

Figure S1. Evaluation results of Rdif in different regions at daily mean scale. (**a-d**) Scatterplots for ERA5 (first column) and JiEA (second column) estimates versus ground measurements; PDFs (third column) and CDFs (fourth column) for Eastern China (**a**), Mongolian Plateau (**b**), Tibetan Plateau (c) and Deccan Plateau (**d**), respectively.

1

Figure S2. Evaluation results of monthly mean R_{dif} estimates. (**a**) Density scatterplots between ERA5 estimates and CMA measurements. (**b**) Scatterplots for estimates of JiEA. At the upper left corner shows the values of validation metrics with their relative values in the brackets. Black lines represent the 1:1 lines. (**c**) PDF of bias for EAR5 (blue line) and JiEA (orange line). (**d**) The related CDF of absolute percentage bias. The dotted black lines represent the results for estimates of JiEA after upscaling the original monthly data to 0.25-degree grids (same to ERA5).

Figure S3. The effects of spatial resolution on evaluation results. Scatterplots of estimates of JiEA after upscaling to 0.25-degree grids versus monthly mean measurements.

Figure S4. Results of time series decomposition. The blue, brown and yellow lines represent results of EAR5, JiEA and ground measurements, respectively. For each panel, sub-figures from top to bottom represent original monthly time series, temporal trends, seasonal periodicity and irregular anomaly in order. Estimates of JiEA are from upscaling 0.25-degree grids. We only show stations with relatively complete time series. Groups (**a**-**f**) are for Eastern China (**a**), Mongolian Plateau (**b**), Tibetan Plateau (**c**), Deccan Plateau (**d**), and other stations within China (**e**) or outside China (**f**), respectively.

Figure S4. (Continued).

Figure S5. Results of time series decomposition in different regions. (**a**) Eastern China; (**b**) Mongolian Plateau; (**c**) Tibetan Plateau; (**d**) Deccan Plateau; (**e**) East Asia (the maximum overlapped coverage of two datasets) The blue and brown lines represent results of EAR5 and JiEA, respectively. Sub-figures from top to bottom represent original regional averaged monthly estimates, temporal trends, seasonal periodicity and irregular residuals, respectively. Values are the linear slopes versus times and the 95% confidence intervals. f, Correlation map of deseasonalized time series of ERA5 and JiEA. In addition, we display their correlations to ground measurements at stations involved in Figure S4 by variously sized circles.

Figure S6. Spatial distribution of rMBE. (a) Results for ERA5; (b) Results for estimates of JiEA. Red symbols indicate an overestimation while others represent underestimation.

Figure S7. Spatial distribution of reference data. (**a-b**) Estimates of R_{dif} (**a**) and its fraction (**b**) to R_s from the SOLARGIS database (<u>https://solargis.com/</u>). (**c-d**) Estimates of diffuse PAR (**c**) and its fraction (**d**) to PAR in 2010 from the BESS database (<u>http://environment.snu.ac.kr/</u>).

Figure S8. Seasonal spatial distribution of two datasets. (a) Spring; (b) Summer; (c) Autumn; (d) Winter. Left column: the results of ERA5. Middle column: the results of JiEA. Right: their differences in space (ERA5 minus JiEA).

Figure S9. Seasonal spatial distribution of atmospheric parameters most relating to R_{dif} estimation. We show the seasonal variations of MODIS derived parameters in 2010 at 0.1-degree-pixel resolution (<u>https://neo.sci.gsfc.nasa.gov/</u>).

Figure S10. Seasonal snow/ice cover. (a) Spring; (b) Summer; (c) Autumn; (d) Winter. Data are from monthly products of MOD10.

Supplementary Tables

Name	Latitude	Longitude	Altitude	Valid Numbers ¹	Resources	Country	
Beijing	39.93	116.28	55	(3691,-,-)	CMA	China	
Chengdu	30.67	104.02	506	(3866,2862,95)	CMA	China	
Ejina	41.95	101.07	941	(4042,-,-)	CMA	China	
Golmud	36.42	94.90	2808	(4135,-,-)	CMA	China	
Guangzhou	23.13	113.32	7	(3677,2860,96)	CMA	China	
Harbin	45.75	126.77	142	(3571,2871,96)	CMA	China	
Heihe	50.25	127.45	166	(3543,1433,84)	CMA	China	
Hong Kong	22.32	114.17	66	(-,2156,72)	WRDC	China	
Kashi	39.47	75.98	1289	(4122,-,-)	CMA	China	
Kunming	25.02	102.68	1891	(3939,2763,93)	CMA	China	
Lanzhou	36.05	103.88	1517	(4008,2772,93)	CMA	China	
Lhasa	29.67	91.13	3649	(4068,-,-)	CMA	China	
Sanya	18.23	109.52	6	(3932,1432,84)	CMA	China	
Shanghai	31.17	121.43	4	(3685,-,-)	CMA	China	
Shenyang	41.73	123.45	43	(3666,2840,95)	CMA	China	
Urumqi	43.78	87.62	918	(4000,2843,96)	CMA	China	
Wuhan	30.62	114.13	23	(3465,2798,85)	CMA	China	
Zhengzhou	34.72	113.65	110	(3679,-,-)	CMA	China	
Ahmadabad	23.07	72.63	55	(-,1464,41)	WRDC	India	
Dum-Dum	22.65	88.45	4	(-,1291,-)	WRDC	India	
Goa	15.48	73.82	55	(-,1933,59)	WRDC	India	
Jodhpur	26.30	73.02	217	(-,2120,68)	WRDC	India	
Nagpur	21.10	79.05	308	(-,687,17)	WRDC	India	
New Delhi	28.58	77.20	212	(-,1213,35)	WRDC	India	
Poona	18.53	73.85	555	(-,2281,35)	WRDC	India	
Santacruz	19.12	72.85	15	(-,623,-)	WRDC	India	
Shillong	25.57	91.88	1600	(-,452,12)	WRDC	India	
Vishakhapatnam	17.72	83.23	41	(-,1507,44)	WRDC	India	
Fukuoka	33.58	130.38	3	(-,1789,57)	WRDC	Japan	
Ishigakijima	24.33	124.17	6	(-,1684,57)	WRDC	Japan	
Dalanzadgad	43.58	104.42	1469	(-,-,36)	WRDC	Mongolia	
Muren	49.63	100.17	1288	(-,-,23)	WRDC	Mongolia	
Ulaangom	49.85	92.07	934	(-,-,94)	WRDC	Mongolia	
Ulan-Bator	47.85	106.75	1264	(-,-,93)	WRDC	Mongolia	
Ulyasutay	47.75	96.85	1751	(-,-,81)	WRDC	Mongolia	
Chita	52.02	113.33	671	(-,2070,66)	WRDC	Russia	
Irkutsk	52.27	104.35	467	(-,2659,90)	WRDC	Russia	
Omsk	54.93	73.40	119	(-,2822,96)	WRDC	Russia	
Vladivostok	43.12	131.90	138	(-,2840,94)	WRDC	Russia	

Table S1. Basic information of surface radiation stations involved in this study.

¹ The fifth column represents the numbers of valid records used for data evaluation at hourly, daily and monthly scales, respectively, after data quality check of measured values from 2007 to 2014.

Application areas	Spatial resolution			Temporal scale			Uncertainty (W/m ²)		
	Goal	Break	Thres.	Goal	Break	Thres.	Goal	Break	Thres.
Global NWP ¹	10km	30km	100km	1h	3h	12h	1	10	20
Agricultural meteorology	1km	5km	20km	24h	2d	7d	-	-	-
Nowcasting and VSRF ²	5km	15km	50km	60s	10m	60m	1	10	20
Climate monitoring	25km	50km	100km	24h	2d	5d	5	6.5	10

Table S2. Requirements defined for downward short-wave irradiance at Earth surface.

¹ NWP: Numerical Weather Prediction. ² VSRF: Very Short Range Forecasting. These user-defined requirements are collected by the Observing System Capability Analysis and Review Tool (OSCAR, <u>https://www.wmo-sat.info/oscar/variables/view/50</u>) developed by World Meteorological Organization (WMO). *Goal*: an ideal requirement above which further improvements are not necessary; *Break*: an intermediate level which, if achieved, would result in a significant improvement for the targeted application; *Thres*.: the minimum requirement to be met to ensure that data are useful. The uncertainty characterizes the estimated range of observation errors with a 68% confidence interval.