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Abstract: Earth observation (EO) has an immense potential as being an enabling tool for mapping spatial
characteristics of the topsoil layer. Recently, deep learning based algorithms and cloud computing
infrastructure have become available with a great potential to revolutionize the processing of EO
data. This paper aims to present a novel EO-based soil monitoring approach leveraging open-access
Copernicus Sentinel data and Google Earth Engine platform. Building on key results from existing
data mining approaches to extract bare soil reflectance values the current study delivers valuable
insights on the synergistic use of open access optical and radar images. The proposed framework
is driven by the need to eliminate the influence of ambient factors and evaluate the efficiency of a
convolutional neural network (CNN) to effectively combine the complimentary information contained
in the pool of both optical and radar spectral information and those form auxiliary geographical
coordinates mainly for soil. We developed and calibrated our multi-input CNN model based on soil
samples (calibration = 80% and validation 20%) of the LUCAS database and then applied this approach
to predict soil clay content. A promising prediction performance (R2 = 0.60, ratio of performance
to the interquartile range (RPIQ) = 2.02, n = 6136) was achieved by the inclusion of both types
(synthetic aperture radar (SAR) and laboratory visible near infrared–short wave infrared (VNIR-SWIR)
multispectral) of observations using the CNN model, demonstrating an improvement of more than
5.5% in RMSE using the multi-year median optical composite and current state-of-the-art non linear
machine learning methods such as random forest (RF; R2 = 0.55, RPIQ = 1.91, n = 6136) and artificial
neural network (ANN; R2 = 0.44, RPIQ = 1.71, n = 6136). Moreover, we examined post-hoc techniques
to interpret the CNN model and thus acquire an understanding of the relationships between spectral
information and the soil target identified by the model. Looking to the future, the proposed approach
can be adopted on the forthcoming hyperspectral orbital sensors to expand the current capabilities of
the EO component by estimating more soil attributes with higher predictive performance.

Keywords: deep learning; Copernicus data; soil texture mapping; earth observation; spectral
signatures; SAR data; hyper and multi spectral remote sensing

1. Introduction

In a world subject to constant climate change and increasing pressures by agricultural intensification
and other human activities, soil is considered a vital but endangered component of the global life
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support system [1]. In that regard, the challenge to obtain better information, with high resolution
and better representation, should be fulfilled at multiple scales to understand and protect the world’s
soil resource. In this context a recent review about global soil property maps was provided by
Dai et al. [2], indicating the advantages and limitations of available soil datasets derived through
digital soil mapping techniques.

Digital soil mapping based on spaceborne Earth observation (EO) data is currently undergoing
a significant shift. This is driven first and foremost by the advent of the big EO data era, mainly
spearheaded by open access of the Landsat archive in 2008 [3], and more recently by the operation
of the Europe’s Copernicus programme, which provide free and open super spectral imagery data.
This is further supported by novel machine learning algorithms for the spatial estimations of soil
properties from spaceborne-sourced environmental covariates and harmonized soil observations [4].
Regarding this last point, the work of Behrens et al. [5] has provided a first overview of the potential of
deep learning methods for multi-scale terrain feature construction and their relative effectiveness for
digital soil mapping. More recently, Padarian et al. [6] and Wadoux et al. [7] expanded the digital soil
mapping previously proposed by Behrens et al. [8], by including deep learning techniques to optimally
search for local contextual information of covariates, while Tsakiridis et al. [9] recently introduce an
interpretable novel localized multi-channel 1-D convolutional neural network (CNN).

Currently, besides the growing trend in EO-based soil mapping using hyperspectral sensors there
is another important trend focusing on open multi-spectral data and their analysis. A critical review
about recent advances in this domain was provided by Angelopoulou et al. [10]. Recent studies [11–13]
have shown promising results through the exploitation of Multi-Spectral Instrument (MSI) Sentinel-2
data, together with advanced regression analytics for estimating and mapping the spatial variability
of soil properties over a single considered date. Similarly, Gholizadeh et al. [14] extracted spectral
reflectance values and associated indices from Sentinel-2 bands and employed a support vector
regression algorithm at the pixel level to produce spatial distribution maps of topsoil properties. Recent
studies are based on optical imagery data since the integration of multi-sensor data, such as optical and
radar, is not trivial since different sensors exhibit various resolutions and depict different phenomena.
Only recent studies [15,16] provide promising insights to fuse optical and radar data, where a conjoint
use of synthetic aperture radar (SAR) and multi-spectral EO data was employed to account for the soil
roughness levels during the prediction of the soil properties.

However, these approaches put specific emphasis on spatial prediction of properties that are
relatively static over the observational time period, and mainly focus on soil texture. One key challenge
is to extract information and knowledge from this big EO data, possibly almost as soon as the EO
data are available for processing and integrating between disciplines. Proper approaches need to be
chosen carefully to overcome the issue of limited soil exposure for spatiotemporal regression analysis.
In the temporal analysis of EO spaceborne data, it is customary to calculate spectral indices from the
initial recorded spectra to enhance the given information and classify the pixels in accordance to them,
i.e., valid thresholds are selected and then applied, and only the pixels corresponding to bare soil
regions are retained to generate a composite image [17]. Data mining procedures to retrieve bare soil
spectral reflectance demand extremely large satellite data archives, as well as high performance image
processing computing infrastructure in order to undertake the processing. Recently, several scientific
groups presented promising results regarding the development of bare soil composite methods by
performing data mining of satellite time series, such as the soil composite mapping processor [18]
and the geospatial soil sensing system [19]. However, the temporal variability of the Earth’s surface
such as soil moisture and roughness have a significant influence on the reflectance values of bare soils,
affecting the quantitative assessment of soil parameters [17].

Despite the aforementioned advances in topsoil EO monitoring, the generated datasets correspond
to a fairly coarse representation of the various properties and correspond to an average status of the soil
in the last decades, since the production of maps is derived from multi-annual data spanning the course
of at least a decade. It is in this realm that the deep learning techiques may enable a more proficient
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way for mapping spatial characteristics of soils with EO data in near real-time. However, poorly
documented soil datasets and the small number of ground truth recordings hinder the penetration of
these techniques to soil regression analysis. In that regard, large soil databases collected and analyzed
under standardized methods and protocols could facilitate to eliminate the need of collecting new
samples for model calibrations and this could be a strong asset for EO-based soil monitoring [20].

Differently from previous approaches that mainly focus on one dimensional spectral signature
processing and regression, as derived from individual images or generated as the median value
of consecutive images, this paper aims to describe a novel methodological framework called the
multi-input sentinel-based soil monitoring scheme (S2MoS), which is based on open-access EO data
and cloud computing facilities to allow topsoil monitoring. The novel aspect of this framework is that
it efficiently leverages information from the temporal behavior in top-soil. Moreover, building on key
results from existing multi-temporal data mining approaches the current study will strive to (i) deliver
preliminary insights of the synergistic use of open access SAR and optical images obtained from
Sentinel-1 and Sentinel-2 sensors; and (ii) evaluate the efficiency of CNNs to produce fine resolution (i.e.,
10 m) soil maps based on multi-temporal analysis. Further, the current approach relies on promoting
the exploitation of existing soil databases to eliminate the need for new field campaigns and calibration
datasets. Given the sufficient spatial distribution and representativeness of Land Use and Coverage
Area Frame Survey (LUCAS) dataset across the European continent [21], we leveraged this reference
soil data in our study. The developed methodology can be transferred and scaled-up to generate spatial
explicit soil indicators over agricultural regions at various scales. Importantly, this model is developed
from continental-level data and thus is not restricted to a specific region or area. To demonstrate this,
we evaluated the performance of the S2MoS approach in an independent agricultural area (217 km2) in
Northern Greece, unseen by the model, involving different types of soils. The results of this study
demonstrate a paradigm-shift from standard static soil mapping approaches toward generating more
dynamic, on-demand, soil maps through advanced cloud computing resources that simplify access to
and processing of a large volume of satellite imagery.

2. Materials and Methods

The methodological approach consists of three discrete steps: (i) data processing, which includes
the creation of the multispectral and radar backscattering time series, the bare soil masking, and the
generation of calibration and validation datasets; (ii) EO-based soil regression analysis, where a CNN
is used to predict the target soil variable; and (iii) evaluation, for assessing the performance metrics
obtained by CNN as well as for comparison of the obtained results with those by other state-of-the-art
machine learning algorithms. The overall data processing and analysis workflow is illustrated in
Figure 1 and detailed descriptions of the different steps are provided in the sections below.
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2.1. Data Sets Description

Table 1 summarizes the data sets used in the current study. They included several EO sources,
both optical and radar, derived indices for bare soil masking, and reference data used in the model’s
building and performance assessment.

Table 1. Description of the Earth observation (EO) datasets included in the current study along with
the corresponding variables as derived from each source and the soil reference data.

Title Description of Data Corresponding Variables

Multispectral Data

42,113 individual Sentinel-2 optical satellite
images from January 2017 until December 2019
over the European countries where the LUCAS
campaign was performed in 2009, as well as 25
Sentinel-2 images over the test site in the Zazari
river basin.

Surface reflectance data in
cartographic geometry,
normalized difference vegetation
index (NDVI), normalized burn
ratio index (NBR2); the indices are
described in Section 2.2

Radar Data

79,605 Sentinel-1 polarimetric Synthetic
Aperture Radar images over the same
European countries, from January 2017 to June
2019, as well as 25 Sentinel-1 imagery data tiles
over the test site in the Zazari river basin.

VV and VH data; H corresponds
to horizontal and V to
vertical polarization

Reference Soil Data
8426 georeferenced agricultural soil samples
from the LUCAS 2009 topsoil database and 52
samples from a legacy soil dataset in Greece

Soil granulometric (clay %)

2.1.1. Soil Reference Data

The LUCAS topsoil data archive was used as the source for the soil texture information. The current
study only considered the 8426 georeferenced mineral cropland samples from the 2009 campaign
to verify and further validate the modeling activities, since they are the more recent data currently
openly available. The percentage of clay in soil material was estimated, following an international
standardization procedure, as described by Tóth et al. [22]. The distribution of these samples can
be considered as geographically uniform since they widely cover most of the European countries.
Further, the LUCAS dataset includes laboratory visible near infrared–short wave infrared (VNIR–SWIR)
spectral profiles of each soil sample. The spectra were measured using an XDS Rapid Content Analyzer
spectrometer (FOSS NIR Systems Inc., Laurel, MD, USA) operating in the 400–2500 nm wavelength
range with 2 nm spectral resolution, and 0.5 nm output after interpolation, resulting in a total of
4200 spectral bands. The spectral data were resampled according to the spectral bands of MSI Sentinel-2
sensor, for further analysis. The resampled spectra were obtained by resampling the LUCAS dataset,
using convolution procedures, to the specific spectral response and resolution of the MSI Sentinel-2.

Additionally, we used a reference soil dataset from a rural area, which is representative of
regional variation in terms of both agricultural management uses and different background soils, to
independently verify our methodology (Figure 2). Our test area comprised of about 217 km2 in the
Zazari river basin in Northern Greece, with extensive agricultural areas covered by annual crops
vegetation. According to the 1:1,000,000 scale map, Luvisols, Cambisols, Lithosols, and Regosols [23]
are dominant soils of the region (Figure 2b). The major agricultural crops in the region are maize,
permanent and temporary meadow for forage, and winter cereals (e.g., wheat and barley). In situ data
were collected during a field survey in the fall periods of 2018 and 2019. The local dataset consisted
of 52 soil samples, each sample consisting of a mix of five subsamples collected from the upper soil
layer (0–10 cm) within an area of 5 m radius. The particle size distribution data was measured using
the Bouyoucos [24] method, from which the texture classes were derived. The clay content values of
the Greek study area ranged between 10.90% and 60%. The quality control of the soil analysis was
secured by a quality assurance protocol followed by the certified laboratory of Aristotle University of
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Thessaloniki. A summary of statistics for clay content, for both LUCAS 2009 topsoil database and the
Greek local dataset, can be found in Table 2.
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Figure 2. (a) Satellite image acquired by MSI Sentinel-2 sensor of the study site in Northern Greece
along with the distribution of sampling points (cyan); (b) soil association map based on Food and
Agriculture Organization (FAO) soil codes; and (c) the location and extent of the study area.

Table 2. Summary statistics of clay (%) for the selected mineral cropland soil samples of the LUCAS
2009 topsoil database and for the local dataset in Greece. Q1, Q2, and Q3 denote the first, second and
third quartile, respectively.

Min Q1 Q2 Q3 Max Mean St.dev

LUCAS 1 16 23 32 79 24.61 12.79
Greece 10.90 17.30 57.50 59.00 60 41.59 20.20

2.1.2. Optical Imagery Data

The available MSI Sentinel-2 satellite images for the sites of LUCAS and Greek dataset were
analyzed using computing facilities from the cloud-based platform of Google Earth Engine (GEE),
without needing to download them. In this study, both Sentinel-2A and Sentinel-2B Level-2A data
from January 2017 to December 2019 were used. To mitigate the limitation that arises due to cloud
cover, we applied a selection criterion to cloud percentage (<10%) when generating our cloud-free time
series. In the current work, only visible (B2, B3, and B4), near infrared (B5–B8 and B8a) and short-wave
infrared (B11 and B12) bands were used, since B1 and B10 were only used for the precise aerosol and
cirrus correction, respectively. Accordingly, for the Greek study area the MSI Sentinel-2 composite was
created for six-months between October and March, during the non-cultivated seasons of 2018 and
2019. This time period was selected since it allowed for maximum scene data coverage, due to tillage
practices. As a last step, we used the mean and standard deviation of each spectral band and then we
identified 140 outliers as those having reflectance values more than three standard deviations away
from the mean.

Data normalization is an important step to ensure that our model’s features (input spectral and
radar data, as well as the independent variable) have a similar data range. In this study we calculated
the minimum and maximum values of our dataset parameters and used them to normalize the sets to
the [−1, 1] range. We applied the normalization to both the LUCAS and Greek reference soil datasets.
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2.1.3. Radar Data

VV and VH polarizations for the images available from January 2017 to December 2019 were used.
VH is a vertically transmitted and horizontally received SAR backscatter signal from Sentinel-1, while
VV is considered as the vertically transmitted and received SAR backscatter signal. We restricted the
selection of radar data imagery in those that do not exceed one day from the acquisition time of the
corresponding Sentinel-2 data.

2.2. Bare soil Filtering

An important parameter that characterizes agricultural regions is the presence of active and
non-active vegetation cover, which hinders the acquisition of the raw soil surface spectrum. To exclude
vegetated and mixed pixels, NDVI values were derived from the optical imagery data considering
the geographical coordinates of each LUCAS sample, using the B4 and B8 bands. Additionally,
the differences between B3 and B2 as well as B4 and B3 were derived to remove some of the erroneous
data by keeping only the ones with positive differences in these bands. Lastly, the NBR2 related to the
dry vegetation presence in the pixels has been used in support of the selection of representative bare
soil areas. NBR2 is a ratio index that takes advantage of the contrast between the two Sentinel-2 SWIR
bands, as highlighted in recent works for bare soil masking [19,25].

The selection of NDVI and NBR2 thresholds influences the number of observations in the dataset.
Hence, a set of combined thresholds was tested ranging from 0.20 to 0.30 in the step of 0.05 and from
0.015 to 0.30 in the step of 0.03 for NDVI and NBR2, respectively. The optimum values were selected
by examining the correlation statistics between the corresponding resampled LUCAS soil spectral
signature and the median surface reflectance of Sentinel-2 values from the selected bare soil pixels.
To summarize, the LUCAS database was utilized in the initial step in order to define the optimal
combinations of our thresholds to mask the bare soil pixels from Sentinel-2 imagery data. Overall, we
defined the NDVI and NBR2 thresholds equal to 0.25 and 0.075, respectively, since this combination
showed the Pearson’s correlation values larger than 0.25 (absolute value) especially in the B12 SWIR
band that is considered crucial for clay estimation [26]. The results are in compliance with the last study
of Castaldi et al. [25] where lower NBR2 values increased the overall performance of the developed
models. The correlogram of clay at the generated features from optical and SAR imagery data overall
shows very small values, with the highest correlations being for the latitude and the B12 band, which is
in SWIR (Figure 3). The low values in Pearson’s correlation can be explained due to the changes of the
soil moisture and/or roughness, as well as dry vegetation debris compared to clean resampled spectra
of laboratory soil spectral libraries (SSLs).

Figure 3. Correlogram based on Pearson’s correlation considering all the available Sentinel-1 and
Sentinel-2 values, as well as the coordinates (lat and lon) and the soil clay content from the selected
topsoil samples.
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2.3. EO-Based Multispectral Regression Analysis

The data collected from Sentinel-1 and Sentinel-2 were used to predict the clay content following
the novel methodological framework proposed herein. To compare the accuracy of the proposed CNN
we also tested the performance of two commonly used machine learning algorithms, namely random
forest (RF) and an artificial neural network (ANN).

2.3.1. Convolution Neural Network for Soil Attributes Mapping

Previous works indicated great potential in utilization of non-linear machine learning methods for
quantification of soil attributes with reflectance values and complementary covariates of multispectral
EO platforms. Mainly, these studies focused on the information derived from the median spectral
values of satellite products, without taking into account the temporal variability of the Earth’s surface
such as soil moisture and roughness. Our choice for the incorporation of new deep learning techniques,
such as CNN, was motivated by our goal to evaluate the complementary information of inter- and
intra-annual spectral variations in the chemometric modeling. These algorithms are considered very
effective to derive features from short segments of the overall spectral signals [27]. Readers unfamiliar
with the CNNs may refer to recent studies [9,28] and relevant reviews [29] where 1D-CNN basic
features and operations are described. In addition, a glossary related to deep learning terminology is
provided in the end of this manuscript to further explain specific terms that support the description of
the CNN model in the following paragraphs.

Here we present the network architecture of the proposed multi-input CNN, which aims to predict
topsoil clay content based on the remotely sensed imagery data. The proposed approach leverages
the techniques of 1-D CNNs to estimate clay content using in conjunction as predictors (i) all the
selected 1-D spectral signatures of masked bare soil pixels (Sentinel-2 10 bands), (ii) their closest, in
terms of date, combined observations from VV and VH data (additional two bands), and (iii) the
geographical coordinates for each sample point across the observation time. This spectral information,
both radar and optical values, is seen by the network as a single entity for each observation date,
while the multiple observations within the years captured the related introduced uncertainties (e.g.,
decorrelation effects through temporal environmental factors). Thus, the end goal is to combine the
potentially complementary information arising by the variations of these values.

The proposed network is arranged in a series of six different types of layers, namely: (i) the input
layers, where the remotely sensed values accounted for constitute the spectral input channel and the
geographical coordinates the auxiliary input channel; (ii) the convolutional layers, which filters a given
input and extracts information from specific spectral regions by carrying out the convolution operation;
(iii) the pooling layer, used to reduce the resolution of the temporal dimension; (iv) the flattening
layer, which converts the multi-channel filters into a single continuous vector; (v) the dense layer,
which connects all outputs of the previous layer to all inputs of the forthcoming layer; and (vi) the
concatenate layer, which takes as input the resulted tensors from spectral and auxiliary input and
returns a single tensor. Figure 4 depicts the overall network architecture. To train the network, we
employed the Adam optimizer [30] using a batch size of eight while the number of epochs are set to
100. Most notably, were are not interested in identifying the temporal trends in the spectral signatures
per se, considering that the texture of the soil samples remains unaltered within the span of few years.
Thus, the convolution occurs across the spectral dimension and not the temporal one.

More concretely, first, a 1-D convolutional layer with 16 filters convolves the spectral input
(12 channels), utilizing a kernel of size three. Then we applied a second 1-D convolutional layer
that comprised of 64 filters with a kernel size of three. Each convolutional layer was followed by a
rectified linear unit (ReLU) activation layer. The convolved layers of the CNN were flattened and then
fully connected by a dense layer, followed by a dropout layer with a rate of 0.5. For the dense layer,
an exponential linear unit (eLU) activation function was selected, whilst a kernel regularizer 0.002 was
used to penalize the weights and reduce overfitting. In order to reduce the dimension of the data (50%
each time) we applied a max pooling layer after the convolutional layers. Considering the auxiliary
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input (two channels, namely the latitude and longitude) two dense layers were used. The first dense
layer had eight outputs, and the second dense layer had four outputs. The results of the spectral and
auxiliary inputs were then combined whereby a concatenation layer was established. Subsequently,
two dense layers of 64 and 16 channels, respectively, applied with an eLU activation function and a
kernel L2 regularizer of 0.002. Both were followed by the application of a dropout layer (0.2). Finally,
we concluded with one output layer of size one, which corresponded to the target variable, using the
tanh activation function.

Figure 4. Convolutional neural network architecture to predict soil properties from multiple temporal
observations of integrated Sentinel-1 and Sentinel-2 data. Cyan rectangles correspond to kernel filters,
while the orange ones to dropout layers. The light blue represents the concatenation layers.

The layers are also presented in Table 3.

Table 3. Description of the layers used in the multidimensional convolutional neural network
(CNN) architecture.

Type Kernel Size
(Channels ×Width) Filters Channels Width Activation

Spectral input - - 12 150 -
Convolutional 3 × 1 16 10 150 ReLU
Max-pooling 1 × 2 - - 75 -

Convolutional 3 × 1 64 8 75 ReLU
Max-pooling 1 × 2 - - 37 -

Convolutional 3 × 1 16 6 37 ReLU
Max-pooling 1 × 2 - - 18 -

Flatten - - - 1728 -
Dense + Dropout 16 3 - 8 eLU
Auxiliary input - - - 2 -

Dense - - - 8 -
Dense - - - 4

Concatenation - - - - -
Dense + Dropout - - - 64 eLU
Dense + Dropout - - - 16 eLU

Flatten - - - 1 tanh
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2.3.2. Model Interpretability of CNN

Model interpretability is crucial in order to understand what computations are performed at each
layer in CNN. To our knowledge limited studies exploit techniques to gain valuable insights. In this
context, appropriate techniques have developed to analyze the preferred inputs of each filter [31] and
their applications allow us to derive meaningful interpretations in the domain of soil spectroscopy.
A summary of them may be found in Zhang et al. [32].

To understand how the model derives its predictions a post-hoc explainability analysis was
conducted. This is an important step in order to make the system more interpretable [33] and ensure the
robustness of the predictions, in accordance to the principles of explainable artificial intelligence [34].
To this end, we examined the generated feature maps of the final convolutional layer, which takes into
account only the spectral and radar information (and ergo not the location of the samples). For each
feature map, the top 5% (in terms of activation) of the patterns from the training set were identified,
and their input features and respective clay content were visualized.

2.3.3. Competing Modeling Approaches and Additional Experiments

To compare the accuracy of the proposed multidimensional CNN we also tested the performance
of RF and of a different ANN architecture, as representative approaches of the current state-of-the-art.
Previous work of Demattê et al. [19] was used as the benchmark. In that regard, we produced
the median spectral reflectance of the Sentinel-2 bands to assess the performance of the competing
algorithms based on the temporal synthetic spectral reflectance profile of each soil sample.

RF is an ensemble learning classifier [35] that has achieved good performance metrics in various soil
spectroscopy studies [36,37]. An appropriate tuning of hyperparameters ensures the RF’s consistency.
Thus, a grid search on a five-fold cross-validation experiment was conducted to select the optimal
hyperparameters for RF model. In particular, we selected the number of variables that can be sampled
in each split of the trees from {6, 24} and the minimal number of samples for the terminal nodes from
{5, 10, 20, 50}, while the tree parameter were selected from {500, 1000, 1500}. Finally, the optimal set of
hyperparameters is as follows: 24 and 20 for the first and second parameter and 1000 number of trees,
for the RF and 22 and 50 for the first and second parameter, respectively and 1000 number of trees, for
the RF without the location information.

Similarly, we created an ANN architecture using as input (i) the median temporal synthetic spectral
reflectance profile of each soil and (ii) the median values along with the geographical coordinates of
each sample. Briefly, this network consisted of four trainable layers. The first layer contained eight
units. Then we applied a second dense layer, which comprised of 32 units, followed by a dropout layer
with a rate of 0.2. For the second dense layer, an eLU activation function was selected, whilst a kernel
regularizer L2 of 0.002 was used. In addition, we had another dense layer with eight units and the same
parameters as the previous one. We concluded with one output layer of size one, which corresponds to
the target variable, using the tanh activation function.

Furthermore, additional experiments were performed. We evaluated the performance of RF and
ANN including also the data from Sentinel-1 for each time step and not solely the median reflectance
values of the multispectral bands to statistically compare their predictive performance with those
derived from the proposed 1D-CNN. Moreover, the proposed CNN model was trained and tested
without the use of SAR data, as well as without the use of SAR and geographical coordinates.

2.3.4. Dataset Partition

The averaged spectra on a per pixel basis of Sentinel-2 values for each of the selected samples from
the LUCAS database were used to partition the samples into calibration (4901) and testing (1235) set
(Figure 5a), uniformly by the Kennard–Stone algorithm [38], so that the calibration set was distributed
evenly based on spectral representativeness, extending among the EU territory, as illustrated in Figure 5.
We performed bootstrap aggregation without replacement where five different sets of size 3920 (i.e.,
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80% of the 4901 calibration data) were used to each train a separate model and predict on the test set.
Then, these results were combined by averaging the output and thus producing a single prediction for
each testing datum. This procedure was performed for all the algorithms, CNN, RF, and ANN. Finally,
to test the CNN model the 52 samples from the Zazari river basin were utilized as an independent
test dataset.
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2.3.5. Evaluation of the Models

In order to assess the performance of calibration models for soil clay content we calculated
the root-mean-square error (RMSE, Equation (1)), the coefficient of determination (R2, Equation (2)),
and the ratio of performance to interquartile range (RPIQ, Equation (3)). The equations used were
as follows:

RMSE =

√∑i=N
i=1 (yi − ŷi)

2

N
(1)

R2 = 1−

∑i=N
i=1 (yi − ŷi)

2∑i=N
i=1 (yi − y)2 (2)

RPIQ =
IQ

RMSE
(3)

where yi is the observed value and ŷi is the predicted value of sample i, N the number of observations
(Equation (1)), y is the mean of the observed values (Equation (2)), and IQ is the interquartile
range (IQ = Q3 − Q1) of the observed values (Equation (3)). Q1 and Q3 denote the first and third
quartile, respectively.

2.4. Implementation

Our approach was implemented in a way such that Sentinel-1 and Sentinel-2 data handling were
processed using the scalable capabilities of GEE [39], making the whole processing routine distributed
and thus more computationally efficient. The coordinates (WGS84) of the soil sample sites were
imported into GEE using Google fusion tables. The spectral signatures corresponding to the sample
sites were then extracted and downloaded for further processing in a local environment. The statistical
and CNN regression analyses were performed utilizing the R software [40], with the keras package [41].
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The caret package [42] was also used for the development of the RF model. The models were built on a
workstation with a NVIDIA Quadro K4200 graphics processing unit.

3. Results

3.1. Times Series Preliminary Analysis

The multi-temporal analysis of bare soil reflectance of LUCAS sampling sites implemented in this
study extended from January 2017 to December 2019. Our choice to focus on a three year study was
mainly based on the need to provide a sufficient number of scenes for statistical analysis, able to capture
the clean soil spectrum (i.e., without cloud coverage or presence of dry and green vegetation) each
sample site at least once. It should be noted that the distribution of cloud-free scenes was significantly
variable for different parts in the European continent, having an impact on the number of time pixels
were exposed (i.e., more clean soil pixels in Mediterranean countries compared to Northern Europe).

Overall, there were a total of 21,334, 48,913, and 45,842 bare soil pixels in 2017, 2018, and 2019
(the Sentinel-2 Level 2 were ingested in GEE from 2019 and backwards), corresponding to 4507, 5659,
and 5397 extracted points, respectively (Figure 6). Then, a time series of each soil site sample with 10
spectral bands was generated. For the majority of pixels (96%) at least two cloud free observations
were available in this period and about a quarter of the pixels had more than 25 observations available.
Approximately 15% of the pixels had less than four cloud-free recordings during the entire study period.
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3.2. Bare Soil Spectral Pattern from LUCAS and Sentinel-2 Data

The next steps in our data analyses were performed using the LUCAS soil sampling points that
were masked out as bare soil pixels. Then, for each selected soil sampling point the median absorbance
spectral response as well as the associated standard deviation among all the MSI Sentinel-2 recordings
was calculated (Figure 7). For comparison we also resampled and converted to reflectance values the
corresponding laboratory LUCAS spectra to Sentinel-2 bands. Overall, we could observe that the
position and the shape of Sentinel-2 and resampled LUCAS spectral signatures present noticeable
differences (e.g., albedo). In particular, the resampled laboratory spectral signatures indicated higher
reflectance values relative to MSI Sentinel-2, since the measurement were performed in a controlled
environment and not influenced by the surface conditions of the open fields (e.g., roughness caused by
the particle size and soil moisture). Moreover, this variation was expected since we should consider
that LUCAS SSL was made in disturbed soil samples, while in real field conditions the soil surface
were in an undisturbed condition.

Examples of variation of spectral signatures taken from the Sentinel-2 bare soil images for
representative LUCAS sites are illustrated in Figure 8. Examples correspond to clay, sandy, silty and
silty clay soil type [43]. The number of pixels masked out as bare soil was different depending on the
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region. For example, at points characterized as clay, sand, silty and silty clay we created a time series
of 16, 22, 29 and 18 stacked pixels, respectively. Hence, the illustrated trajectories correspond to the
associated number of selected observations across the period of 2017–2019 for the 10 Sentinel-2 bands.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 26 
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3.3. Prediction Performance

The results of the CNN model for the prediction of clay content across the soil samples of the
LUCAS database and the best models from the competing approaches are presented in Figure 9.

Figure 9. Goodness of fit indicating the relationship between observed and predicted clay content
of the artificial neural network (ANN; A) and random forest (RF; B) models using as inputs the
median synthetic reflectance values and the geographical coordinates; and the proposed CNN
(C) model using both optical and radar values conjoint with the auxiliary input of geographical
coordinates; the aforementioned ANN (D), RF (E), and CNN (F) models without the conjoint used of
the geographical coordinates.

It should be noted that the CNN model leveraged a plethora of input features attaining a
performance of RPIQ 2.02 and R2 = 0.60, a notable result (Figure 9C). This shows the multi-input
architecture’s potential to combine effectively the complimentary information contained in the pool
of both optical and radar spectral information and those from auxiliary geographical coordinates.
Therefore, in comparison with the prediction performance values of the competing algorithms the
CNN model significantly improved the performance predictions (R2 = 0.55, RPIQ = 1.91 and R2 = 0.44,
RPIQ = 1.71, Figure 9A,B) and decreased the RMSE by a relative 4.5% and 6.5% to RF and ANN,
respectively. Hence, the effect of the synergistic use of optical and SAR data was evident, since the
most accurate models were developed from the integration of both inputs in the proposed CNN
model compared to both RF and ANN models that used the entire Sentinel-1 and Sentinel-2 dataset or
simple the median values of Sentinel-2. Moreover, the results indicate that each model has increased
its performance with the inclusion of geographical coordinates as auxiliary features. Considering
the additional information derived from geographical coordinates, we could observe that it slightly
improved (5.5% decrease in RMSE) the CNN’s prediction of the soil clay content compared to the CNN
without the auxiliary input layer (R2 = 0.53 and RPIQ = 1.87, Figure 9F). However, the improvement
due to additional geographical variables was more pronounced for the RF model, indicating that it
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did not sufficiently exploit the spectral information (R2 = 0.38 and RPIQ = 1.63, 9E). A significant
improvement of 4% was recorded with the ANN model compared with the version without the location
information (R2 = 0.41 and RPIQ = 1.68, Figure 9D). Overall, even if the improvement of prediction is
very slight, it can be expected that complementing the models with auxiliary input features capturing
the spatial characteristics of the soil samples enable more precise prediction of topsoil clay content.
To conclude, in all the cases the CNN model outperformed the competing modeling approaches, as
illustrated in Figure 9, where the results are given. Finally, the corresponding results and the associated
scatter plots from the additional analyses are given as Appendices A and B.

3.4. Interpretability of the Multi-Input CNN Model

The post-hoc explainability analysis that we performed enabled us to understand which groups of
patterns and consequently which features each feature map identifies and considers as important for
the prediction of the target property. Out of all generated feature maps, we selected six representative
filters to assist in the interpretation of the model (Figures 10 and 11).

Figure 10. Visualization of the top 5% of activated patterns from the training set for the first three
selected filters from the final convolutional layer. x is the arithmetic mean of x.
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Figure 11. Visualization of the top 5% of activated patterns from the training set for the other three
selected filters from the final convolutional layer. x is the arithmetic mean of x.

Since it is difficult to infer what the deep features depict by directly visualizing their values,
the visualization propagates back to the initial features, which are more interpretable and depicts in
the form of boxplots, per each filter, the reflectance spectra, the polarization, the location, and the clay
content. For visualization purposes, the filters were ordered according to the average clay content of
their top 5% activated samples, and the corresponding input features were unnormalized in order to
be expressed in their original units. The first two filters detect “low” clay content (i.e., with values
mostly between the minimum and Q1), the second two “medium” clay content (i.e., with values at
Q2), while final the two last filters predict the “high” contents (i.e., at about Q3 and beyond). This is
an interesting result suggesting that the CNN had untangled the latent information and developed
complex features, which could identify the clay content only using the spectral and radar information.
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3.5. Surface Mapping of Soil Attributes

In this case, S2MoS was implemented using EO images from 25 distinct dates, well distributed
across the agricultural calendar, acquired over a period of two years over the Zazari test site. Using the
predefined 0.25 and 0.075 threshold values for NDVI and NBR2, respectively, we extracted 72.12% bare
soil pixels over the agricultural fields, as illustrated in Figure 12.

Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 26 

 

3.5. Surface Mapping of Soil Attributes 

In this case, S2MoS was implemented using EO images from 25 distinct dates, well distributed 
across the agricultural calendar, acquired over a period of two years over the Zazari test site. Using 
the predefined 0.25 and 0.075 threshold values for NDVI and NBR2, respectively, we extracted 72.12% 
bare soil pixels over the agricultural fields, as illustrated in Figure 12. 

 
Figure 12. Number of overlapped pixels using the selected Sentinel-2 images over the agricultural 
fields of the Zazari river basin. 

So, once the CNN model was validated (see Section 3.3), it was directly applied to the selected 
bare soil pixels for all of their temporal observations (Sentinel-1 + Sentinel-2), which represents 
situation’s information of the soil surface across different periods (wet, tillage, ploughed, etc.) in the 
Zazari river basin. At the scale provided, the results were visually homogenous and free of any 
apparent artifacts, mainly due to the number of pixels masked as bare soil varies depending on the 
region. The resulting map (Figure 13) illustrates the parcel level soil clay content as derived by the 
proposed CNN model. The predicted clay values using the proposed CNN model showed relatively 
similar patterns with the areas covered by the different soil classes (Figure 2a). Moreover, we had an 
underestimation of the higher clay content, resulting to a moderate predictive performance (R2 = 0.51, 
RMSE = 19.8%), compared to the ground truth 52 points. 

Figure 12. Number of overlapped pixels using the selected Sentinel-2 images over the agricultural
fields of the Zazari river basin.

So, once the CNN model was validated (see Section 3.3), it was directly applied to the selected bare
soil pixels for all of their temporal observations (Sentinel-1 + Sentinel-2), which represents situation’s
information of the soil surface across different periods (wet, tillage, ploughed, etc.) in the Zazari river
basin. At the scale provided, the results were visually homogenous and free of any apparent artifacts,
mainly due to the number of pixels masked as bare soil varies depending on the region. The resulting
map (Figure 13) illustrates the parcel level soil clay content as derived by the proposed CNN model.
The predicted clay values using the proposed CNN model showed relatively similar patterns with
the areas covered by the different soil classes (Figure 2a). Moreover, we had an underestimation of
the higher clay content, resulting to a moderate predictive performance (R2 = 0.51, RMSE = 19.8%),
compared to the ground truth 52 points.
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Figure 13. Resulting clay content map illustrating the median parcel level as derived by the proposed
CNN and the synergistic use of Sentinel-1and Sentinel-2 data.

4. Discussion

The S2MoS proposed in this research has proved its capability to attain better prediction
performance metrics compared to the current state-of-the-art approaches. These results were attributed
to the multi-input CNN architecture, which has enabled us to leverage the complementary information
contained among reflectance and radar values, as well as the geographical information of each sample.
In this section we discussed whether the objectives of this research were achieved (Section 4.1), as well
as we evaluated the interpretation of the way that input and relevant output associations was modeled
(Section 4.2). We also compared the findings of this paper with existing literature (Section 4.3) and
suggest directions for future research (Section 4.4). Finally, in Section 4.5, we provided insights and
recommendation for the development of a global and operational EO-based soil monitoring system.

4.1. EO Regression Analysis with the Use of Convolutional Neural Networks and Synergistic Use of Optical
and SAR Data

Currently, EO-based soil spectroscopic regression analysis mainly focuses on machine learning
models [36,44] and recently on one-dimensional spectral signature processing with deep learning
techniques [45]. Following a growing trend in the application of deep learning techniques in
multidimensional prediction on various Earth system science problems [46], we employed a new
multi-input approach of spectroscopy analysis using a CNN model, which takes into account both
the spectral and radar characteristics of exposed soil sites, across multiple observations, for mapping
their spatial characteristics. Those studies have used the Landsat archive to extract bare soil spectral
signatures over large areas. To the best of our knowledge, such an investigation has not yet been
thoroughly examined for Sentinel optical data. The latter data offer enhanced spatiotemporal resolution
compared to Landsat imagery, making them advantageous for producing high resolution soil spatial
explicit indicators on large scales. Unlike the proposed S2MoS, none of the above data mining approaches
have previously examined leveraging multiple observations as a single entity. Until now, multi-temporal
approaches generated outcomes reflecting the median value of the available observations. The proposed
S2MoS enables a multi-temporal analysis, which efficiently can leverage information from the temporal
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behavior in top-soil across the years (Figure 8). This was introduced here for the first time and was the
cornerstone of the proposed framework.

The use of Sentinel-2 bands was further supported, by integrating radar values as supplementary
predictors. Consequently, a considerable expansion of the feature space (considering both temporal
and spectral dimensions) was created, which could not be efficiently handled by the current machine
learning approaches. Although the RF algorithm can be considered as a successful approach to soil
texture classification [36,37], the proposed CNN network has proven to have significant advantages
over other methods used in the EO-based soil spectroscopic regression analysis with respect to
prediction performance (R2 = 0.60, RPIQ = 2.02). In particular, this approach demonstrates a significant
improvement in overall accuracy compared to the competing machine learning methods that make
use of the multi-year optical composite (i.e., the median) as indicated in Figure 9. Furthermore, as
it is expected, the proposed CNN produced the best results even when the RF and ANN models
were trained in the whole dataset (see Appendix A). This scenario demands a long training time for
few thousand points considering geographical coordinates, optical, and SAR imagery data as input
values. The importance of the proposed CNN architecture can be further highlighted by a set of
additional comparisons that were performed using as predictors the spectral source without the use
of supplementary predictors (i.e., radar values). The corresponding results are given in Appendix B,
where in all cases the integrated information of SAR data increases the overall predictive performance.
Accordingly, it was concluded that the complementary SAR observations are very useful for improving
overall accuracy by capturing the spectral influence of soil moisture and roughness of soil exposed
pixels. This finding is also highlighted by Bousbih et al. [15], where they retrieved soil roughness levels
and accounted them in soil texture classification.

4.2. Feature Importance

The proposed CNN allows a degree of interpretability enabling the identification of key spectral
regions in accordance to the principles of explainable artificial intelligence [34]. By visualizing the
selected filters from the feature maps (Figures 10 and 11), the following observations can be made:
(i) the albedo of the samples tends to increase as the clay content increases, but at high concentrations
it decreases again; this is in accordance with the observations made from the laboratory spectra of
the air-dried samples [47], (ii) although the coordinates’ distributions are mainly influenced by the
high presence of samples in central Europe, a trend can be identified in that samples with higher
clay content are to be found in higher latitudes; this is in accordance with the identified correlation
between them, which the CNN identified only though the spectral and radar information, (iii) there
is a noticeably larger absorption in band B12 as the clay content increases; again, this complies with
the well-reported observation that absorbances around 2.2 and 2.3 µm are due to the presence of OH
in the mineral structure [48]—this is a region that may also affected by the presence of soil organic
matter, as well as CaCO3, whose content however is low in the European croplands [21], thus its effect
is not profound, (iv) VV tends to be more sensitive in the changes of the average clay content, as it is
more affected than VH by the changes in soil roughness, which may be at least partially caused by
the different soil texture [16], (v) large clay contents (i.e., larger than Q3) are harder to identify as the
generated feature maps evidently confound them with lower concentrations. These interpretations
have made the reasoning process of the model more transparent; they indicate how the model has
obtained a clear mapping between the predictors and the output property, albeit not an infallible one,
with a distinct physical meaning.

4.3. Comparison with Current State-of-the Art Regression Algorithms

Several studies [36,37] have assessed the potential of Landsat archive imagery data to the map
surface clay content, finding satisfactory–good results (0.63 < R2 < 0.75). Recently, Gholizadeh et al. [14]
and Vaudour et al. [12] evaluated Sentinel-2 images for soil surface properties estimation. In the
aforementioned studies, the soil attributes from the surface layer were modeled using machine learning
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techniques, where each pixel was enriched by some additional features coming from combinations
performed among the extracted band values [14,49]. Herein, there is no need to include additional
covariates in the model, as convolutional layers ensure that deep features are automatically constructed.
Moreover, most studies in EO spectroscopic analysis calibrate multivariate regression models based on
reference samples from their study area. In this research, the number of observations in the calibration
dataset was restricted to LUCAS data, in contrast to current approaches. Liu et al. [45] also used
existing SSLs to develop models for estimation of topsoil clay content and later generated relevant
maps based on hyper-spectral image and a transfer function. In their approach, a few field samples
and relevant spectral signatures were utilized to fine tune the calibration of model, resulting in a
model with R2 around 0.6. However, we should mention a typical extrapolation problem in digital soil
mapping, since very often the developed models perform quite well in training and even test datasets
but deviate strongly for data outside their valid area. In that regard, the lower performance in the
Greek (R2 = 0.51) test area (Figure 13) can be explained by the availability of only one LUCAS soil
sample within the Greek study area or by the fact that current samples are not representative of the soil
variability of the other regions.

4.4. Perspective of Embedding New Reference Soil Databases and Additional Spectral Information

Even though soil texture can be considered constant for more than 20 years, several changes can
be potentially caused by natural or anthropogenic activities affecting the reflectance in VNIR–SWIR.
This is more prominent for other soil parameters such as organic carbon. In that regard, our approach
should be extended to explore more soil properties, such as soil organic carbon, by leveraging the
more recent LUCAS topsoil database of 2015 that covers a time period when the Sentinel satellites
were operational. Moreover, LUCAS was designed as a monitoring system and not as a mapping tool,
hence we should take into account the feature space in the design of sampling strategies [50] in order
to develop more reliable calibration models. Finally, it should be noted that further analyses should be
performed for assessing precisely temporal spectral variations, e.g., through temporal changes of the
soil moisture and/or roughness and appropriate parametrization should be performed to effectively
combine SSLs and EO data.

Additionally, by the combination of reflectance data and EO-based terrain or land use
derivatives [8,36], we expected to overcome the limitations of Sentinel-2 spectral resolution in key
ranges of the electromagnetic spectrum. Furthermore, the S2MoS scheme described herein may be
applied to combine other heterogeneous sources in a similar fashion. For example, spectra from the
VNIR–SWIR and the thermal infrared range where some of the fundamental vibrations take place,
as demonstrated in Chabrillat et al. [51] and Notesco et al. [52] may be appropriately combined to
yield better performance than the one attained. In this manner, although Sentinel-2 data has spectral
bands similar to Landsat 8’s, it excludes the thermal infrared sensor. However, its capability to obtain
a large number of images allows the retrieval of more information and the calibration of robust models.
This is an important fact when considering the differences in models’ performance between Landsat
estimations and those from Sentinel-2, like the current research.

4.5. Towards an EO-Based Soil Monitoring System

This section highlights the current limitations, discusses potential solutions that reinforce the
rationale that remote sensing, artificial intelligence, and digital soil mapping communities should work
closely together to better understand and eventually overcome the challenges for an EO-based soil
monitoring system.

Copernicus data can be considered as a key resource but the need for higher spatial resolution
optical and SAR, as well as hyperspectral and thermal space-based observations can be the
game changers for an operational EO-based soil monitoring system. The forthcoming Copernicus
Hyperspectral Imaging Mission (CHIME), NASA Surface Biology and Geology (SBG) mission,
and Copernicus Land Surface Temperature Monitoring (LSTM) may close this gap and fulfill these
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needs in them of spectral resolution and thermal coverage, respectively. In future studies, it is worthy
to investigate how we can properly integrate satellite soil moisture retrievals and fuse them with
multispectral bands for soil mapping. It has been proven that data from Sentinel-1 can be used to define
operational schemes and identify synergies, allowing for observational methods of soil moisture to be
further evolved and for tailored algorithms delivering mature products to be developed based on our
proposed methodology [53]. Synergies with Landsat or the existing hyperspectral sensors in orbit (e.g.,
PRISMA from Italian Space Agency) should be prioritized to assess the limitations whereby standalone
multispectral Sentinel-2 data is not sufficient to reach the desired spatiospectral reliability [54].

The proposed deep learning CNN paves the way to overcome many of the limitations that
have, until now, hindered a more wide-spread adoption of artificial intelligence in the domain of soil
spectroscopy, such as multiple kernel learning approaches [55] and interpretable fuzzy rule based
algorithms. This kind of models are transparent in terms of their reasoning process, thus enabling
experts alike to holistically address the issues tackled in contrast to black box models. In future studies,
the application of generative adversarial networks [56] for regression should be prioritized, since the
use of generator and discriminator networks can be a powerful tool for the synergistic used of large
SSLs and space-borne data. In that regards, unlike on LUCAS, Global [57], and GEOCRADLE SSLs [58],
large, reliable, labeled soil data do not always exist in soil science, not only because of the sizes of
the datasets involved, but also owing to the absence of standard operating procedures in chemical
laboratory measurements, as well as common guidelines on lab spectroscopy measurements to ensure
interoperability and reliable reusability. The upcoming release of LUCAS version of 2015 as well as
new efforts in Africa and Latin America based on agreed set of harmonization principles will allow us
to have better chance of chemical attributes estimation within an intra-annual calibration of models.

It should be noted that, approaches based on synergistic use of multimodal EO data, including
the available hyper-spectral missions [59], can further raise computational challenges dealing with
petabytes of data. To that end, it is critical to exploit the existing IT capabilities of cloud computing
and processing platforms, such as GEE, DIAS, and Committee on Earth Observation Satellites Data
Cube [60], to significantly reduce the time needed to process EO information.

5. Conclusions

This paper proposed a topsoil clay content quantification technique based on a multi-input deep
convolutional network and a multi-temporal analysis of optical and radar imagery data to produce
detailed soil maps of high spatial coverage over agricultural regions. Our approach was implemented
with Sentinel-1 and Sentinel-2 data using data from 6136 agricultural sites of the LUCAS SSL, over
a three-year period. A detailed study was conducted in the Zazari river basin in Northern Greece
to independently examine the performance of the model and allow for better visualization. For that
purpose, we used soil data from 52 sites collected within a study period extending from August 2018
to September 2019.

The results deliver preliminary insights of the potential of the integrated optical and radar
time series products that can be used for topsoil mapping. In particular, our novel methodological
framework can efficiently utilize both Sentinel-1 and Sentinel-2 information instead of solely the
median spectral reflectance of each sample. The proposed technique shows promising results (R2 = 0.60,
RPIQ = 2.02) comparing favorably against current state-of-the-art data mining procedures to produce
accurate soil predictions from satellite images. Optical and radar bands play different roles in EO-based
soil monitoring and integrating the relative utility of these bands is an effective way to enhance the
regression performance. In that regard the proposed approach shows that the synergistic use of SAR
and optical remote sensing could facilitate the provision of useful added value information regarding
the effect of ambient factors of exposed soils, achieving an improvement of 5.5% in RMSE over the
performance of the RF, as the best model, which used as input solely the synthetic spectral reflectance
of each sample. Moreover, the information based on additional auxiliary input (e.g., geographical
coordinates) is an effective complementary source of information to enhance the prediction performance
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by considering the spatial relationship between regions and soil characteristics. Although this approach
has been developed and tested on MSI Sentinel-2 imagery data, its potential and capability can be
adopted on the forthcoming hyperspectral orbital sensors where better results are expected, and more
soil attributes could be predicted accurately.
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Abbreviations

ANN Artificial Neural Network
CNN Convolutional Neural Network
CHIME Copernicus Hyperspectral Imaging Mission
eLU Exponential Linear Unit
EO Earth Observation
FAO Food and Agriculture Organization
GEE Google Earth Engine
LSTM Land Surface Temperature
LUCAS Land Use and Coverage Area Frame Survey
MSI Multi-Spectral Instrument
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
NBR2 Normalized Burn Ratio Index
PRISMA Precursore Iperspettrale della Missione Applicativa
R2 Coefficient of Determination
ReLU Rectified Linear Unit
RF Random Forest
RMSE Root-Mean-Square Error
RPIQ Ratio of Performance of Interquartile Range
S2MoS Sentinel-based Soil Monitoring Scheme
SAR Synthetic Aperture Radar)
SBG Surface Biology and Geology
SOC Soil Organic Carbon
SSL Soil Spectral Library
SWIR Short Wave Infrared
VNIR Visible Near Infrared
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Glossary

Term Definition

Activation Function
A nonlinear activation function applied to CNN’s layers to allow the learning of
complex decision boundaries. Commonly used functions include sigmoid, tanh,
ReLU and variants of these.

Adam
An adaptive learning rate algorithm where updates are directly estimated using a
running average of the first and second moment of the gradient and also includes a
bias correction term.

Dropout A regularization technique for CNNs that prevents overfitting.

Max-pooling
Pooling layers help to reduce the dimensionality of a representation by keeping
only the most salient information.

Regularizer
Regularizers allow one to apply penalties on layer parameters or layer activity
during optimization. These penalties are incorporated in the loss function that the
network optimizes.

Appendix A

The concept that led the current work was set around the need to evaluate the complementary
information of inter- and intra-annual spectral variations in the chemometric modeling and leverage
the information derived from the synergistic use of optical and SAR imagery data. Current approaches
in the literature rely on the use of the median or average at each spectral channel of several cloud-free
multispectral images. As an extra step in our analysis, we evaluated the performance of RF and ANN
including also the data from Sentinel-1 for each time step and not solely the median reflectance values
of the multispectral bands. The scatter plots between the observed and the predicted values of the RF
and ANN model are given in Figure A1. Finally, the proposed CNN (Figure 9C) produced the best
results in all cases compared to the current-state-of the-art approaches.

Figure A1. Goodness of fit indicating the relationship between observed and predicted clay content
based on the RF and ANN model using the complete set of available features for all the timesteps.
The plotting values represent the mean value of the predicted values.

Appendix B

Here, we provided the scatter plots between the predicted and observed clay content values as
derived by the application of the proposed CNN model without the use of SAR data, as well as without
the use of SAR and geographical coordinates (Figure A2). These plots indicate that there is a small
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tendency for under-prediction of the higher clay content values. The proposed CNN that utilizes the
whole range of available input features produced the best results in all cases.

Figure A2. Goodness of fit indicating the relationship between observed and predicted clay content
based on the proposed CNN model without the use of radar values; and without the use of radar
values and the auxiliary input of geographical coordinates.
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Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information
based on machine learning. PLoS ONE 2017, 12. [CrossRef]

5. Behrens, T.; Schmidt, K.; MacMillan, R.A.; Viscarra Rossel, R.A. Multi-scale digital soil mapping with deep
learning. Sci. Rep. 2018, 8. [CrossRef]

6. Padarian, J.; Minasny, B.; McBratney, A.B. Using deep learning for digital soil mapping. SOIL 2019, 5, 79–89.
[CrossRef]

7. Wadoux, A.M.J.-C.; Padarian, J.; Minasny, B. Multi-source data integration for soil mapping using deep
learning. SOIL 2019, 5, 107–119. [CrossRef]

8. Behrens, T.; Schmidt, K.; MacMillan, R.A.; Viscarra Rossel, R.A. Multiscale contextual spatial modelling with
the Gaussian scale space. Geoderma 2018, 310, 128–137. [CrossRef]

9. Tsakiridis, N.L.; Keramaris, K.D.; Theocharis, J.B.; Zalidis, G.C. Simultaneous prediction of soil properties
from VNIR-SWIR spectra using a localized multi-channel 1-D convolutional neural network. Geoderma 2020,
367, 114208. [CrossRef]

10. Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil
Organic Carbon Estimation: A Review. Remote Sens. 2019, 11, 676. [CrossRef]

11. Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; van Wesemael, B.
Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J.
Photogramm. Remote Sens. 2019, 147, 267–282. [CrossRef]

http://dx.doi.org/10.5194/soil-2-79-2016
http://dx.doi.org/10.5194/soil-5-137-2019
http://dx.doi.org/10.1016/j.rse.2012.01.010
http://dx.doi.org/10.1371/journal.pone.0169748
http://dx.doi.org/10.1038/s41598-018-33516-6
http://dx.doi.org/10.5194/soil-5-79-2019
http://dx.doi.org/10.5194/soil-5-107-2019
http://dx.doi.org/10.1016/j.geoderma.2017.09.015
http://dx.doi.org/10.1016/j.geoderma.2020.114208
http://dx.doi.org/10.3390/rs11060676
http://dx.doi.org/10.1016/j.isprsjprs.2018.11.026


Remote Sens. 2020, 12, 1389 24 of 26

12. Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 image capacities to predict common topsoil
properties of temperate and Mediterranean agroecosystems. Remote Sens. Environ. 2019, 223, 21–33.
[CrossRef]

13. Tziolas, N.; Tsakiridis, N.L.; Ogen, Y.; Kalopesa, E.; Ben-Dor, E.; Theocharis, J.B.; Zalidis, G.C. An integrated
methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations
in support of soil-related SDGs. Remote Sens. Environ. 2020, 245. [CrossRef]

14. Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping
using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [CrossRef]

15. Bousbih, S.; Zribi, M.; Pelletier, C.; Gorrab, A.; Lili-Chabaane, Z.; Baghdadi, N.; Ben Aissa, N.; Mougenot, B.
Soil Texture Estimation Using Radar and Optical Data from Sentinel-1 and Sentinel-2. Remote Sens. 2019, 11,
1520. [CrossRef]

16. Baghdadi, N.; El Hajj, M.; Choker, M.; Zribi, M.; Bazzi, H.; Vaudour, E.; Gilliot, J.-M.; Ebengo, M.D. Potential
of Sentinel-1 Images for Estimating the Soil Roughness over Bare Agricultural Soils. Water 2018, 10, 131.
[CrossRef]

17. Diek, S.; Schaepman, E.M.; de Jong, R. Creating Multi-Temporal Composites of Airborne Imaging Spectroscopy
Data in Support of Digital Soil Mapping. Remote Sens. 2016, 8, 906. [CrossRef]

18. Rogge, D.; Bauer, A.; Zeidler, J.; Mueller, A.; Esch, T.; Heiden, U. Building an exposed soil composite processor
(SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014).
Remote Sens. Environ. 2018, 205, 1–17. [CrossRef]

19. Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A powerful
data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 2018,
212, 161–175. [CrossRef]
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