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Abstract: The Ross Sea region, including three main polynya areas in McMurdo Sound, Terra Nova
Bay, and in front of the Ross Ice Shelf, has experienced a significant increase in sea ice extent in the
first four decades of satellite observations. Here, we use Co-Registration of Optically Sensed Images
and Correlation (COSI-Corr) to estimate 894 high-resolution sea ice motion fields of the Western Ross
Sea in order to explore ice-atmosphere interactions based on sequential high-resolution Advanced
Synthetic Aperture Radar (ASAR) images from the Envisat satellite acquired between 2002–2012.
Validation of output motion vectors with manually drawn vectors for 24 image pairs show Pearson
correlation coefficients of 0.92 ± 0.09 with a mean deviation in direction of −3.17 ± 6.48 degrees.
The high-resolution vectors were also validated against the Environment and Climate Change Canada
sea ice motion tracking algorithm, resulting in correlation coefficients of 0.84 ± 0.20 and the mean
deviation in the direction of −0.04 ± 17.39 degrees. A total of 480 one-day separated velocity vector
fields have been compared to an available NSIDC low-resolution sea ice motion vector product,
showing much lower correlations and high directional differences. The high-resolution product is able
to better identify short-term and spatial variations, whereas the low-resolution product underestimates
the actual sea ice velocities by 47% in this important near-coastal region. The large-scale pattern of
sea ice drift over the full time period is similar in both products. Improved image coverage is still
desired to capture drift variations shorter than 24 h.

Keywords: sea ice; motion tracking; Envisat ASAR; Polar Pathfinder; NSIDC; Western Ross Sea;
Synthetic Aperture Radar; COSI-Corr

1. Introduction

Sea ice thermodynamic and dynamic processes play an important role in the global climate as
they significantly influence the Earth’s energy balance and the freshwater flux [1]. Sea ice drift is a
key driver of spatio-temporal variations in sea ice concentration and thickness. It is also a driver of
roughness, surface albedo, moisture, and heat fluxes between the ocean and atmosphere, the freshwater
budget, and the sea ice melt and growth rates [2,3]. Furthermore, for an accurate representation of
sea ice in climate models, realistic parameterisation of the sea ice motion and deformation rates are
required [4]. The drift of sea ice is primarily forced by winds and ocean currents and is an essential
element in the dynamics of the polar oceans. In the Southern ocean, an overall increasing trend is
observed in the sea ice extent over the last few decades with a significant expansion in the Ross Sea
region ice, though the last few years potentially show signs of a reversing pattern [5]. The mechanisms

Remote Sens. 2020, 12, 1402; doi:10.3390/rs12091402 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-3899-2095
https://orcid.org/0000-0003-2447-377X
https://orcid.org/0000-0002-4848-9867
http://dx.doi.org/10.3390/rs12091402
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/9/1402?type=check_update&version=2


Remote Sens. 2020, 12, 1402 2 of 18

of this change are still uncertain. This is possibly driven by polynya processes in a few key areas.
Coastal polynyas as a result of off-shore winds are areas that drive sea ice production and related
processes and have likely contributed to a positive trend in sea ice extent and possibly mass in the Ross
Sea [6,7]. The sea ice drift observations in polynya regions are extremely important to understand the
sea ice formation and export mechanism. Winds over the Ross Sea have considerably strengthened
in recent decades, possibly owing to a combination of natural variability [8,9], stratospheric ozone
depletion concentrations, and changes in greenhouse gases [10].

Due to the vast area of the Antarctic sea ice cover and the timescale over which such investigations
are required, satellite data provide the only feasible mechanism for large scale assessment of sea ice
motion. Sea ice motion from consecutive satellite images can be estimated using Synthetic Aperture
Radar (SAR) imagery (with C-band being the most common). SAR sensors provide imagery in
various frequency bands with a high spatial resolution down to one meter and can be used in
the presence of clouds and during the absence of visible light, both of which are considerable
restrictions in the polar regions. Sea ice drift is estimated by comparing consecutive satellite
images using one of the following methods: optical flow [11,12], pattern-matching [13], or feature
tracking [14]. Authors of [15,16] developed a feature- and area-based technique for consecutive SAR
scenes to calculate sea ice displacement of the entire Arctic Basin. Thomas et al. [17] introduced a
comprehensive high-resolution sea ice drift algorithm for ERS-1 SAR images based on pattern-matching
(phase-correlation and normalized cross-correlation), allowing motion calculation at 400 m pixel
resolution. This phase-correlation method is faster than area-based techniques and is also able to
identify rotational effects. The same modified approach was applied to Envisat advanced synthetic
aperture radar (ASAR) data [18], which is derived of the sea ice motion field at 300 m resolution.
Thomas et al. [19] modified the algorithm to calculate the sea ice motion close to the discontinuous
regions in the Arctic. Komarov et al. [20] used the pattern matching technique for dual-polarization
(HH and HV) SAR imagery and showed that images in HV polarization are preferred under certain
conditions. Berg et al. [21] combines the phase-correlation method with feature tracking methods
to form a hybrid algorithm, and shows that this can capture rotation as well as large-scale motion.
Muckenhuber et al. [22] provided an open-source sea ice drift algorithm using the feature tracking
technique and combined this with a pattern-matching scheme in later work [23], while [24] also used
the same combination of feature tracking and pattern matching to calculate the sea ice drift in the
Arctic. Most studies on high-resolution sea ice drift vectors are available for the Arctic, which is why
the understanding of sea ice kinematics and its dynamics is much less developed for the Southern
Ocean. The Antarctic sea ice is more difficult to track with commonly used SAR sensors because the
younger and more homogeneous ice shows lower backscattering, less contrast, and high temporal
variability [25]. In addition to this, other complicating factors include higher sea ice drift velocities,
surface flooding, and snow accumulation, which make it altogether challenging to track prominent
features in the sequential images.

However, low-resolution sea ice motion products are available for the whole Antarctic region.
The Polar Pathfinder daily 25 km Equal Area Scalable Earth Grid (EASE-grid) sea ice motion vectors,
version 4, of the National Snow and Ice Data Center (NSIDC), provide long term data from 1978 to
present and were used in this study [26]. The advantages of these data are that they are available
as a daily product on a regular grid with error variance and have Antarctic-wide spatial coverage.
These low-resolution data are extensively utilized for parameter estimation in models, data assimilation,
and validation of coupled ocean-sea ice models, together with other sea ice products like concentration
and thickness [27]. For these applications, it is important to calculate the uncertainties in sea ice motion
products. Hwang et al. [28] compared the six available sea ice motion products (three low-resolution
and three medium-resolution) with the drifting buoy data in the Arctic and discussed the error
distributions. Sumata et al. [27] compared the estimates of uncertainties in low-resolution products
for the Arctic. For the Arctic monthly mean sea ice drift [29], produced time-varying uncertainty
maps of low-resolution products with respect to high-resolution data sets, by applying an empirical



Remote Sens. 2020, 12, 1402 3 of 18

function. In [30], it was shown that for different products, the error statistics either depend on sea ice
speed or on sea ice concentration, or on both, and also differ seasonally. Szanyi et al. [31] showed
persistent artefacts in the NSIDC sea ice vectors for the Arctic due to the small scale drifting buoy
data assimilation in satellite-derived sea ice vectors, which has been corrected in version 3. Previous
Antarctic studies from the Weddell Sea and the Indian Ocean sector showed that sea ice motion derived
from low-resolution satellite data underestimated sea ice motion by about 40% when compared to
buoy data [32,33]; therefore, there is considerable need for high spatial resolution estimates.

In this paper, sea ice kinematics is derived based on repeat-pass, high-resolution SAR data for
the western Ross Sea. Inter-comparisons over a time period of 10 years are made with available
low-resolution products and by manual validation. Making use of the COSI-Corr software [34],
we calculate high-resolution sea ice drift estimates and evaluate the applicability and shortcomings.
The results are validated from manually drawn vectors and the performance is evaluated against the
Environment and Climate Change Canada sea ice motion tracking algorithm. Conclusions are drawn
in view of the complex sea ice deformation observed in the Western Ross Sea and potential limitations
are assessed.

2. Study Area and Data

Our investigation area is the Western Ross Sea, including the three prominent polynyas: the Ross
Sea Polynya (RSP), Terra Nova Bay Polynya (TNBP), and McMurdo Sound Polynya (MSP) (Figure 1).
Antarctic-wide sea ice motion vectors derived from NSIDC for week 42 of 2011 are shown for the whole
of Antarctica in Figure 1a. Figure 1b shows a blown-up image of the region of interest, which covers a
total area of around 200,000 km2. Given that the prevailing wind and ice dynamics are not uniform
across the study region, and that areas adjacent to Victoria Land are dominated by fast ice along the
coastline, the area of investigation was split into two regions identified in Figure 1b: (i) RSP (region-1),
and (ii) MSP and TNBP (region-2).
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Figure 1. (a) Antarctic-wide mean National Snow and Ice Data Center (NSIDC) sea ice drift vectors
for week 42 of 2011 (box indicates study area). (b) Moderate Resolution Imaging Spectroradiometer
(MODIS) image (27 October 2011) of the study region in the western Ross Sea showing three prominent
polynyas: the Ross Sea Polynya (RSP), Terra Nova Bay Polynya (TNBP), and McMurdo Sound
Polynya (MSP).

2.1. ASAR High-Resolution Radar Image Data

Envisat ASAR wide swath (WS) images (C-band; HH polarization) in ScanSAR mode were
analysed for the satellite operational years 2002–2012 during the winter period of April–October,
which is when the study area shows near-complete sea ice coverage. WS products are acquired at
a swath width of 400 km at a nominal resolution of 150 m, and the GRD (Ground Range Detected)
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product is gridded at a 75 m pixel raster. Data in radar geometry were projected into the same
polar-stereographic coordinate system as the NSIDC product (see below). The acquisition time was
around 18:00 UTC (varying between 15:00–20:00 UTC). These data were found to be suitable for sea
ice motion detection due to their comparatively large spatial and temporal coverage. As shown in
Table 1, for our investigation area, a total of 2829 images with full or partial coverage of the study area
over the 10-year period examined were assessed. Out of the 2829 satellite images originally available,
we selected 1513 images with at least 50% coverage of the study area defined in Figure 1a for further
analysis. Overall, this resulted in 894 velocity fields, with 480 having a 1-day time separation.

Table 1. Monthly and annual distribution of Envisat advanced synthetic aperture radar (ASAR) wide
swath images acquired on a variety of ascending and descending orbits in the study area.

Months 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

April 8 8 18 16 14 6 11 12 27 5
May 2 11 43 20 17 5 13 9 10
June 8 3 31 19 14 5 9 12 24
July 8 - 30 20 11 10 8 10 18

August 11 9 8 28 20 8 13 6 10 17
September 8 10 16 31 9 6 11 4 7 17

October 13 3 11 27 22 10 13 13 11 27

Annual Total 32 48 57 208 126 80 63 64 71 140 5
Grand Total 894

The precise geo-referencing of Envisat ASAR imagery is one of the most important factors for sea
ice motion calculations. Data were received in ground range detected (GRD) format and calibrated by
applying calibration constants provided in the ESA product. The images were also down-sampled
from 75 m to 150 m for speckle reduction and converted into a polar-stereographic projection using
the GAMMA Remote Sensing software package. Most of the observed backscattering coefficient (σ0)
values were between 0 and −25 dB, and were well within the expected range for ASAR wide swath
mode data [35]. The SAR data were scaled to 8-bit using a power-law scaling with an exponent of 0.35
in order to keep the data volume low whilst also representing the dynamic range and the radiometric
accuracy of the sensor [35].

2.2. NSIDC Sea Ice Motion Vector

For the low-resolution sea ice motion, Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion
Vectors, version 4 (provided by the NSIDC), were used. NSIDC provides daily gridded sea ice
motion vectors on a 25 km grid from November 1978 to the present. The data are on a regular
South Polar-stereographic grid with vector components in the direction of the easting and northing
coordinates in cm/s, and a third variable describes the square root of the estimated error variance.
The vectors are defined on EASE-Grid. In contrast to the Arctic, where sea ice motion is calculated
using multiple instruments, buoys, and wind data sets, for the Southern Ocean, the motion is computed
only from satellite data [26]. We used the NSIDC data for comparison with the Envisat data from
17 August 2002 to 7 April 2012.

3. Methods

For our study, we first estimated the sea ice motion using the COSI-Corr (Co-Registration of
Optically Sensed Images and Correlation) software package (an add-on module in ENVI classic
software). This software was originally developed for the evaluation of coseismic displacement
fields [34]. Scherler et al. [36] found COSI-Corr to be useful for glaciological applications to derive the
glacier velocities. Here, we evaluate the potential and limitations of this software for sea ice motion
detection and compare the high-resolution drift vectors to a standard 25 km motion product.
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3.1. Drift Vector Calculations

We calculated sea ice motion vectors from consecutive high-resolution Envisat image pairs in
centimetres per second using the frequency correlator in the COSI-Corr software. Key elements of the
frequency correlator are outlined here, but a detailed description can be found in [34]. Based on the
Fourier transform (FT) of the images, the relative displacements between image patches are calculated
by evaluating the correlations between the images from a multi-pixel to sub-pixel scale. A Hanning
window is used for the image patches to reduce the FT windowing artefacts, and high frequencies
are masked by filtering to improve the correlation quality. A sliding window is used to scan the
images to calculate the correlation fields to obtain the motion components in the x- and y-direction
and the corresponding Signal to Noise Ratio (SNR). The frequency correlation is a two-step process.
In the first step, the coarse displacement is calculated between two images by setting up an initial
window size (IWS). After this coarse displacement is estimated, a final smaller window size (FWS)
is used to estimate the accurate subpixel displacement. In total, there are five variable settings that
are controllable in the COSI-Corr software; these are: IWS, FWS, Step distance in x- and y-direction,
Robustness Iteration number (RI), and Mask Threshold (MT). We carried out a robustness test by
changing only one variable and leaving the remaining variables constant and found that results are
highly sensitive to IWS. The reason for this sensitivity is that large displacements can only be observed
by making the IWS sufficiently large. For example, an IWS of 256 in the frequency correlator setting
allows by default only a 128 search range in each direction [37] and, therefore, restricts the maximum
detectable displacement to 19.2 km for our 150 m pixel resolution image. As in the event of polynya
openings, the maximum ice displacement was found to be around 30 km in 24 h in our study region
based on a visual assessment. Estimating maximum one-day sea ice drift, we used for our analysis 512,
64, 4, and 0.9 for IWS, FWS, RI, and MT, respectively. The resulting COSI-Corr motion vectors were
saved as vector components with a measure of the Signal to Noise Ratio (SNR) varying between 0–1.
We masked the land area and also removed large outlying vectors that were observed on the edges
between two images. In the quality control step, we discarded all the values that had an SNR value of
less than 0.95.

For all the selected image pairs, we also used high-resolution vectors calculated by the Environment
and Climate Change Canada sea ice motion tracking algorithm (hereafter referred to as ECCC), which is
fully described and based on [20]. Briefly, this algorithm uses the phase-correlation and cross-correlation
combination to capture the rotational and translational sea ice movement. It was found to have a
root-mean-square error of 0.43 km/day [20] between the ice drifting beacon trajectories and the
SAR-derived sea ice motion vectors. The ECCC algorithm has been widely used for sea ice applications
in the Arctic (e.g., [38,39]).

3.2. Validation of COSI-Corr Motion Vectors

A common method to validate satellite-derived sea ice motion vectors is to use continuous sea ice
drift buoys (e.g., [40]). However, no buoy data are available for our study area and, therefore, the sea
ice motion vectors had to be validated with manually drawn vectors. Start and end points of clearly
identifiable ice floes were used to draw displacement vectors in ArcGIS. For the validation, we selected
October 2011 as a month with representative sea ice extent and good satellite data coverage in terms of
availability of images for a single month over the entire study area. A large variety of possible drift
patterns were also observed in October 2011 (see examples in Figure 4), and the radar backscattering
signatures in other months were found to be very similar to this validation period. We found a total of
24 image pairs and around 50 vectors per image pair were derived manually. Scatter plots were used
to examine the agreement between manual and COSI-Corr displacement magnitudes, and the Pearson
correlation coefficient was evaluated. The directional differences were quantified using the deviation
between the two vectors. Positive angle values were assigned if the manual vector was to the right of
the Envisat vector; otherwise, it was considered to be a negative deviation. The standard deviation
was also calculated. Furthermore, the ECCC vectors are also compared with manually drawn vectors
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and based on the high correlation (discuss in result section) shown later, which is used as a benchmark
for the validation of the COSI-Corr vectors for all the years (2002–2012).

3.3. Comparison Between High-Resolution and Low-Resolution Data

For comparison with the NSIDC data set, we downscaled the high-resolution vectors to 25 × 25 km
pixel resolution. The image section for our analysis is shown in Figure 1b, which has a length and width
of 525 km × 375 km corresponding to 3500 × 2500 pixels at our nominal pixel size of 150 m. The NSIDC
sea ice grids come at 25 km resolution, corresponding to 21 × 15 pixels for this image section.

We used the 10 × 10 step size for deriving COSI-Corr vectors, so our final correlation image is
downscaled by a factor of 10 to 1500 m pixel resolution (350 × 250 pixels). We inserted 7 blank rows and
5 blank columns (357 × 255 pixels) at the margins so that they can be divided by 17 (so that the output
is 21 × 15 pixels). The margins were subsequently masked for further processing. The COSI-Corr
result also has no data values when there are no data or the correlation value between the two images
is below the validity threshold. Therefore, we averaged 17 × 17 pixels by excluding pixels with no
data. To minimize a bias in the down-sampling, we averaged only those pixel templates that had more
than 60% of data values. For example, if the number of populated vectors was 50 out of 100 pixels
(10 × 10), then the average might differ from the pixel where more or all pixels have values, due to the
large variation in the sea ice motion vectors. These steps gave us a smooth and filtered sea ice drift
field. Sea ice vectors are co-located for comparison using the nearest neighbour method. We drew
the scatter plots with the linear fit and calculated the correlation coefficient for the image pairs with
one-day separation, this reduced the number of usable vector fields to 480. Scatterplots as shown in
Figure 6a were evaluated if more than 5 corresponding data points were available in Envisat data.
The overall comparison methodology is detailed graphically in Figure 2.
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Figure 2. Flow diagram explaining the applied analysis method.

Finally, the NSIDC data were also used to describe the average speed (in cm/s) and flow direction (in
degrees) over the study area from 2002–2012. The same procedure was adopted for the high-resolution
data, and average speed was calculated for the available image pairs for region-1 and region-2.
The results are presented in Section 4.3.
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4. Results

We analysed the Envisat data for the years 2002–2012 during the winter period April–October
when the area shows near-complete sea ice coverage apart from regular Polynya events (Figure 2a
in [7]). Probability Density Functions (PDFs) were calculated for a bin size of 0.5 cm/s for region-1
and region-2 for all the available image pairs from 2002–2012 (Figure 3). We also divided the data
into two seasons from 01 April–15 July and from 16 July–31 October. The Envisat derived vectors
are downscaled to the resolution of the NSIDC grid for the calculation of the PDFs. Based on the
results of the Kolmogorov–Smirnov test, it is observed that the distributions are significantly similar
for both seasons.
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Figure 3. Probability density functions (velocity bin size at 0.5 cm/s) for all the available data from
2002–2012 for region-1 and region-2 for two seasonal periods. Data are divided into two seasons from
01 April–15 July and 16 July–31 October. The solid lines represent running means.

Examples of consecutive Envisat SAR images used in our analysis are shown in Figure 4 with
overlaid drift vectors from high- and low-resolution products. These sample images show the variation
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in the sea ice motion and different possible directions in which the sea ice drift in the Western Ross Sea
region. Figures 5 and 6 show a comparison of Envisat automatic and manual vectors, and Envisat
and NSIDC sea ice drift, respectively. Tables 2 and 3 represent the mean correlation coefficient in
magnitude and direction.
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Figure 4. Displacement vectors of 25 km grid resolution obtained from different methods are plotted
on Envisat images. (a) Vectors for 01–02 October 2011, (b) 16–17 October 2011, (c) 24–25 October 2011,
and (d) 28–29 October 2011.

4.1. Validation Results: Envisat Manual Versus Automatic Vector

For validation, we used October 2011 as a sample month because it is when sea ice concentration
is high and a sufficiently large number of image pairs are available (24 image pairs) for comparison.
Displacement vectors were manually drawn for sequential image pairs and the Pearson correlation
coefficients were calculated. Vectors were co-located using the nearest neighbour method for
comparison. The high-resolution drift vectors were automatically derived by using two techniques (i)
COSI-Corr and (ii) ECCC. We compared the ECCC with the manually drawn vectors and found the
correlation coefficient in speed (0.98 ± 0.02) and mean deviation in direction (−0.79 ± 2.00) degrees.
This implies that the ECCC algorithm has high accuracy for visually stable and identifiable features.
However, we also validated COSI-Corr vectors with manual vectors but, as the manual vectors were
only drawn for one month, we also compared COSI-Corr vectors with ECCC for the whole data set (total
894 image pairs from 01 Apr–31 October of each year from 2002–2012). The results are summarized
in Table 2 with an example of 10–11 October 2011 in Figure 5. The mean correlation coefficient (R) is
found to be 0.84 ± 0.20 for the speed and the mean deviation in angles is −0.04 ± 17.39 deg.
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Table 2. Validation parameters with standard deviations of COSI-Corr vectors from manual and
Environment and Climate Change Canada (ECCC) automatic drift vectors with the deviation in
the direction.

Displacement (km) Directional
Difference (deg)Algorithm Slope Intercept R RMSE Image Pairs

ECCC vs.
manual 1.00 ± 0.05 −0.02 ± 0.38 0.98 ± 0.02 0.73 ± 0.41 24 −0.79 ± 2.00

COSI-Corr vs.
manual 1.05 ± 0.52 −0.66 ± 2.10 0.92 ± 0.09 1.02 ± 0.82 24 −3.17 ± 6.48

COSI-Corr vs.
ECCC 0.77 ± 0.32 0.51 ± 3.05 0.84 ± 0.20 2.77 ± 3.86 894 −0.04 ± 17.39
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4.2. Envisat Automatic Versus NSIDC Vectors

When comparing the high-resolution image data set to the low-resolution NSIDC data set,
we downscaled the high-resolution images rather than interpolating them. We compared both
COSI-Corr and ECCC with NSIDC data, but ECCC works for both low and high velocities and is
more accurate, so here we reported the result of these vectors for comparison (details are described
in the discussion in Section 6). We calculated the correlation coefficient and the difference between
angles. Figure 6 shows a comparison example of the NSIDC sea ice motion vectors with the Envisat
high-resolution image vectors. The speed was calculated for each grid point and the results were
plotted as a scatter plot. For each image pair, the least square regression line was fitted. From this,
gradient, intercept, Pearson correlation coefficient, and root mean square error (RMSE) were calculated.
The angle deviation was also calculated at each grid point. The same procedure was repeated for all
the image pairs, and the large-scale statistics are reported year-wise in Table 3.

Based on the results shown in Figure 6, we further investigated the minimum and maximum
velocities captured by both data sets to analyse the variations in the sea ice velocities. To further
examine this, the range of velocity values for both the NSIDC and the Envisat data sets were compared
for each region. For all study years, the range of NSIDC velocities were more often smaller than the
range of Envisat: 90.11% of the time in region-1 and 92.42% of the time in region-2.
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Table 3. Correlation coefficient (R) for drift velocity (cm/s) and deviation in drift direction (degrees)
between Envisat images and NSIDC data: (a) region-1; (b) region-2.

(a) Region-1—Speed (cm/s)
Image Pairs Directional

Difference (deg)Year Slope Intercept R RMSE

2002 0.07 ± 0.45 4.20 ± 4.75 0.30 ± 0.48 6.68 ± 4.97 22 3.57 ± 42.13
2003 0.18 ± 0.35 5.10 ± 4.58 0.27 ± 0.53 13.29 ± 9.68 27 9.75 ± 20.69
2004 0.09 ± 0.29 3.83 ± 3.60 0.09 ± 0.47 10.91 ± 9.12 27 −9.61 ± 28.08
2005 0.15 ± 0.57 4.21 ± 7.79 0.20 ± 0.59 13.22 ± 10.75 101 −9.34 ± 37.74
2006 0.06 ± 0.33 7.17 ± 6.78 0.06 ± 0.51 11.84 ± 10.19 92 −1.38 ± 44.13
2007 0.09 ± 0.30 7.64 ± 6.83 0.14 ± 0.50 13.95 ± 10.41 40 5.11 ± 32.56
2008 0.13 ± 0.32 5.98 ± 5.69 0.19 ± 0.55 8.30 ± 7.26 23 −3.59 ± 29.86
2009 0.16 ± 0.38 6.65 ± 8.62 0.23 ± 0.50 12.22 ± 9.65 25 −6.52 ± 33.56
2010 0.27 ± 0.34 6.91 ± 7.32 0.33 ± 0.50 8.61 ± 5.87 16 −0.43 ± 26.39
2011 0.20 ± 0.47 7.05 ± 11.62 0.22 ± 0.51 9.39 ± 8.37 104 −2.18 ± 40.33
2012 −0.13 ± 0.17 7.03 ± 3.49 −0.20 ± 0.27 14.26 ± 5.15 4 −15.03 ± 8.55

Weighted
Average 0.13 - 0.18 11.33 - -

(b) Region-2—Speed (cm/s)
Image Pairs Directional

Difference (deg)Year Slope Intercept R RMSE

2002 0.22 ± 0.32 2.18 ± 3.88 0.41 ± 0.44 3.58 ± 3.06 22 −2.10 ± 47.65
2003 0.21 ± 0.23 2.04 ± 1.71 0.41 ± 0.48 4.10 ± 2.97 27 −3.34 ± 43.90
2004 0.13 ± 0.19 1.67 ± 1.86 0.37 ± 0.41 4.60 ± 4.04 27 −3.50 ± 54.06
2005 0.11 ± 0.30 2.91 ± 3.68 0.35 ± 0.42 6.32 ± 4.55 101 −9.52 ± 39.85
2006 0.23 ± 0.28 3.00 ± 3.75 0.45 ± 0.43 4.96 ± 3.18 92 4.92 ± 38.99
2007 0.12 ± 0.18 4.28 ± 3.98 0.32 ± 0.38 5.83 ± 3.52 40 11.30 ± 50.01
2008 0.29 ± 0.51 2.46 ± 3.25 0.48 ± 0.39 3.99 ± 2.80 23 14.48 ± 42.00
2009 0.21 ± 0.26 3.59 ± 4.79 0.41 ± 0.35 5.19 ± 4.12 25 −2.18 ± 56.15
2010 0.18 ± 0.12 2.50 ± 1.84 0.45 ± 0.27 5.55 ± 2.01 16 4.48 ± 31.61
2011 0.22 ± 0.43 2.96 ± 3.72 0.33 ± 0.41 4.72 ± 3.26 104 2.47 ± 45.92
2012 0.04 ± 0.07 1.78 ± 0.80 0.18 ± 0.51 11.84 ± 1.85 4 −7.74 ± 3.13

Weighted
Average 0.18 - 0.38 5.18 - -
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Remote Sens. 2020, 12, 1402 11 of 18

4.3. Average Speed Comparison Over the Study Area

We also completed an average speed comparison by using a spatial average of the sea ice velocities
for region-1 and region-2, but spatial averages were only calculated if grid points were available for
both Envisat and NSIDC. A time series of the results for 2011 is shown in Figure 7, and the summary
for all years is shown in Table 4. The Spearman rank correlation coefficients for all the image pairs of
all years are found to be 0.55 and 0.53 for region-1 and region-2, respectively.
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Figure 7. Graph showing average speed for low and high-resolution images for the available image
pairs for the year 2011 over (a) region-1 and (b) region-2.

Furthermore, to examine the long term averages in sea ice motion, the velocities were divided
into three categories based on the percentiles of sea ice speed: low (0–10 cm/s), medium (10–20 cm/s),
and high (>20 cm/s) in region-1, and low velocities (0–5 cm/s), medium velocities (5–10 cm/s), and high
velocities (>10 cm/s) in region-2. For the directional analysis, the directions were divided into four
categories (East, West, North, and South). For example, here ‘North’ represents the direction in which
the sea ice was drifting due to the winds coming from the Ross Ice Shelf (RIS). However, the sea ice was
moving to the east due to the katabatic winds blowing from the Transantarctic Mountains and through
Terra Nova Bay. Other directions were also assigned in a similar way (Figure 1). The directional bins
for the sea ice roses in Figure 8 are represented in the same way as the overlaid sea ice motion vectors
in the polar-stereographic coordinate system. Finally, the four directions categories were considered
as ±45 deg deviation from that cardinal direction. The results are summarized in Table 4 for the
regions (1 and 2), and sea ice roses are shown in Figure 8. These results are discussed in detail in the
next section.
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Table 4. Distribution in percentage of sea ice velocities related to wind speed categories and direction
±45 degrees from the cardinal direction from 2002–2012. (a) Envisat derived vectors for region-1.
(b) NSIDC calculated sea ice motion for region-1. (c) Envisat derived vectors for region-2. (d) NSIDC
calculated sea ice motion for region-2.

(a) Envisat (Region-1)

Categories (cm/s) Low (0–10) Medium (10–20) High (>20)

S 6.07 0.22 0 6.29
W 6.07 5.17 0.45 11.7
N 17.3 24.27 24.04 65.6
E 9.66 5.17 1.57 16.4

39.1 34.83 26.07 100

(b) NSIDC (Region-1)

Categories (cm/s) Low (0–10) Medium (10–20) High (>20)

S 7.42 0 0 7.42
W 14.61 1.8 0 16.4
N 39.78 14.38 2.92 57.1
E 16.4 2.47 0.22 19.1

78.2 18.65 3.15 100

(c) Envisat (Region-2)

Categories (cm/s) Low (0–5) Medium (5–10) High (>10)

S 5.19 0.22 0 5.41
W 10.82 2.6 0.87 14.3
N 30.95 11.9 3.03 45.9
E 23.59 8.01 2.81 34.4

70.56 22.73 6.71 100

(d) NSIDC (Region-2)

Categories (cm/s) Low (0–5) Medium (5–10) High (>10)

S 7.36 0 0 7.36
W 8.23 1.08 0 9.31
N 49.13 6.49 1.95 57.6
E 24.68 1.08 0 25.8

89.39 8.66 1.95 100
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and region-2, respectively, and (b) and (d) from NSIDC sea ice motion vectors for region-1 and
region-2, respectively.

5. Discussion

Keeping in mind the variable sea ice conditions and dynamics, the sea ice drift is higher in the
Ross Sea polynya region due to the stronger southerly winds. Off-shore winds blowing from the
south across the western RIS are responsible for the regular opening of the Ross Sea polynya [7].
Compared to the Ross Sea polynya region, the McMurdo Sound polynya experiences a modified wind
regime because of more complex geography. This area is adjacent to fast ice, and sea ice is often not
freely drifting as shown in Figure 1. The area immediately north of Ross Island is a natural boundary,
as it is protected from the dominant southerly winds [7]. In the opening of the TNBP sea, ice in the
area is moving east, but the predominant winds along the coast change its bearing to the north-east in
between polynya events [41]. Our analysis, therefore, confirmed that the study area can be divided
into two regions experiencing significantly different sea ice dynamics related to differing wind forcings:
RSP (region-1), and MSP and TNBP (region-2).

We made use of the available COSI-Corr software package to calculate the sea ice motion vectors.
The quality of COSI-Corr vectors mainly depends upon three factors. Firstly, and most importantly,
we must pick a suitable initial window size (IWS) to detect the maximum sea ice displacement. This is
a critical limitation especially for the COSI-Corr algorithm, which was developed for relatively small
displacements. The other tuning parameters do not result in significant differences in the calculated
sea ice velocity fields. For instance, in our analysis, we chose an IWS of 512 pixels and, therefore,
the maximum detectable displacement in the Euclidean space between consecutive images is 38.4 km.
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Secondly, during periods of polynya formation, the young sea ice is highly deformable without any
significant stable features, which normally does not allow us to find matching points even over very
short periods of time. In a few cases, it was observed that in the event of polynya formation, up to
half of the study area was open water; hence, only a few matching features are available in the study
area. Finally, an important aspect dictating the COSI-Corr vector population is the image overlap
area itself. If the images cover less than 50% of the overlapping area of the study region, then the
outside ‘no data’ values make it increasingly difficult to find good quality matching points. Another
consideration is the satellite image contrast, given that results shown here are based on Envisat WS
images with relatively high SNR. In other study regions, or for example by using Envisat SAR images
in GMM mode, results could be impacted by a low SNR. It is also observed that under the conditions
mentioned above, the COSI-Corr algorithm is suitable for different ice conditions and seasons as well.
The algorithm shows promising results with input parameters as discussed. The presented results of
sea ice drift are in agreement with a study by Hollands et al. [42], who found that four error sources are
linked to image data properties. These are the following: the homogenous regions of newly formed ice
without any textural pattern, brightness changes in the images due to the polynyas, ice structures and
similarity changes between image pairs (rotation, deformation, and melting), and at the borders as the
floe enter/left the study area.

The accuracy of COSI-Corr was evaluated with the manually drawn vectors, and the sources of
error were mainly dependent upon the manual picking of matched key-points in two consecutive
images. The errors also depend on the distance between the manual and COSI-Corr vector found by
the nearest neighbour method. Overall, there were four error sources: locational geo-referencing error,
manual picking of key-point and vector, algorithm error, and vector co-location error. For example,
in the error budget, if the images with an error of two pixels are 24 h apart with 150 m pixel
resolution, they can generate an error of ±0.35 cm/s in the resultant vector field. Results depict a
high correlation between automatic and manually drawn vectors with appropriate representation of
direction. The COSI-Corr vector works for a maximum drift speed of 45 cm/s, while ECCC shows that
it works for all velocity ranges from low to high with high accuracy, as indicated in Table 2.

The correlation of the Envisat data set with NSIDC sea ice motion varies with the image pair. For this
comparison, the source of error includes the co-location error. Furthermore, there might be another
source of uncertainty in the comparison due to the acquisition time of the images, since the limited
number of high-resolution data sets are always acquired around 18:00 UTC. However, low-resolution
data are acquired at varying times of the day. When comparing the Envisat data with the NSIDC
data set, no strong correlation was found between their speeds and directions. Table 3 outlines for
the 10-year data set that the correlation coefficients (R) are 0.18 and 0.38 for region-1 and region-2,
respectively. As shown in Figure 6, most of the least square linear fit lines are parallel to the Envisat
velocity axis. This demonstrates that deformation patterns in the study area are much smaller than
the grid spacing in the NSIDC data. Therefore, the lower spatial resolution of the NSIDC vector
set is unable to capture the fine-scale spatial variability observed by the SAR data. The range of
the velocity values is calculated by subtracting the maximum velocity from the minimum velocity
for each deformation field of the NSIDC and Envisat data set, and the corresponding line graphs
were analysed. The same finding is also reflected in the range of velocity values for all the image
pairs. It shows the range of drift velocities calculated from the NSIDC data set are more often lower
than the high-resolution data set for both regions (90.11% and 92.42% of the time for region-1 and 2,
respectively). Table 3a,b also depicts that the mean deviation in that direction is also high. Previous
studies have described that the temporal and spatial uncertainty relies on four main sources of error in
openly available sea ice drift products for the Arctic: algorithm used for sea ice tracking, interpolation
method, satellite input data, and temporal and spatial scales [27]. For our analysis, the lower spatial
variability in the NSIDC data set might be due to the unavailability of input satellite data, which results
in the interpolation or extrapolation of the data set to populate all the grid points in the study area.
Researchers in [32] compared the low-resolution satellite-derived sea ice motion with drifting buoys,
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and also found a very low correlation coefficient of 0.15 in speed for East Antarctica from 1985 to
1997. Buoy data represent the motion of individual floes (similar to the derived high-resolution sea ice
motion in this study), whereas the low-resolution sea ice motion vectors represent the drift of surface
patterns within a much larger grid-cell.

In addition to the observations of spatial variation of sea ice motion, the average speed over
both regions was also examined. Based on the comparison of average speed over the study area,
Figure 7 reveals that NSIDC mean velocities are underestimated around 47.37% for the entire study
area in comparison to the high-resolution data set. Researchers in [33] compared the low-resolution
satellite-derived sea ice motion with the drifting buoy data for the Weddell sea from 1989 to 2005,
and also found that NSIDC drift was underestimated by 34.5% in comparison to the mean drift velocity
calculated from drifting buoys. Furthermore, [32] showed for East Antarctica from 1985 to 1997 that
the typically satellite-derived sea ice motion underestimated 40% or less of the buoys derived ice
velocity. This indicates that the shortcoming in previous studies are related to the spatial scale of
the input data and can be overcome by using high-resolution SAR images. The comparison shows
that a very high sea ice motion towards the Drygalski ice tongue in the low-resolution image is not
observed when using high-resolution satellite images and some NSIDC images are not capturing the
actual rotation as detected in Envisat data. This shows that when using low-resolution data for a short
period of one day, it is important to consider the overall statistics of sea ice in the Western Ross Sea.
Otherwise, results might be biased for the velocity estimates. Due to the availability of restricted image
pairs, it is difficult to determine under which conditions and circumstances NSIDC vectors show the
same estimates as the velocity magnitude and direction obtained from high-resolution satellite data
set. Our study shows that the high-resolution SAR images have the ability to estimate the small and
fine-scale movements of ice floes, but they also indicate a very interesting fact about the NSIDC data set,
which is that it has the ability to capture the average speed trend over the study area. We can observe
that on those occasions when the Envisat derived speed is maximum, the NSIDC sea ice motion is also
showing a peak. The Spearman rank correlation coefficient is found to be around 0.5 for the study area.
Therefore, for the NSIDC data set, the NSIDC average speed analysis is more appropriate than the
NSIDC pixel by pixel analysis and gives a better estimation of the actual speed over the study area.

Another interesting aspect from these images is that we can perform a more detailed directional
analysis to examine the most dominating speed and direction in which sea ice is typically moving.
To investigate the overall velocity statistics, sea ice speed has been divided into three categories
(low, medium, and high speed) and direction into four categories. Table 4 and Figure 8 reveal the
interesting results that, in the long-term time series, both Envisat and NSIDC data show for both
regions a prominent mode of movement towards the north driven by strong winds from the RIS (for
region-1, 65.62% and 57.08%, and for region-2, 45.89% and 57.58%, from Envisat and NSIDC data sets,
respectively). The variability is clearly higher in the Envisat data set. Our results agree with the synoptic
climatology developed by [43] for the Ross Sea and RIS based on the 10 m ERA Interim reanalysis
data from 1979–2011. The northward RIS air stream (RAS) was found to be the dominant synoptic
event impacting sea ice in the region. However, [43] also showed that the small-scale features were not
resolved by this ERA Interim reanalysis data. The second dominating movement is towards the east
due to the katabatic winds, which are also responsible for the opening of TNBP. As observed in Figure 8,
the directional variability is lower in region-1 compared to region-2, which shows the contribution of
winds from different directions likely driven by the katabatic winds from the Antarctic continent.

6. Conclusions

In this study, sea ice motion vectors from Envisat ASAR images were derived and compared with
low-resolution NSIDC data in the highly dynamic and variable region of the Western Ross Sea region.
There is a lack of sea ice drift information at high spatial resolution in this area, and this study addresses
this gap and emphasizes the importance of high-resolution sea ice drift estimation for short-term
analysis. We assessed the potential of high-resolution radar images for sea ice motion derivation and
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provide an intrinsic reliability measure for the low-resolution product. For the detailed and synoptic
comparisons of sea ice kinematics, we find COSI-Corr is a suitable tool to detect low-velocity sea ice
drift. COSI-Corr has the potential to calculate large-scale deformational sea ice drift and rotation from
consecutive high-resolution Envisat ASAR images. Envisat sea ice velocities were in good agreement
in both magnitude and direction with manually drawn vectors and ECCC vector fields. Based on
high correlation/visual analysis, we can conclude that the algorithm is appropriate for sea ice motion
vector calculation over Antarctic sea ice. COSI-Corr is freely available for scientific use and is a
user-friendly software, but it requires a commercial ENVI software license. It is convenient to use
without prior knowledge of any programming language. It is computationally efficient and results are
easy to visualize.

We also compared the Envisat sea ice velocities with lower spatial resolution NSIDC sea ice
velocities. We showed that the low-resolution data lack a true representation of direction despite
the high correlation in speed or vice versa. The highly dynamic nature of sea ice in the Ross Sea
region is not fully represented in the low-resolution NSIDC data set. The averaging over areas with
heterogeneous sea ice motion may underestimate the sea ice velocity since the direction changes so
quickly within the area of interest. Also, the varying acquisition times of different products make it
difficult to compare the sea ice drift because of short term variations. Furthermore, mixed land and
sea ice pixels in coastal regions do not allow a meaningful assessment of sea ice drift in these regions.
For the estimation of sea ice velocity, it is, therefore, necessary to consider the spatial and temporal
resolution of satellite sensors, otherwise, the results might not show the actual drift of sea ice in the
region of interest. However, low-resolution data have the ability to find long-term and broad-scale
drift patterns. As the motion vectors show the displacement between two images despite the deviation
in between the acquisitions, any in-between variation is unknown between an image pair. Therefore,
further investigation is needed to correlate the sea ice motion vectors with winds and ocean currents to
find out the effect of responsible dynamical forces. Also, the upcoming SAR satellites, e.g., NASA-ISRO
SAR Mission (NISAR) together with Sentinel-1 (A and B), will provide better coverage of Antarctica
and will improve the quality of sea ice estimates.
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