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Abstract: Global measurements of reservoir water levels are crucial for understanding Earth’s
hydrological dynamics, especially in the context of global industrialization and climate change.
Although radar altimetry has been used to measure the water level of some reservoirs with high
accuracy, it is not yet feasible unless the water body is sufficiently large or directly located at the
satellite’s nadir. This study proposes a gauging method applicable to a wide range of reservoirs
using Sentinel–1 Synthetic Aperture Radar data and a digital elevation model (DEM). The method is
straightforward to implement and involves estimating the mean slope–corrected elevation of points
along the reservoir shoreline. We test the model on six case studies and show that the estimated
water levels are accurate to around 10% error on average of independently verified values. This study
represents a substantial step toward the global gauging of lakes and reservoirs of all sizes and in any
location where a DEM is available.
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1. Introduction

The search for renewable energy has resulted in a global proliferation of hydroelectric dams.
Thousands of artificial reservoirs have been constructed in the last decade [1,2], including hundreds
in river basins of international importance such as the Amazon (416) and Mekong (371) [3,4].
Artificial reservoirs represent a two–way issue for worldwide water demand because they can
cause environmental impacts, yet are necessary for human water resource use. If not well planned
and managed, they represent threats to species health and diversity, contribute to losses of fish and
ecosystem services by affecting the penetrability of light within the water column and reducing the
river connectivity, and may become sources of greenhouse gases [5–9]. They are also major sinks
for sediment and nutrients in river systems along with wetlands and floodplains [10–13]. Yet, in the
context of global water security, they are important resources for regional populations, help control
flooding along rivers, and generate clean energy [14–16].

The lack of consistent gauging severely limits understanding of the water storage role of the
reservoir, habitat changes due to reservoir construction and filling, and potential flooding risks.
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Water accounting is essential for establishing policies and procedures to ensure that regional or
basin–scale water balance is maintained over time [17]. Between 1984 and 2015, 90,000 km2 of
permanent surface water disappeared from the Earth’s surface due mainly to extraction for human
use and increased evapotranspiration brought on by climate change, while reservoir filling mostly
accounted for the 184,000 km2 of a new permanent surface water [18]. Yet, for much of the world,
reservoir gauging is scarce, and often not readily available to the public.

Reservoir and lake water level monitoring is one of the critical objectives identified by the
World Meteorological Organization (WMO) and Global Climate Observing System (GCOS). Globally
consistent (in time and space) water level monitoring is crucial because lakes and reservoirs are proxies
used to understand global climate change [19]. Their role also needs to be taken into account in
hydrological and atmospheric models for better understanding the past and current impacts of climate
change on the lakes and reservoirs dynamics, and also for predicting future climate impact on water
resources [20,21]. However, it is not possible to measure water level variations globally based on
ground measurements alone, and the development of a global database of the reservoir water level is
incomplete. Thus, to address the goals of the WMO and GCOS, continued research on water level
monitoring needs to continue to motivate current and future research.

Satellite altimetry is an important method for gauging reservoir water levels from space [19,22–24],
but can only measure water levels along a fixed orbital track and, thus, is limited in geographical
coverage. Moreover, altimetry can successfully gauge or measure the water level of only relatively
large inland lakes, leaving a substantial portion of global reservoirs ungauged [25]. Although the Ice,
Cloud, and land Elevation Satellite (ICESat) and ICESat–2 have measured water levels in smaller lakes,
they have a 90–day repeat with shifting orbits and, thus, are not useful for continuous monitoring of
reservoirs and lakes.

Synthetic Aperture Radar (SAR) methods have shown promise for gauging and measuring the
water level in lakes and reservoirs [26,27], while wide–scale adoption of these methods by non–experts
in remote sensing could be due to a perceived difficulty in understanding and using SAR data.
Automated workflows using SAR data and techniques have been proposed. However, these have
focused mainly on obtaining water extent [28,29] and flooding extent [30]. SAR–based flooding extent
products are even available online [30]. Yet, only rarely have SAR products been integrated with other
remotely sensed data sources to provide information on water levels [27]. Simple and clear procedures
for leveraging the integration of these data are, therefore, lacking. Remote sensing techniques that do
not use SAR have been used to estimate reservoir water level or storage variabilities, but are mostly
limited to large lakes or require some field or ancillary knowledge [31–34].

Although approaches intersecting the lake surface extent with DEMs to extract elevation
information have been published, they were focused either on a specific arid environment [35,36] or
on a local scale based on airborne LiDAR or interferometric DEM processing [37–39]. In this case,
we propose a method that allows users to estimate WL dynamics at nearly global scales by using
a relatively simple geographic information science (GIS) workflow (included as Figure S1) solely
based on operational remote sensing data. Therefore, this method should be an attractive option for
environmental managers without expertise in remote sensing and will complement studies on flood
mapping, nutrient and sediment storage, and human impacts on water supply.

In this paper, we present a simple method to estimate the water level (WL) variability of lakes
and reservoirs of almost any size solely based on readily available operational remote sensing data,
without need for ground–based or a priori data. Water level estimates are derived from SAR data,
which, unlike optical sensors, are very weakly affected by cloud coverage, overlaid on a Digital
Elevation Model (DEM). We tested our method on six recently built reservoirs distributed across
different continents, and verified the results using altimetry–derived water levels with centimeter–scale
precision [40]. We purposely chose reservoirs where altimetry data were available to validate our
results. However, our method is not spatially limited to below–nadir water bodies and can be used for
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lakes of almost any size and in any location as long as it is covered by a DEM (approximately 86% of
the global surface in the case of the Shuttle Radar Topographic Mission (SRTM)).

2. Data and Methods

2.1. Sentinel–1 Data Acquisition and Preprocessing

We used SAR observations by the European Space Agency (ESA) C–band Copernicus Sentinel–1A
and Sentinel–1B satellites for extraction of reservoir water masks (Figure 1). These satellites take images
of the Earth routinely at a 12–day return period and generate high-resolution backscatter images that
are made freely available by ESA. SAR is an active microwave sensor that is only weakly affected by
the time of day or cloud cover, and the backscattering images have high contrast between land and
water. Thus, SAR data are ideal for routine monitoring of water bodies such as the reservoirs and lakes.
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Figure 1. Flowchart illustrating the details of the full methodological framework to retrieve
reservoir water surface elevation using SAR and DEM data, and validation, developed in this
study. Corresponding Method sections (2.1–2.4) are also labelled.

We used Level 1 ground–range–detected high–resolution (GRD–HR) backscattering intensity
products with VV polarization from Sentinel–1’s interferometric wide swath (IW) mode, downloaded
from the Alaska Satellite Facility (https://www.asf.alaska.edu) (a total of N = 551 over six reservoirs).
The data are provided in 250 km–wide swaths at 10–meter resolution, projected onto the WGS84 ellipsoid.
To correct for topographic distortion due to the side–looking nature of the radar instrument, and to
ensure precise co–registration with a Shuttle Radar Topography Mission (SRTM) digital elevation model,
we orthorectified the images using ESA’s Sentinel–1 toolbox (http://step.esa.int/main/toolboxes/snap/).
We first applied the precise orbit and radiometric calibration files from ESA, assembled along–track
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data slices as needed, and applied the terrain correction using the SRTM dataset before cropping the
image to the target region.

To obtain and extract a water mask, Sentinel–1 images were first re–projected to the local UTM
projected coordinate system. We used density slicing to extract water mask grids. Amplitude values of
≤0.036, defined through visual inspection and several simulations over different locations and dates,
were used to denote water pixels. Thanks to the high contrast between permanent water and the
ground surface along the reservoir edges, the method is not very sensitive to this value. To mask out
brighter pixels that could result from back–reflection from the rough surface water (due to waves, wind,
or rainfall), topographic shadowing on the land (e.g. Cao et al. 2019, Bolanos 2016) and instrumental
noises such as speckles, we used a majority filter (3 × 3). Grids were then converted to polygons.
We eliminated small polygons (<15,000 m2) outside of the area of the reservoirs. Reservoir polygons
were then converted to line features, which consisted of multiple line patches. We only preserved line
features longer than 1,000 m to efficiently filter line segments outside of the reservoir. The resultant
trimmed line features define the reservoir shoreline. The noise filtering process described in this section
is illustrated through an explanatory figure using a case of the Bansagar reservoir on 25 October 2017
(Figure 2).
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Figure 2. Filtering and de–noising process developed in this study (using a portion of Bansagar
reservoir on 25 October 2017). (A): SAR amplitude image contains brighter back–reflection pixels,
topographic shadowing in land, and speckles. (B): Through a thresholding method, the initial water
extent was generated and then underwent the majority filtering. Note that noises are significantly
reduced. (C): Remaining noises are further removed by eliminating small polygon and polyline parts
to generate a trimmed reservoir shoreline. This process is iterated over all the available SAR images
across reservoirs studied in this paper. (D): The result is compared with the Landsat 8 Operational Land
Imager (OLI, acquired on 26 October 2017) driven modified NDWI (normalized difference water index)
and false color RGB (653) image. (E): The detailed procedure is provided in Section 2.1 and Figure S1.

2.2. Digital Elevation Model (DEM) Processing and Validation

Our proposed gauging method used a combination of three global–scale DEMs to obtain WL:
(I) Multi–Error–Removed Improved–Terrain DEM (MERIT DEM) [41], with 3–arcseconds resolution
(90 m), (II) Shuttle Radar Topography Mission (SRTM) v4 [42] with 3–arcseconds resolution, and (III)
SRTM GL1N v003 1–arcsecond resolution (30 m) [43]. MERIT DEM is a surface model with vegetation
canopy removed, which considerably improves resultant topography accuracy. To improve upon
the spatial resolution of the MERIT bare earth DEMs, we subtracted the corrected v4 of the SRTM
90 m (with vegetation), from the MERIT DEM (without vegetation). Although an issue has been
raised concerning the SRTM V4 hole–filling method in flat areas around lowlands and large rivers [41],
most reservoirs (including those in our study) are constructed in relatively high relief or mountainous
terrain. In addition, since the reservoir WL gradually changes over the large impounded water body,
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the effect of void errors is considerably decreased when the reservoir size increases (see next section).
Nevertheless, a discussion of the merits of different global–scale DEMs is beyond the scope of this study.

The "vegetation height" raster (90-m resolution) was generated and then verified against the
global forest canopy height data at 1 km [44]. We resampled the vegetation height raster to 1 km using
a bilinear interpolation method, and random points within the maximum extent of reservoirs were
generated for the tree height comparison. The number of random samples was defined by the size of
the reservoir (approximately one per 1 km2). We then resampled the "vegetation height" into 30-m
spatial resolution pixels for subsequent subtraction from the SRTM 30-m dataset. The final DEM, thus,
has 30-m spatial resolution with the vegetation effects removed.

2.3. Water Mask Extraction and Water Level (WL) Retrieval

Along the reservoir shoreline generated in Section 2.1, points were generated every 30 m to be
consistent with the 30-m bare–earth DEM resolution. We then extracted elevation values from the
DEM at each point. Lastly, we corrected the extracted elevation values at each point by obtaining
the reservoir slope (from the DEM) using a point at the dam and the uppermost point longitudinally
along the reservoir (S = ∆E

L , where S is slope, L is length, and ∆E is change in elevation, in Figure 1).
Although the water surface slope in the reservoirs are relatively small and should, therefore, not be a
major error source (e.g. several centimeters to a maximum of 1.7 meter per km, Table 1), we tried to
refine our WL estimates as much as possible. WL was computed as the mean elevation extracted from
the DEM over all points along the shoreline and is considered statistically robust as the sample size is
large (N>>1,000) and normally distributed. Although some systematic height error associated with
SRTM data has been reported [45], a large number of points along the entire shoreline was used to
calculate the WL. We, therefore, consider any systematic bias or error in DEM height, which is unlikely
to be a first–order control on WL accuracy [34]. Another crucial advantage of taking the mean out of
the large sample elevation points extracted from DEM is overcoming the 1–m coarse vertical resolution
of the original DEM. Because we use the probabilistic mean of the DEM pixel elevations (N>>1,000)
approximates, the true WL of the lake is at a sub–meter vertical resolution. The entire fully automated
process described in this section was developed through the ArcGIS model builder and is available in
Figure S1.

Table 1. List of reservoirs investigated in this study. See location map provided in Figure S2.

Reservoirs Location (Altimetry
Intersection) Country Sentinel–1

Path

Year
Started
to Fill

Surface
Slope

(m/km) a

Water Level
Variation (m)

b

RMSE
(m) c pRMSE

(%) d

Gilgel Gibe 7◦20′25”N,
37◦20′77”E

Ethiopia 152 2015 1.09 40 3.14 6.28

Xiowan 24◦50′17”N,
100◦9′49”E

China 99 2009 1.76 63 5.25 8.33

Jirau 9◦17′25”S,
64◦41′15”W

Brazil 156 2008 e 0.46 8 1.9 23.75

Bansagar 24◦4′27”N,
80◦59′41”E.

India 56, 92, 165 2011 0.09 8 1.16 14.5

Vueltosa 7◦44′34”N,
71◦30′58”W

Venezuela 4, 171 2009 0.18 21 1.88 8.95

Three Gorges 30◦49′31”N,
111◦0′14”E

China 11 1994 e 0.96 26 4.15 15.96

a Reported values are calculated as water surface slope averaged over the investigated period (2014–2018). b Water
level range after the reservoir filling calculated from altimetry data (2014–2018). c Altimetry series dated within
one week of the Sentinel–1 data collection were used for calculation. d Calculated as RMSE/WL variations. e Year
construction started.

2.4. Validation Using Altimetry Data

We validated our estimated reservoir WL variations using satellite radar altimetry data from
the Global Reservoirs/Lakes (G–REALM) database product TPJOJ.2 [46] (https://ipad.fas.usda.gov/

https://ipad.fas.usda.gov/cropexplorer/global_reservoir/
https://ipad.fas.usda.gov/cropexplorer/global_reservoir/
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cropexplorer/global_reservoir/). G–REALM data have a long history of validation and are not affected
by vegetation, time of day, or weather conditions, even though they only consist of a narrow swath
of measurements and require large reservoirs due to spatial data averaging. G–REALM is just one
operational database that could be used to validate our results, and any database will not be a perfect
solution because there is no field data available. However, as demonstrated through highly accurate
results in this study and other studies (Birkett et al. 2011), it can be potentially used without validation
from altimetry.

Reservoir height variations in TPJOJ.2 for the analysed period are derived from Jason–2/OSTM
(2014–2016) and Jason–3 altimetry (2016–2018). This product does not have an absolute elevation datum
and is instead relative to the elevation of each lake at a specific time, whereas the method presented
here provides an absolute elevation estimate relative to the WGS84 EGM96 geoid. Our data and the
reference data, thus, had the same pattern and ranges, but with different mean values. We, therefore,
subtracted the mean difference in WLs between the altimetry–derived data and our estimated water
height based on the whole shoreline points along the reservoirs over the investigated period. In the
Jirau Reservoir case, in situ measured daily WL data from the Brazilian Water Agency (ANA) was
used for validation because Jason–2/3 altimetry data is not available. Root mean square errors (RMSE)
between our estimated WL and altimetry–driven WL time series were calculated to assess method
performance (Table 1 and Figure 3). In this case, altimetry passes closest in time to each Sentinel–1
image was used (all altimetry passes used were within one week of Sentinel–1 image acquisition).
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Figure 3. Comparison of vegetation height rasters over analysed reservoirs in this study with a global
scale canopy dataset. Correlation coefficients r are reported in parenthesis. Density of GLAS shots
(per degree) used for the tree regression procedure by Simard and Pinto [44] for each reservoir is
also presented.

3. Results

3.1. General Performance of the Proposed Approach

Comparison of our vegetation height rasters with the published global canopy data [44] yielded
statistically significant relationships with high correlation coefficients over analyzed reservoirs
(r ranging 0.64 to 0.83, Figure 3). A slight disagreement may relate to the three possible limitations
of the data source. Simard et al. (2011) used to estimate the tree canopy at a global scale. First, the
relatively coarse resolution (1 km) of the reference dataset does not account for subpixel variability in
tree heights, which somewhat limits the local scale prediction. A second possible source of error could
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be the temporal gap between data collection, which is about 5 years. The canopy height was estimated
using the Geoscience Laser Altimeter System (GLAS) aboard ICESat was collected in 2005, while SRTM
data was collected in 2000. However, we verified with archive satellite imagery that there were no
major land cover changes such as deforestation around the reservoirs we analyzed. Lastly, there is
regional variability in the data quality due to the heterogeneous GLAS shot density that generally
correlates with the accuracy of the tree height (Figure 3). Jirau was an exception that showed the lowest
r value (0.64) among study sites, perhaps due to the dense canopy of the Amazon rainforest.

In this case, we present the results for WL estimation from 2014 to 2018 on six relatively recently
built dams in five countries (Table 1, Figure 4). Our model accurately characterized WL dynamics
and had relatively high correlation coefficient values between estimated and measured (e.g. altimetry)
WL, which ranged from 0.74 to 0.91 (Figure 4). Since SRTM and MERIT DEM accuracy varies across
areas with distinct vegetation cover and relief [41,45], we chose reservoirs in distinct geomorphological
settings such as Jirau in the Amazon (<200 m above mean sea level) and Xiaowan in rugged Southwest
China (>1000 m) to assess the method’s performance in different settings. WL estimated based on
Sentinel–1 and SRTM data captured the seasonal variations and associated dam operational patterns of
each reservoir with reasonable accuracy. The seasonal variation, including rising, falling, peak, and
lowest WL is successfully demonstrated because Sentinel–1 image acquisition is not interrupted by
atmospheric conditions or day–time. Calculated RMSE ranged from 1.16 to 5.25 m, with no seasonal
variability of RMSEs in any of the studied reservoirs. We did not observe a difference in performance
between high and low water seasons despite the height of the lake water surface and local hillslope
encompassing the reservoir changes substantially between these two periods.
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Figure 4. Six reservoir water levels (WL) (June 2014–October 2018) estimated in this study (blue)
compared to reference altimetry series (red). Altimetry baseline has been adjusted to match the SRTM
baseline. RMSE and percentage RMSE (pRMSE) are provided. In the case of Jirau, in situ WL data from
ANA was used for validation.

Low WL variation between peak and minimum WL was measured for broad lakes such as Bansagar
(8 m, Son River Valley), Jirau (8 m, Amazon lowlands), and Vueltosa (21 m, Andean foothills) (Table 1).
Reservoirs on steep valleys such as Gilgel (40 m calculated after stabilization in 2016, Omo–Gibe River
Basin) and Xiaowan (63 m, Yunnan–Guizhou Plateau) had higher water level variation. To control for
this large WL range in variability, we also considered percentage RMSE (pRMSE) of each reservoir to
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assess model performance. We contend that using pRMSE makes more sense than direct comparison
using RMSE because the error range tends to increase as the WL variability increases and enables
comparisons between reservoirs in different settings (Table 1). Half of the investigated reservoirs
had pRMSE values < 10% (i.e. the uncertainty range is less than 10% of the total WL variability
observed from 2014–2018). Gilgel and Xiowan reservoirs had the lowest pRMSE despite their high
total WL variability.

While the model performed reasonably well for all reservoirs, Bansagar and Three Gorges had a
pRMSE of ~15% and Jirau had a pRMSE of ~24%. Although Jirau presented the lowest WL variability
(due to the nature of its run–of–river dam) and the tree height is estimated with the regression procedure
using the densest GLAS shot (Figure 3), it had the highest pRMSE value of 24%. The relatively high
error in Jirau might be due to substantial flooded forests upstream of the dam [47], which causes
underestimation of WL during the flood season. Much of the land cover upstream of the Jirau Dam
area in 2008 (pre–dam construction) was forest flooded by the reservoir. Since the SAR data we used
(C–band) measures the backscatter of the tree canopy, the lake extent mapped in this case is likely
smaller than the actual extent due to the flooded forest. Trees in this region are roughly 35 m in height
on average [44], which is much larger than the WL variability of the reservoir. An aerial photograph
taken in June 2014 (post–dam construction) shows a typical flooded forest during the flood season
along the reservoir (Figure 5A). The effect of the flooded forest on increased error is shown by the
consistent underestimation of WL using our method during the flood season in both 2017 and 2018
(Figures 4 and 6A).Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 16 
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Figure 5. (A) Absolute value of residuals plotted against the number of shoreline points. Mean (symbol)
and standard deviation (whisker) are shown. (B) Residuals of SAR–driven WL calculated from the
altimetry series for each reservoir. WL estimates after the reservoir filling were considered.

The higher uncertainty in WL at Three Gorges (15% pRMSE) could be explained by the three
major issues. First, the Jason–2 altimetry pass is about 60 km upstream of the Three Gorges dam,
while, in the other cases, altimetry passes within a few kilometers from the reservoir at the dammed
site. Second, the seasonal dynamics of the reservoir’s water surface slope is also relatively higher than
the other reservoirs, which may introduce additional discrepancies between altimetry and Sentinel–1
WL. There appears to be a general increase in RMSE when the water surface slope is sufficiently large
(R2 = 0.91 when plotted the two variables over six reservoirs) (Table 1). Lastly, the GLAS shot density is
relatively low in this area without reference data for validation, which might have underestimated the
tree canopy height. The Bansagar reservoir presents a peculiar characteristic of rapid rise of WL and
slow outflow. The rapid WL rise is likely related to the high rainfall rates during the monsoon season
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(July–September, see Figure S3). On the other hand, the reservoir presents the largest submerged area
among the studies cases. Thus, we consider that these cases with relatively higher pRMSE are not
attributed to the model’s performance but related to the availability of data and natural characteristics
of the reservoir water surface. These issues may be overcome by using higher resolution or alternative
data such as site–specific knowledge, such as the density of reference data, forest structures, or regional
climatic conditions.
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Figure 6. (A) High resolution PlanetScope image on May 2018 showing the maximum seasonal flooded
area over the Jirau reservoir. Dense forests are flooded along most of the fringes of the reservoir. Aerial
photo taken in June 2014 at the location of the green star symbol in the map. (B): Sentinel–derived
points shoreline points over the Gilgel reservoir on 5 October 2016 overlaid on the bare–Earth DEM
used in this study. Two convex elevation profiles and corresponding slopes are shown (C,D).

Although some possible sources of errors in this study are discussed above, a large enough sample
size along the shoreline (N>>1000) should help mitigate errors somewhat by taking means (for WL) of
a normally distributed curve (Figure 1). Residuals of estimated WL also do not present a clear trend
depending on the number of points along the shoreline (Figure 5A). In fact, since all our investigated
reservoirs had N>>1000 and yielded WL estimates with reasonable accuracy, we speculate that
additional points along the reservoir shoreline would make the probabilistic mean even more robust.

We also investigated the effect of the reservoir elevation on the model’s accuracy. To tackle this
issue, we analyzed the relationship between residuals (thus RMSEs) and the reservoir elevation. There
was no statistically significant relation for all cases (Figure 5B). We suggest that there are two factors
of this observation that offset each other. First, as the reservoirs expand during the wet season, their
perimeters generally increase (although not for all cases, which depends on the valley geomorphology
accommodating reservoirs), (Figure 6A).which raises the available shoreline points. However, during
this season, the slope at the reservoir shoreline becomes steeper so the subpixel variations when
extracting elevation values from the DEM is larger. Nevertheless, we acknowledge that the level of
residuals depending on the number of shoreline points and the elevation could be further investigated
with a larger number of case studies.

Although some remote sensing uncertainties discussed above might slightly lower the model’s
accuracy, the critical advantage of our approach is the relatively consistent temporal coverage of
estimated WL. This capability may solve problems such as the voids in altimetry data over the
high–water season during 2016–2017 at the Three Gorges reservoir. Our model successfully estimated
the rising and falling limbs of the WL for the missing period, estimating a peak WL of 212 m, which is
a value close to adjacent years. Similar problems occurred for Vueltosa reservoir altimetry data during
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the high–water season of 2016–2017. Although more frequent in–situ measurement of WL might exist
for hydroelectric reservoirs, they are often not readily available to the public. Thus, the proposed
method could be a critical alternative to obtain WL series because it can fill the temporal gaps of
altimetry data or the absence of gauged WL around the world.

3.2. Effect of Local Slope over Different Elevation Ranges

Our results showed no significant effect of water surface elevation on RMSE, indicating that WL
estimation accuracy is not dependent on seasonal variability. However, the standard deviation (STD)
of the histograms used to derive the estimated WL for each date showed an increasing trend when
plotted against normalized reservoir elevation (Figure 7).(

Elev− Elevmin
Elevmax − Elevmin

)
(1)
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Although WL accuracy did not appear to be related to reservoir elevation or season, uncertainty
values increase with elevation. This pattern was observed for all investigated reservoirs except for
Gilgel. We suspect that this pattern is related to local hillslope morphology because hillslope relief
generally increases with altitude (assuming a concave longitudinal basin profile). Higher local hillslope
relief translates to higher elevation changes for a given horizontal distance, and, therefore, STD (which
indicates elevation variability) tends to increase. Gilgel reservoir had the only negative relationship
between STD and water surface elevation as well as between elevation and slope. Topographic profiles
of the Gilgel reservoir, drawn perpendicular to the river at the altimetry location, revealed that the
valley confining the Gilgel reservoir is slightly convex as opposed to the typical concave shape of most
profiles (Figure 6B).

It is difficult to provide a thorough analysis of the limitations that high slopes and small lakes
have on the ability of this method to estimate WL. Practitioners adopting this (or similar methodology)
should be aware of the potential limiting factors of slope and area, and determine what level of accuracy
is necessary for their goals.

4. Discussion

Our proposed method based solely on remotely–sensed data is suitable to map most of the lakes
and reservoirs worldwide (with the exception of some polar regions that lack SRTM coverage) without
the need of in–situ instrumental analysis. The approach is conceptually simple and relatively easy
to perform, so its adoption might benefit those with limited experience in remote sensing. We have
provided a fully automated model to encourage others to use the proposed method for their own
applications (Figure S1). Even with errors inherent in using the SRTM–derived DEMs, half of the case
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studies showed less than 10% pRMSE and, thus, should be considered a valid alternative to more
complicated or more costly methods. In some reservoirs, data is lacking. Therefore, providing an
initial estimate will also be valuable. Yet, we emphasize that practitioners adopting this method assess
its validity against reference data (if possible).

The results are statistically robust due to the large number of points with extracted elevations
distributed along the reservoir shoreline. Additionally, our method can be used to directly monitor WL
changes with relatively high temporal resolution, providing estimates every 3 to 12 days depending
on the local imaging plan of the Sentinel–1A and 1B satellites. One limitation of our method is that,
for lakes or older reservoirs, which had high water levels during the SRTM mission flight (February
2000), an alternative DEM is needed to fill in the missing elevations inside the reservoir. In addition,
the MERIT DEM, which is considered the most accurate bare–Earth DEM at a global scale still has
limitations in high–slope regions where subpixel topographic variation is larger due to relatively
coarse resolution [41]. Reservoirs that become ice–covered in the winter may result in seasonally larger
uncertainties due to the ability of roughened ice to enhance the radar backscatter.

Previous studies have shown a good correlation between altimetry and ground truth data,
normally ranging from a few centimeters for large lakes to a few decimeters for narrow reservoirs
or rivers [48–50]. The coverage of these data is sparse due to a long distance between orbital tracks,
and many reservoirs and lakes are still not surveyed. Although researchers have attempted to address
the lack of altimetry data from below–nadir missions by using multi–mission approaches [51–54],
nearly global coverage and regular gauging of reservoirs and lakes have not yet been attained.

Altimetry best measures WL at relatively large lakes and reservoirs (although there is no prescribed
minimum size) because the observations are easily contaminated by backscatter from other ground
reflectants. While we emphasize that accuracy of the method should be considered in terms of the
project goals, we suggest that a minimum of 100 undisrupted (by atmospheric/terrain effects) shoreline
points from the DEM layer, which fully encompasses a lake with a 3-km perimeter, should generally
produce a normally distributed histogram to produce a robust WL. For some reservoirs, even a rough
estimate of WL is a substantial improvement over the current lack of data. More than 99% of all existing
lakes globally have a perimeter larger than 3 km [55], which means this method should be valid in the
context of global proliferation of small dams [56].

The approach has valuable applications for investigating water dynamics in reservoirs, especially in
the tropical and subtropical zones, where cloud–free optical images are often not available. By using the
model developed in this study, the reservoir volume for certain WLs can be estimated. The models can
be implemented from the construction of log (Area)–log (WL) and log(Volume)−log(Area) relationships
for each impounded reservoir [57]. As the shoreline for each reservoir is delineated at every WL based
on SAR images, the log−log relationships can be determined. The relationships can then be revised to
power formulas, which indicates the area–volume relation (V = k * Aa) or the WL–volume relation
(V = k * WLa) for the specific impoundment, where k and a are constants [58]. Using the formulas,
the water storage fluctuation in reservoirs over a specific period can be calculated and could be used to
investigate regional water resources availability.

Some studies have used optical satellite imagery combined with altimetry data to calculate
reservoir storage variations [55,59,60]. This approach can be useful due to both the vast options of
available optical satellite images in different levels of spatial resolutions and the long historical archive.
The Landsat series started collecting data in the 1970s. However, optical images are daylight-dependent
and subject to interference from cloud coverage, which are issues not pertinent to the active microwave
sensor used to obtain Sentinel–1 SAR images. The backscattering images also have high contrast
between land and water, which makes them ideal for the study of water bodies.

Our proposed method can also leverage emerging technologies like Unoccupied Aerial Vehicles
(UAVs). The use of UAVs in geoscience has become ubiquitous [61], and allows for extremely accurate
topographic measurements and DEMs that could be used with our proposed method. Recent advances
in water surface elevation measurements in small inland water bodies show promise in potentially
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gauging rivers and small lakes [62,63], but larger lakes are more challenging and time–consuming
to monitor with small UAVs. Therefore, it is important that WL monitoring methods have flexible
data source inputs, and could integrate smaller–scale, high–resolution DEMs with satellite–based
water masks.

Although a similar approach of overlaying lake extent with DEM to estimate elevation has been
previously used, these were tested only in arid environments [35,36] or used airborne LiDAR–derived
DEMs [37–39], which restricts the spatial coverage of the application. In addition, although the
upcoming Surface Water Ocean Topography (SWOT) mission will substantially improve global inland
water gauging [64], these data will not be collected until after 2022. Our proposed method, thus,
considerably extends the current availability of global gauging data, which is crucial in a rapidly
changing climate [2,65].

5. Conclusions

The continuous monitoring of all reservoirs and lakes over global scales has not yet been achieved
but is critical for better understanding of the global hydrologic system. Issues of water scarcity, extreme
and unpredictable flooding, the relationship between physical habitat and water availability, and the
global increase in demand for hydroelectric power are all magnified in a changing climate. As humans
are forced to adapt to changes in climate and the global hydrologic system, while many nations rapidly
industrialize, the lack of consistently accurate measurements of reservoirs globally will put increasing
strain on the Earth’s water resources.

We developed and verified a method of water level estimation using a combination of Sentinel–1
Synthetic Aperture Radar (SAR) observations and Shuttle Radar Topography Mission (SRTM) surface
models, which produces water level estimates with high temporal resolution over global scales. While
sensors and methods that rely on radar altimetry are more accurate, our method can monitor water
bodies that are not directly located at the satellite’s nadir and water bodies substantially smaller in
area. SAR data penetrates cloud cover, which is an improvement over optical methods, given that
many reservoirs have recently been built in tropical, rain–rich and cloud–rich regions.

Our method is reasonably accurate compared to reference remotely–sensed and ground–based
water surface elevation measurements in six reservoirs with distinct sizes, climates,
and geomorphological settings. The proposed method is relatively simple to use and appears
to be statistically robust despite a relationship between lake elevation and increased RMSE. Adoption
of this or other similar SAR–based methods by environmental managers could be made easier by the
proposed methodological guidelines (Figure S1) and easily accessible data used in this study. This study
moves toward the true nearly–global gauging of reservoirs by providing water level estimates solely
using operational remotely sensed data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/8/1353/s1.
Figure S1: ArcGIS model builder developed to extract water level from Sentinel–A and SRTM DEM. Figure S2:
Site map of the studied reservoir. Figure S3: Climograph processed from the Google Earth Engine over the
Bansagar reservoir.
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