Global sensitivity analyses with PROSAIL were used to investigate the importance of ecosystem
properties on spectral reflectance (Figure 5a) and Vegetation Indices (Figure 5b). Red reflectance is
strongly driven by LAI and chlorophyll concentration (Cab), while NIR reflectance is influenced by
LMA and to a lesser extent LAI. NDVI is particularly sensitive to LAI and Cab (driving 65 and 23% of
overall NDVI variation, respectively), and mirroring the importance of these properties in driving
red reflectance. NDVI is largely insensitive to LMA, apparently because the calculation of NDVI
under typical conditions deemphasizes changes in NIR reflectance. EVI and NIRv were sensitive to
LAI and LMA, with both properties showing a similar importance. These two VIs showed increased
sensitivity to NIR reflectance relative to NDVI, a pattern that has been discussed previously [6,12].
Other parameters, including sun and sensor view angles and leaf angle, have a smaller effect on these
VIs. The VIs predicted using PROSAIL driven with site-specific data captured the observed variation
of MODIS VI at the study sites (Supplementary Material 4).
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Figure 5. Global sensitivity analysis of PROSAIL radiative transfer model for top-of canopy reflectance
(a) from 400–1000 nm and (b) for red and Near InfraRed Vegetation (NIR) bands and vegetation indices.
The spectral ranges used for the broad band reflectance and vegetation indices is shown on (a) for
reference, and match those used by MODIS sensors.

We further explored how LAI, Cab, and LMA and their interactions control the value of
VIs (Figure 6). NDVI showed the sharpest saturation to LAI, reaching 80% of maximum LAI
response at ~1.7 m2 m−2. NDVI also showed a sharp saturation to Cab, reaching 80% of maximum
response at a Cab of ~17 µg cm−2, which is within the lower range of values observed at the sites
(Supplementary Material 5). NDVI’s sharp saturation at low Cab and its low sensitivity to LMA
prevents NDVI from fully capturing an optical signal of a leaf trait that is related to Aleaf (Figure 6a,b).

EVI and NIRv had a comparatively less sharp saturation to LAI than NDVI, with its saturation to
LAI varying with LMA up to 3 m2 m−2. Furthermore, the value of EVI and NIRv saturated modestly
with increasing LMA across the range of values observed at the sites. This implies that decreasing LMA
from the lowest value (similar to that of the Pinyon-juniper woodland) to the highest value (similar to
that of the grassland), causes a relatively large increase in EVI and NIRv. EVI and NIRv’s balanced
sensitivity to LAI and LMA, low saturation to the signal of a leaf trait related to Aleaf, and multiplicative
sensitivity to LMA and LAI, allowed both VIs to largely mimic the response of GPP to LAI and Aleaf

(Figures 3b and 6c,d).
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Figure 6. Response of Vegetation Indices to Leaf Area Index (LAI), leaf chlorophyll content (Cab)
and leaf mass per area (LMA) based on the PROSAIL model. Panel (a) shows the modeled response of
NDVI to variation in LAI and Cab and (b) the response of NDVI to LAI and LMA. Panel (c) shows
the modeled response of EVI to variation in LAI and LMA and (d) the response of NIRv to LAI and LMA.
The ranges of Cab and LMA span the ranges found at the field sites (Figure 4, Supplementary Material 5).
The seven selected Cab and LMA values correspond to the seven selected rates of leaf photosynthesis
shown in Figure 3b, following the relationships in Figure 4 and [14].

3.4. Relationships among VIs

EVI and NIRv showed similar patterns throughout the analyses (Figure 2b,c, Figure 5b, Figure 6c,d),
leading us to wonder how tightly correlated these VIs are across typical conditions and whether they
provide complementary or redundant information. A further exploration of the MODIS observations
revealed a tight correlation between EVI and NIRv, and relatively weak relationships between both of
these VIs and NDVI (Figure 7). We found similar relationships in the PROSAIL simulations, suggesting
that a tight correlation is a basic characteristic of EVI and NIRv (Supplementary Material 6).

Figure 7. Cont.
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Figure 7. Relationships at all ten study sites between (a) MODIS Enhanced Vegetation Index (EVI)
and NIRv and between (b) MODIS NDVI and EVI.

4. Discussion

4.1. Vegetation Indices as General Predictors of GPP

Previous studies have found that no single VI provides a universal predictor of GPP and that
the relationships between GPP and VIs are often site- or biome-specific [8,10,18]. We found that
the within-site relationships between NDVI and GPP varied between ecosystem types and differed from
that observed in the across-site comparison (Figure 2). EVI and NIRv, on the other hand, provided more
general predictions of GPP, with temporal relationships that were comparatively consistent across sites.
Even at evergreen forests, where all VIs were weaker predictors in our study and others [7,8,11,18],
the GPP relationships with EVI and NIRv fall within the range of other sites/biomes. These more
universal relationships underscore the utility of EVI and NIRv for extrapolating GPP in the absence of
further site- or biome-specific information.

Our analyses revealed strong similarities between EVI and NIRv, and subsequent comparisons
showed a tight correlation between EVI and NIRv (Figure 7 and Supplementary Material 6). Previous
studies have also pointed to a similar performance between EVI and NIRv [10]. This correlation was
unexpected given the mathematical differences between the two VIs. EVI was designed to reduce
cross sensitivity to soil and atmospheric conditions, while reducing saturation in dense canopies [22];
previous studies have shown EVI has enhanced sensitivity to variation in NIR reflectance [23].
In a similar way, the design and derivation of NIRv arose from an attempt to isolate the NIR reflectance
of the vegetation from that of the soil [6,58]. Our analyses confirm the strong similarity between
EVI and NIRv is a consequence of the shared sensitivity to traits influencing NIR, and the reduced
influence from Red reflectance and soil reflectance. We conclude that the information provided by
EVI and NIRv is largely redundant, and that both are similarly useful for inferring GPP, phenology,
and other ecosystem properties [5,6,58,59].

4.2. Explaining the Differential Performance of Vegetation Indices

The PROSAIL analyses showed that NDVI is particularly sensitive to LAI and Cab (Figure 5; [11,19]),
while EVI and NIRv are sensitive to LAI and LMA. EVI and NIRv’s increased sensitivity to LMA is
the main characteristic that separates these VIs from NDVI, and that we believe leads to their more
general relationships with GPP. The relationships between LMA and EVI and NIRv are apparently
driven by a decrease in NIR reflectance with progressively thicker leaves. LMA is not a dominant
controller of leaf-level NIR reflectance [60], but becomes important at the canopy level due to
the absorption of light by lignin and cellulose [61]. Thicker, higher LMA leaves with more lignin
and cellulose absorb more NIR for a given LAI, leading to increased light absorption, and reduced
canopy-level NIR reflectance, and consequently reduced EVI and NIRv [51].

LMA is one of several leaf traits that co-vary along the leaf economic spectrum [32]. Thicker leaves
with a higher LMA are globally correlated with longer leaf life spans, lower leaf nitrogen concentrations,
and lower rates of leaf photosynthesis. The leaf economic relationships are strongest when compared
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on a mass vs mass basis, whereas our LMA vs Aleaf relationship is presumably mediated by leaf
biochemistry and should be thought of as a mass vs area comparison [31,32,56,57]. Nonetheless,
previous studies have found that leaf nitrogen content per mass combined with LAI largely explains
GPP variation across sites and biomes [15,28,62].

LMA may be thought of as a proxy for leaf nitrogen content and photosynthetic rate, and VIs that
are influenced by both LAI and LMA will provide more general predictions of GPP than ones that
are influenced mainly by LAI. Hence, seasonal or interannual GPP shifts associated with the initial
flushing of young, lower LMA, rapidly photosynthesizing leaves, and the gradual aging to thicker
leaves with lower photosynthetic rates [39,63–66] may be effectively explored with VIs such as EVI
and NIRv. Likewise, the GPP effects of seasonal, interannual, or successional shifts from herbaceous to
evergreen leaf importance may be detected using VIs such as EVI and NIRv.

We have argued that EVI and NIRv are particularly well correlated with GPP because they are
influenced by both LAI and LMA. However, we have also shown that NDVI is sensitive to Cab content
(Figure 5b), which is also correlated with leaf level CO2 uptake [21], raising the question of the apparent
insensitivity of NDVI to the leaf-level component of GPP. Previous studies have assumed that a weaker
relationship between NDVI and GPP is caused by saturation at high LAI or environmental influences
that are not related to plant physiology [18]. Here we have shown that NDVI saturates at relatively
low values of Cab (Figure 6a) due to strong chlorophyll absorption at red wavelengths (Figure 5a).
Hence, NDVI is relatively insensitive to Cab over the typical conditions observed for upper-canopy
leaves, and NDVI lacks strong sensitivity to a leaf trait that is well correlated with Aleaf. In contrast,
the effect of LMA on EVI and NIRv shows minor saturation across a realistic range of leaf thicknesses
(Figure 5c,d).

4.3. Implications and Opportunities

A site’s GPP ultimately reflects the combination of LAI and Aleaf (Figure 3). The ideal VI should
show sensitivity to LAI and a similarly strong, multiplicative sensitivity to some aspect of the land
surface that is closely related to Aleaf (Figure 4, [50]). EVI and NIRv do a better job of mimicking this
sensitivity than NDVI does (Figure 6c,d vs Figure 3b), and as a result provide tighter relationships
with GPP (Figure 2). Nonetheless, there is no reason to believe that EVI or NIRv represent the optimal
solution to this problem and alternative VIs may do even better jobs of predicting GPP.

Recent advances in remote sensing and plant physiology may further improve predictions
of GPP. Studies are exploring the relationships between plant traits and GPP across ecosystem
types [14,15,28,62]. Plant trait complexes have relatively strong spectral signals over visible and near
infrared broad-bands [67], and advances in simulating canopy radiation transfer should allow further
explorations of the links between GPP and surface reflectance [68]. Alternative VIs that better mimic
the relative importance of LAI and Aleaf in controlling GPP, or that more correctly account for the rate
that the LAI and Aleaf controls on GPP saturate (Figure 3, Figure 6), may provide even more general
predictions of GPP. Likewise, alternative VIs or retrieval approaches that combine sensitivity to LAI
with a proxy that is better correlated with Aleaf than is LMA (Figure 4; [21,31,32]) may provide improved
predictions of GPP.

5. Conclusions

We explored the relationships and underlying linkages between Gross Primary Production (GPP)
and three commonly used Vegetation Indices: NDVI, EVI, and NIRv. We analyzed data from 10 eddy
covariance sites located in the California analogues of six major terrestrial biomes, and found that GPP,
EVI and NIRv have strong and convergent within- and between-site relationships, whereas NDVI
and GPP showed weaker and more site-specific relationships.

Our analyses showed that GPP is driven by the multiplicative interaction between leaf area index
(LAI) and leaf-level CO2 uptake (Aleaf), with the importance of Aleaf increasing with LAI. This analysis
led us to conclude that a VI that is sensitive to the interacting effect of LAI and Aleaf should provide
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better predictions of GPP than a VI that is sensitive to just one of these properties. Moreover, we found
that leaf mass per area (LMA) provides a proxy for Aleaf, with thicker leaves showing lower rates of
Aleaf. Finally, we found that EVI and NIRv are strongly sensitive to LMA and LAI, whereas NDVI
is most strongly controlled by LAI over a range of realistic conditions. Hence, we conclude that
the comparatively tight relationships between GPP, EVI, and NIRv are driven by the multiplicative
sensitivity of these two VIs to LAI and LMA, which largely mimics the response of GPP to LAI and Aleaf.
NDVI is comparatively less sensitive to a leaf trait that is tied to leaf photosynthesis, which explains its
weaker correlation with GPP.

Our analysis provides a roadmap for more mechanistically linking VIs, ecosystem biophysical
properties, and GPP, and implies that VIs that better mimic GPP’s sensitivity to LAI and Aleaf may
provide more general predictions of canopy photosynthesis.
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Appendix A. Parametrization of the Global Sensitivity Analyses

The global sensitivity analysis for the Thornley GPP model was ran over the following ranges:
5.8–19.4 µmol CO2 m−2 s−1 for Aleaf, 4.58 × 10−9–1.411 × 10−8 kg CO2 J−1 PAR for the quantum
yield (based on ranges for C3 species from [69]), 0.5–0.95 for the curvature coefficient of the leaf light
response [50], 0.005–0.283 for leaf transmittance, 0–1 for proportion of direct radiation, and 14–65◦

for sun zenith angle. The range used for Aleaf reflects the community weighted means found at our
study sites. The range of leaf transmittance was the minimum and maximum transmittance (averaged
over 400–700 nm) obtained from PROSPECT runs varying leaf parameters over the same ranges as
those used in the global sensitivity analyses of PROSAIL. The ranges for LAI and canopy mean leaf
angle matched those used in the PROSAIL global sensitivity analysis (see below). Beam irradiance was
fixed at 435 W PAR m−2, which approximates 2000 µmol photons m−2 s−1 (a typical value for full direct
sunbeam), and the effect of varying irradiance was taken into account by varying sun zenith angle.

The original Thornley model does not explicitly include sun zenith angle or mean canopy leaf
angle. The sun zenith angle influences the irradiance at the canopy, and both leaf angle and sun angle
influence the extinction coefficient of the canopy. Following Lambert’s cosine law, the sun zenith angle
influences the irradiance I over a horizontal surface is

I = I0· cos(θsz) (4)

http://www.mdpi.com/2072-4292/12/9/1405/s1
http://www.try-db.org
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where I0 is the beam irradiance and θsz is the sun zenith angle. Following Ross [70] and Fuchs et al. [71],
the sun zenith angle and the canopy mean leaf angle θl influence the canopy extinction coefficient K
according to

K =
cos(θl)

cos(θsz)
(5)

Our sensitivity analysis of GPP did not explicitly incorporate the effect of other potentially
important variables such as air or leaves temperature. However, previous studies have shown
that the important controlling effect of plant traits over GPP holds regardless of variation in
these meteorological conditions [15,62].

We ran the global sensitivity analysis of the PROSAIL model over the following ranges:
9–58 µg cm−2 for leaf chlorophyll content (see Supplementary Material 5, [72]); 1–4 for the leaf structure
parameter [73]; 0.0064–0.0526 g cm−2 for LMA; 0.0146–0.0771 g cm−2 for Wc, and 0.1–5 m2 m−2 LAI.
The ranges of LMA and Wc were determined by the variation in community weighted mean traits
observed at the sites. The range of LAI exceeded the actual ranges observed at the sites (observed range
0.2–3.0 m2 m−2 at 5 sites). Ranges for other parameters were 25–63◦ for mean leaf angle (based on
a review of published values [74], see Supplementary Material 7), 0.0001–0.01 for hotspot (approximate
range for the sites according to leaf width divided by canopy height), 0–1 for the soil parameter, 0–1 for
proportion of diffuse to direct radiation, 14–65o for solar zenith angle, 0–60◦ for view zenith angle
of the sensor, and 0–180o for the relative azimuth angle between the sun and sensor. The ranges for
solar and view angles are based on exploratory analyses of MODIS imagery and MODIS specifications.
We ignored variation in carotenoid and brown pigments, given the paucity of field observations
and lack of a major effect on reflectance [75].

Previous global sensitivity analyses have used the maximum possible range for mean canopy
leaf angles (i.e., 0–90◦), and have shown that leaf inclination exerts a strong control over NIR
and vegetation indices such as EVI [20,54]. Our review of published measurements of mean leaf
angles shows a comparatively narrower range of leaf inclination angles (Supplementary Material 7),
and suggests that some previous analyses may have overestimated the importance of leaf inclination
in NIR reflectance.

Appendix B. Analysis with Thornley (2002) and PROSAIL Models

We used the model of Thornley [50] to predict gross primary production (GPP) in Figure 3b.
This model integrates a non-rectangular hyperbola leaf light response curve through the canopy,
accounting for leaf acclimation to sun and shade conditions. It models GPP from incident
photosynthetically active radiation (PAR), the leaf light response parameters of light saturated
photosynthetic rate sunlit leaves (Aleaf), maximum quantum yield, and a light response curvature
parameter. Canopy inputs are leaf area index (LAI), light extinction coefficient, and leaf transmission
coefficient. For Figure 3b, we set the quantum yield to 9.118121 × 10−9 Kg CO2 J−1 (the average value
for C3 species from [69]), a curvature parameter of 0.9 [50], a proportion of direct radiation of 0.9,
an extinction coefficient of 0.5 (spherical leaf angle distributions, [76]), leaf transmission coefficient of
0.1 (see Appendix A, [50]), and a PAR of 435 W PAR m−2 (equivalent to about 2000 µmol m−2 s−1).
We varied LAI from 0–5 m2 m−2 and Aleaf 5–20 µmol m−2 s−1, approximating the range of community
weighted means found at our sites (5.8–19.4 µmol m−2 s−1).

The PROSAIL model predictions in Figure 6 were calculated with the following inputs: 1.5 for leaf
structure parameter (typical value for healthy leaves, [73]), 0 for leaf carotenoid and brown pigment
content per area (see Appendix A), the average leaf water observed at the field sites (0.0384 g cm−2),
a spherical leaf angle distribution, hot spot value of 0.01, 10% fraction of diffuse to direct radiation,
and a fixed soil reflectance; 0◦ for view angle (from nadir), 0◦ view-sun angle azimuth difference, and sun
zenith angle of 22◦ (average value at midday during spring at our sites). LAI was varied from 0 to
5 m2 m−2, and leaf chlorophyll content (Cab) or leaf mass per area (LMA) were varied or fixed as specified
in the figure panel (Figure 6); fixed values were 30 µg cm−2 for Cab (see Supplementary Material 5)
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and 0.024 g cm−2 for LMA (the average at our sites). The levels of Cab or LMA used in Figure 6
correspond to the leaf photosynthetic rates shown in Figure 3b (see Figure 6 legend), and approximate
the ranges at the field sites (Figure 4, Supplementary Material 5). The quantitative crosswalk between
LMA in Figure 6 and leaf photosynthetic rate (Figure 5 legend) was based on Figure 4. The crosswalk
between Cab and leaf photosynthetic rate (Figure 6 legend) was based on [21], which related Cab to
the leaf maximum carboxylation and electron transport capacities, and then extrapolated to Aleaf

following [77] implemented in plantecophys R package [78]. The leaf photosynthesis model assumed
a leaf temperature of 25 ◦C and an intercellular CO2 concentration of 256 µmol mol−1 (the average
values in our field measurements).
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