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Abstract: Ash trees (Fraxinus spp.) are a prominent species in Minnesota forests, with an estimated
1.1 billion trees in the state, totaling approximately 8% of all trees. Ash trees are threatened by the
invasive emerald ash borer (Agrilus planipennis Fairmaire), which typically results in close to 100% tree
mortality within one to five years of infestation. A detailed, wall-to-wall map of ash presence is highly
desirable for forest management and monitoring applications. We used Google Earth Engine to compile
Landsat time series analysis, which provided unique information on phenologic patterns across the
landscape to identify ash species. Topographic position information derived from lidar was added to
improve spatial maps of ash abundance. These input data were combined to produce a classification
map and identify the abundance of ash forests that exist in the state of Minnesota. Overall, 12,524 km2

of forestland was predicted to have greater than 10% probability of ash species present. The overall
accuracy of the composite ash presence/absence map was 64% for all ash species and 72% for black ash,
and classification accuracy increased with the length of the time series. Average height derived from
lidar was the best model predictor for ash basal area (R2 = 0.40), which, on average, was estimated as
16.1 m2 ha−1. Information produced from this map will be useful for natural resource managers and
planners in developing forest management strategies which account for the spatial distribution of ash
on the landscape. The approach used in this analysis is easily transferable and broadly scalable to
other regions threatened with forest health problems such as invasive insects.
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1. Introduction

Remote sensing allows for the broad-scale monitoring of forests around the globe using precise
spatial information and frequently repeating observations to identify and detect changes in vegetation
presence, abundance, and condition. These datasets lead to greater knowledge of forest ecosystem
patterns over large spatial extents [1]. Remote sensing has a long history in aiding forest inventory,
including the identification of forest cover in the form of geospatial maps, assessment of forest health
as related to defoliation and discoloration [2], and quantitative models that provide predictions such
as timber volume, basal area, aboveground biomass, and carbon [3]. Derived maps and reports are
used to enhance on-the-ground measurements, identify areas of interest for further investigation,
and provide consistent, wall-to-wall data coverage to inform land management decisions [4,5].

The ash genus (Fraxinus spp.) is widely distributed across much of central and northern North
America both in urban and traditional forest environments. Since the identification of the invasive
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emerald ash borer (Agrilus planipennis Fairmaire; EAB) in 2002 in Detroit, Michigan, USA, there has
been widespread mortality of ash across North America [6]. Currently, EAB is present in 35 U.S. states
and several Canadian provinces. In Minnesota, USA, EAB is locally present in several counties in
the central and southern regions of the state. The EAB larvae feed on the phloem of ash trees and
contribute to tree mortality within one to five years of infestation. After introduction of EAB, annual
ash mortality can increase by as much as a 2.7% in a county [7]. The anthropogenic movement of the
beetle through infested firewood or other products has aided in the introduction of EAB to new, distant
locations [6].

Ash is a prominent tree species in Minnesota forests that exists across many land cover types.
Miles et al. [8] estimated that there are 1.1 billion ash trees in Minnesota that are at least 2.5 cm in
diameter at breast height (DBH) or greater, accounting for 8% of all trees in the state. However, due
to its low economic value, there has been limited research on this forest type, including basic forest
inventory to understand the extent and locations of ash stands. The three species of ash found in
Minnesota are black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white ash
(Fraxinus americana L.). The majority of the individuals are black and green ash with relatively few
white ash trees. In Minnesota, black ash is dominant in two vegetation types: (1) Black ash-elm/trillium
vegetation communities that occupy moist sites with deep organic soils and (2) black ash/yellow
marsh marigold vegetation communities on sites with better drainage. Black ash are dominant in the
overstory of swamp forests that occur in extensive complexes, in topographically low depressional
areas, and at transitions between upland forests and peatlands [9]. However, black ash can be found in
lower abundance in nearly all vegetation types where it mixes with other species [10].

Historical disturbances have recently been mapped using the full extent of the Landsat archive
across Minnesota’s forests, highlighting the value imagery time series to monitor forest dynamics [11].
Remote sensing at the individual species level is difficult in mixed-species forests like Minnesota’s
because of the numerous species and high degree of heterogeneity in small areas, i.e., the size of
stands where forest management decisions are primarily made. Fortunately, ash has certain biological
and physiographic features that may help to differentiate it from other tree species. Deciduous
phenology patterns are useful for speciation at a broad level (e.g., deciduous vs evergreen). Ash
species drop their leaves earlier than other deciduous species in the fall [12]. This is useful from a
remote sensing perspective because the change in optical reflectance from healthy, green leaves to
barren, grey branches can be an indicator of species. However, differences in local site conditions
and climate influence phenology as well, and additional information is likely required to accurately
identify species. A physiographic characteristic of ash, particularly in black ash, is the prevalence of
the species in relatively low elevation positions with high degrees of soil moisture such as swamps,
bogs, fens, and other forested wetlands. These characteristics separate ash from other deciduous tree
species like aspen (Populus spp.), one of the most common hardwood trees in Minnesota.

Given the extent of ash and the impending EAB threat in Minnesota, there is a need for accurate
and high-resolution maps of ash presence and abundance. These maps will help to quantify the current
extent of ash for future analysis and develop land management plans for areas of high EAB infestation
risk. Previous maps of ash abundance have been generated at coarse spatial resolutions, i.e., 250 m [10],
using alternative imputation methods [13], or within single Landsat scenes [14], but not at a moderate
satellite spatial resolution for the regional extent. The objective of this work was to produce a 30-m
resolution map of current ash presence/absence in Minnesota. Ash abundance was modeled in terms
of basal area using lidar height metrics.
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2. Materials and Methods

2.1. Study Area and Imagery

2.1.1. Study Area

The area of study was the state of Minnesota, USA, which includes four ecological provinces:
The Laurentian Mixed Forest, Eastern Broadleaf Forest, Prairie Parkland, and Tallgrass Aspen
Parklands [15]. Minnesota’s land cover is diverse, with approximately 50% of forested cover [16].
Minnesota’s forest ownership is also diverse, with 55% in public ownership, consisting of lands
controlled by the state (23%), federal (17%), and county and local governments (15%) [8]. There is a
strong gradient from agricultural cover in the southwest to primarily forested cover in the northeast.
A wide range of forest types occur across Minnesota’s 6.4 million hectares of timberland, with the
most common types being aspen-birch and spruce-fir. Yet, ash forests are a major cover type, with
approximately 8% of tree species in the state [8]. Because of the extent of ash and the current localized
infestation of EAB, Minnesota represents an opportunity to explore the use of remotely sensed data to
provide valuable information on extent of the ash resource to forest managers.

2.1.2. Optical Imagery

The sources of optical imagery included Landsat 5 TM (1984–2011), Landsat 7 ETM+ (1999–present),
Landsat 8 OLI (2013–present), and Sentinel-2 MSI (2015–present). Each collection was filtered to
scenes overlapping the Minnesota state boundary. The Landsat collections were processed to a
level-one terrain corrected (L1T) product [17]. Gaps in Landsat 7 imagery caused by the 2003 Scan
Line Corrector error were masked using a per-pixel bit mask and not included in further analysis. L1T
surface reflectance data products are terrain-corrected and radiometrically calibrated using the Landsat
Ecosystem Disturbance Adaptive Processing System (LEDAPS) (TM, ETM+) [18] and Landsat Surface
Reflectance Code (LaSRC) (OLI) [19], which includes per-pixel cloud masking using CFMASK [20].
The Normalized Difference Vegetation Index (NDVI) was used to identify forested areas and calculated
for each sensor using the NIR and Red bands:

NDVI =
NIR−Red
NIR + Red

(1)

Forested areas were identified using a multi-threshold filter where the NDVI value was greater than or
equal to 0 and the lidar canopy height was greater than or equal to 3.

2.1.3. Google Earth Engine (Time Series)

The Google Earth Engine (GEE) platform was used for processing Landsat imagery and producing
the classification product. GEE provides ready access to the archive of L1T surface reflectance Landsat
data through a browser-based programming interface. All additional layers were uploaded through
user account storage as image assets. The GEE platform was used in a number of ways. First, GEE
filtered out clouds and poor-quality pixels from each satellite imagery collection. Second, it calculated
NDVI for each image in the collection. Last, it calculated a harmonic regression of NDVI through time
and perform the thematic classification of pixel values using a RandomForest algorithm.

Harmonic regression of Landsat NDVI observations have been demonstrated by Brooks et al. [21].
A fixed harmonic regression of per-pixel NDVI observations was fit to each cloud-masked imagery
archive. The frequency of the harmonic was fixed to one period per year to match the seasonal
vegetation pattern. Each time series was approximated as a trigonometric polynomial, where t is the
image timestamp, ω is the harmonic period, e is the error in the model fit.

NDVIt = β0 + β1t + β2 cos(2πωt) + β3 sin(2πωt) + e (2)
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The root mean squares of the residual errors (RMSE) were output as a band for evaluation. The estimated
coefficients were used to compute the annual amplitude and phase of the single cycle harmonic
regression using the following equations from Shumway and Stoffer [22]:

Amplitude =
√
β2

2 + β3
2 (3)

phase = atan(β3/β2) (4)

The annual NDVI amplitude and phase computed bands were used as inputs to the classification
procedure. For visualization, we organized time series by Day-Of-Year (DOY) of image acquisition,
where DOY 1 represents January 1 and DOY 365 represents December 31 [23].

2.1.4. Lidar

Aerial lidar data were acquired for the state of Minnesota between 2008 and 2011. The lidar point
cloud had a minimum point density of 1.5 pulses/m2. The vertical accuracy RMSEz was less than
15 cm. The software package LAStools was used to create several interpolated models describing
Canopy Height Model (CHM) and Digital Elevation Model (DEM) at 3-m spatial resolution. From the
DEM, Topographic Position Index (TPI) and Compound Topographic Index (CTI) were created at a
spatial resolution of 3 m for the state. The TPI raster is an index that represents the local difference in
elevation, measured by the elevation difference between each cell in a DEM to the mean elevation of the
neighborhood of surrounding cells. The CTI raster is an elevation index that incorporates topographic
position with flow accumulation from upstream drainage areas [24]. The (CTI) is defined as ln[(α)/(tan (β)],
where α represents the local upslope contributing area and β represents the local slope gradient.
The topographic variables were resampled to 30-m resolution using the mean value prior to modeling.

2.2. Model Development

2.2.1. Forest Inventory Data

A RandomForest [25] classifier was developed with a statewide forest inventory database as
training data. RandomForest is a machine learning approach to predict the state of a variable, in our
case, the presence or absence of ash trees, based on a list of input variables. The input variables are
split into a sequence of steps or a decision tree that best separates the training data. RandomForest
creates many decision trees and combines the results to provide a model with best prediction results.
The parameters for RandomForest include the user defined number of decision trees and (m) number
of variables per split. When building a set of regression trees, 20% of samples are withheld from
the RandomForest algorithm (the out-of-bag samples) and are evaluated in determining the model’s
accuracy [25]. The Minnesota Department of Natural Resources maintains a continuously updated
polygon database used for forest management applications, termed the Forest Inventory Management
(FIM) database [26], which was used in this analysis (Figure 1).

The FIM dataset contained detailed attributes of spatial stand boundaries that were digitized from
aerial photography. The FIM dataset was filtered in several ways to ensure only the most homogeneous
and up-to-date stands were selected as training data. As an example, only stands measured between
2000 and 2018 were included in this analysis. Stands where ash species were identified as the main
cover type and primary species in the stand were selected (Figure 1). The FIM dataset was sampled at
a 30-m resolution, effectively converting polygons to raster to match the input variables. This resulted
in 2498 samples for training. A random selection of samples were chosen using the sampleRegions
command in GEE to train the classifier at a scale of 30 m on six predictor variables including NDVI
amplitude, NDVI phase, NDVI median, canopy height model, lidar TPI, and lidar CTI (Table 1). Once
the model was fit to the training data, the model was used to infer the probability of ash classification
for each pixel in the input imagery. After filtering the FIM polygons by survey year, dominant species,
and forested land type, there were 24,467 polygons and 498 ash-dominant polygons where ash was the
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main cover type and primary species in the stand (approximately 2% of the data). A concept flowchart
of the classification process is shown in Figure 2.

The NDVI time series of the three Landsat and one Sentinel-2 sensor was created for input to
RandomForest classification of ash forests (Table 1). The RandomForest model parameters were set to
10 decision trees with two input variables per split (m). The input variables per split was determined
by the standard square root of predictor variables. The annual amplitude, phase, and median of NDVI
was calculated for each 30-m pixel. The number of NDVI observations varied by pixel depending on
duration of satellite operation and image swath overlap. The RMSE of the NDVI harmonic model
represents the error in predicted values of NDVI amplitude, phase, and median. These intermediate
datasets were developed to be incorporated as primary inputs to the RandomForest classification model.

Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 16 

 

 

 

Figure 1. Illustration of the presence and absence of ash stands based on the Minnesota’s Forest 

Inventory Management polygon database. Inset displays an example of diverse Minnesota forests 

that transition from non-ash to ash-dominated. 

The FIM dataset contained detailed attributes of spatial stand boundaries that were digitized 

from aerial photography. The FIM dataset was filtered in several ways to ensure only the most 

homogeneous and up-to-date stands were selected as training data. As an example, only stands 

measured between 2000 and 2018 were included in this analysis. Stands where ash species were 

identified as the main cover type and primary species in the stand were selected (Figure 1). The FIM 

dataset was sampled at a 30-m resolution, effectively converting polygons to raster to match the input 

variables. This resulted in 2,498 samples for training. A random selection of samples were chosen 

using the sampleRegions command in GEE to train the classifier at a scale of 30 m on six predictor 

variables including NDVI amplitude, NDVI phase, NDVI median, canopy height model, lidar TPI, 

and lidar CTI (Table 1). Once the model was fit to the training data, the model was used to infer the 

probability of ash classification for each pixel in the input imagery. After filtering the FIM polygons 

by survey year, dominant species, and forested land type, there were 24,467 polygons and 498 ash-

dominant polygons where ash was the main cover type and primary species in the stand 

(approximately 2% of the data). A concept flowchart of the classification process is shown in Figure 

2. 

Table 1. RandomForest data inputs for classifying ash presence and absence in Minnesota, USA. 

Predictor Resolution (m) Abbreviation Description Source 

NDVI Amplitude 30 NDVIa Magnitude of NDVI difference 1 

yr cycle 

TM, ETM+, 

OLI, MSI 

NDVI Phase 30 NDVIp Day of year position of maximum 

NDVI 

TM, ETM+, 

OLI, MSI 

Figure 1. Illustration of the presence and absence of ash stands based on the Minnesota’s Forest
Inventory Management polygon database. Inset displays an example of diverse Minnesota forests that
transition from non-ash to ash-dominated.

Table 1. RandomForest data inputs for classifying ash presence and absence in Minnesota, USA.

Predictor Resolution (m) Abbreviation Description Source

NDVI Amplitude 30 NDVIa
Magnitude of NDVI
difference 1 yr cycle

TM, ETM+,
OLI, MSI

NDVI Phase 30 NDVIp
Day of year position of

maximum NDVI
TM, ETM+,
OLI, MSI

NDVI Median 30 NDVIm
Median of NDVI

observations
TM, ETM+,
OLI, MSI

Canopy Height Model 3 CHM Max height of returns above
ground level ALS

Topographic Position Index 3 TPI Local difference in elevation ALS

Compound Topographic Index 3 CTI Soil moisture potential
calculated from a DEM ALS
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Figure 2. Concept flowchart of model development for ash classification. The Google Earth Engine
platform was used for processing Landsat surface reflectance imagery and producing the classification
product. Server-side computing enabled use of the Landsat Archive and allowed easy modification to
the analysis. Validation was performed outside of the cloud environment to ensure data security and
to allow integration with additional GIS layers.

Clouds and poor quality pixels were masked from the Sentinel-2 top-of-atmosphere imagery.
The NDVI was used to normalize the reflectance values to be comparable. Sentinel-2 imagery was
processed at 10-m resolution but resampled to 30-m resolution using the mean value resampling when
combined with Landsat imagery. To determine ash presence, a 10% probability of occurrence was set
because this was the rate at which errors of commission and omission of ash presence were minimized.

2.2.2. Basal Area Modeling

The abundance of ash in terms of basal area was modeled with metrics derived from the lidar
canopy height model (CHM) at 3-m resolution. A number of forest inventory plots from county and state
lands, as well as detailed measurements from ongoing black ash research [27], were compiled to train
the basal area prediction model (Figure 3; Table 2). The datasets included forest inventory plots where
species and diameter at breast height (DBH) were consistently measured, but with some differences
in plot size. The Chippewa-DNR inventory (CDI) was a systematic sample of 147 fixed-radius plots
that were 404 m2 in size, in which trees with DBH greater than 8.9 cm were recorded (Figure 3(1)).
The Cloquet Forestry Center Inventory (CFI) was a sample of 349 fixed-radius plots in which trees
greater than 12.7 cm in DBH were measured on plots 578 m2 in size (Figure 3(2)) [28].

In total, 618 field measured plots were used. Basal area was calculated for each inventory plot to
estimate total plot basal area. From the lidar derived CHM, several metrics were computed: Average
height (CHMavg), standard deviation of height (CHMsd), minimum height (CHMmin), maximum height
(CHMmax), range of height (CHMrng). The UTM northing and easting and plot area were recorded in
the compiled data but were not used in the model. Variables were added stepwise to the multivariate
regression model using R software [29]. Once the model was fit to the extracted lidar metrics and if ash
was present, the prediction model was applied to produce an aggregated 30-m raster map of ash basal
area concurrent with the ash prediction map.
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Figure 3. Location of forest inventory plots with county boundaries from a variety of county, state,
and research plots used to train a spatial predictive model of ash basal area in Minnesota, USA,
including inventory plots from Chippewa-Department of Natural Resources (CDI), black ash research
(BAR), emerald ash borer research (EAB), and Cloquet Forestry Center plots (CFI). Insets show (1) CDI
systematic sample plots, (2) CFI inventory plots, (3) raster resolution view of the CDI inventory plots.

Table 2. Forest inventory plot measurements used to train a spatial predictive model of ash basal area
based on imputation of lidar derived canopy height model metrics in Minnesota, USA.

Dataset Abbr Plot Size (m2) Year Total n Mean SD Min Max

Ash basal area (m2/ha)

Black ash research plots BAR 404 2018 80 18.62 6.63 0.00 41.21
Chippewa-DNR inventory CDI 404 2017 147 23.44 14.55 0.36 68.81

EAB research plots EAB 404 2015 42 28.92 6.53 9.54 48.71
Cloquet forest inventory CFI 578 2014 349 23.93 12.81 0.25 72.42

2.3. Model Validation

Forest Inventory and Analysis

We used USDA Forest Service data from the Forest Inventory and Analysis (FIA) program to
independently assess model performance for both presence/absence and abundance. Each plot was
comprised of four subplots, with one central and three peripheral subplots located 36.58 m from the
central subplot at azimuths of 0, 120, and 240 degrees. Subplots were 7.32-m fixed radius, where
trees 12.7 cm DBH and larger were measured. Plots from the five-year evaluation period between
2013 and 2017 (5924 total) were used as independent reference data to validate the predicted ash
presence/absence classification product (Figure 4). Of those plots, 1763 contained at least one live
ash tree. The true coordinates of FIA plot locations were used to extract the classification value of
the nine pixels coincident with the plot. However, to maintain privacy and the integrity of the plots,
the publicly available locations of the plots are presented in tables and figures. To assess the accuracy of
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the classified map, the relative proportion of ash:total basal area was incorporated into validation point
selection. The sensitivity of basal area and probability of classification were assessed. The accuracy of
detection of each individual species was also reported.
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Figure 4. Location of 5924 permanent Forest Inventory and Analysis plot locations (fuzzed) with
county boundaries in Minnesota, USA from 2013 to 2017 used in model validation and classification
accuracy assessment.

3. Results

3.1. Ash Mapping

3.1.1. Ash Presence/Absence

The predicted probability of ash presence/absence produced a 30-m resolution probability raster.
The probability distribution was right-skewed, where high probability was relatively more rare and
low probability predictions were more common. A threshold value of 0.10 was established to define
the most appropriate presence probability based on the classification sensitivity. The most important
variables to the classification accuracy were the NDVIa and NDVIm. The accuracy varied more by
sensor origin (Table 3).

Table 3. Out-of-bag accuracy to assess the success of model classification with differing input variables using
resubstitution of training data (TPI = Topographic Position Index, CTI = Compound Topographic Index).

Sensor Time Series Time Series, TPI Time Series, CTI Time Series, TPI, CTI

Landsat 5 80% 82% 82% 84%
Landsat 7 80% 83% 83% 84%
Landsat 8 75% 77% 78% 79%
Sentinel-2 78% 81% 80% 81%

The results of ash detection from each sensor time series ranged between 29% and 46% and the
composite of all sensors was the highest with 64% detection. The accuracy tended to increase with the
length of the time series (Table 4).
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Table 4. NDVI time series accuracy summary table by satellite sensor.

Time Series Acquisition
Years

Ash
Detected

Ash
Undetected

Total Ash
Plots

Detection
Accuracy

Landsat 5 1985–2011 573 684 1254 46%
Landsat 7 1999–present 538 719 1254 43%
Landsat 8 2013–present 470 787 1254 37%
Sentinel-2 2015–present 369 888 1254 29%
Composite 1985–present 797 460 1254 64%

Overall, 1,252,400 ha (12,524 km2) of forested land was predicted to have greater than 10%
probability of an ash species present (Figure 5). The distribution of ash generally followed the forested
land cover. The majority of the predicted ash presence was located in the north-central region of the
state. Within the forested region of the state, there was lower density of ash predicted in the northeast
region, which began to transition to boreal forest.
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3.1.2. Ash Abundance

Stepwise linear models were fit to a compiled dataset of 618 field observations of basal area (BA)
per plot:

BA =β0 + β1CHMmean + β2CHMstd + β3CHMmax + β4CHMmin + β5CHMrange (5)

The CHMmean was the most important variable in fitting the model. CHMstd, CHMmax, CHMmin,
and CHMrange were all nonsignificant when paired with CHMmean. The basal area model fit of
predicted estimates was found to have an overall R2 = 0.40 but varied by source. A linear fit model
from the Chippewa-DNR Inventory and Cloquet Forestry Center Inventory datasets had the highest
R2 values at 0.65 and 0.64, respectively.

When ash was present on a plot, the basal area of the species averaged 16.1 m2ha−1. Basal area
followed a similar spatial distribution as the presence/absence classification map, with a higher density
of ash abundance in the central portion of the state (Figure 6).
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3.2. Validation

FIA Accuracy Assessment

Of the 1761 plots that contained at least one live ash tree, we only used plots that contained ash basal
area greater than or equal to 10% of total basal area on the plot for validation. There were 1254 plots where
live ash composed at least 10% of the basal area that was used to evaluate the success of detection of
the classification map. Plots that contained no ash trees may not represent the complete absence of ash
because species were measured on only a sample of the plot and we did not confirm total absence of
ash species in the encompassed area.

The overall accuracy of the composite ash presence/absence map was 64% (n = 5922) for all ash,
72% for black ash (n = 868), and 53% for green ash (n = 504) (Tables 5 and 6).

Table 5. Confusion matrix to assess accuracy of ash presence/absence for Forest Inventory and Analysis
plots in Minnesota, USA.

Source Actual Presence Actual Absence Total User’s Accuracy

Predicted presence 797 1687 2484 32%
Predicted absence 457 2981 3238 87%

Total 1254 4668 5922 -
Producer’s accuracy 64% 64% - 64%

Table 6. Accuracy of ash species detection using Forest Inventory and Analysis data in Minnesota, USA.

Source Ash Detected Ash Undetected Total Ash Plots Detection Accuracy

All ash 797 460 1254 64%
Black ash 625 243 868 72%
Green ash 267 237 504 53%

4. Discussion

The detection of ash species using time series at 30-m spatial resolution using composite imagery
and cloud-computing software like Google Earth Engine provided a new possibility to assess ash
presence. Combined with lidar data, ash abundance was determined across Minnesota in units of
basal area. Distinguishing individual species from optical imagery is notoriously difficult, largely
because the spatial resolution of imagery causes specific vegetation signatures to become mixed with
other species [30]. This is especially true in heterogeneous environments such as the Laurentian mixed
forest where ash is more abundant. Our approach using NDVI metrics to account for the unique
phenology of ash helped to address this limitation and distinguish differences in vegetation. Imagery
with higher spatial resolution would reduce this issue but there are currently no such time series with
sufficient duration.

The utility of large datasets, such as the Landsat archive, depend on efficient computation ability.
Pixel-based time series modeling using hundreds of NDVI images would not be possible using
traditional geospatial processing methods. Google Earth Engine facilitated the dense time series
analysis through the use of existing cloud masking and reflectance correction that would have otherwise
been a barrier to model development. The spatial resolution of the imagery was not adequate to
observe individuals, but the phenologic pattern derived from the time series seemed to have captured
species-specific patterns. Whereas the time series from different sensors encompasses a wide range and
differing timespans, the number of observations from each sensor time series seemed to have greater
impact than the “currentness” of the time series. Observations of seasonal fluctuations in vegetation
describes ecological patterns that added value to the predictive model in all cases.

Whereas time-series imagery is beneficial to examine forest disturbances that occur quickly at a
high magnitude [11], e.g., fire or timber harvesting, and damages from insects, a relatively slow-acting
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change agent is also possible to examine using Landsat data [31]. The application of these data serve
a broader understanding of where ash forests exist in Minnesota and how much impact EAB will
have on the state’s forest resources. Our detection accuracy of black ash (72%) aligns well with the
accuracy rate of 85.5% observed by the authors of [14] for the species in a single Landsat scene in
northern Minnesota and the rate of 89.5% observed by the authors of [32] across the northeastern
Minnesota region. Our slightly lower detection accuracy compared to these studies was likely the
result of the broader geographic area examined (i.e., statewide) and the difference in dates between
lidar acquisition (2008–2011) and the field inventory measurements (2014–2018). Similarly, historical
Landsat data are older compared to Sentinel-2 data, which also differ in acquisition dates from field
inventory measurements. Compared to previous estimates of the extent of ash in Minnesota, our value
of 1.25 million hectares aligns well with the design-based estimate of ash abundance provided by the
FIA program. The FIA program estimates that ash is at least 50% of the total live tree volume on 0.45
million hectares of forest land but is a component of 1.7 million additional hectares of forest land where
it occurs with other tree species [33]. The distribution and abundance of ash observed in this analysis
also generally agree with the statewide results of Wilson et al. [13] and Kurtz et al. [10]. Our approach
was most similar to that of Engelstad et al. [14] through the use of lidar, Landsat, and soils information
as input data, while other studies modeling black ash have relied on Landsat and radar [32] and the
MODIS Terra data product [13]. Our findings support the use of GEE as a useful tool to integrate
remote sensing datasets of different resolutions. As indicated in Tables 3 and 4, a longer time series
was associated with higher relative accuracy compared to shorter time series. In particular, the use of
polygon-based forest inventory data (i.e., the FIM data) provided excellent training data to detect ash
presence across contrasting landscapes in Minnesota’s diverse forest communities.

The spatial resolution of the classification map provides unique insights to the connectivity
of forest cover types that is useful for targeting areas for strategic forest management. Geospatial
information is ubiquitous in land management and landscape planning. The benefit of continuous
imagery across boundaries circumvents some of the limitations of field-based measurements but does
not replace the need for ground truth observations. This work provides a baseline of current ash
abundance to attempt to quantify the risk of EAB infestation. The use of time series that date back
to 1974 offers not only a more rigorous dataset, but also a window into where ash forests previously
existed. It is possible that classification errors occurred due to the fact that older ash stands observed in
historic time series have been succeeded by new cover types or transitioned to different species or a new
ecosystem state associated with ash dieback [34]. These classification errors may be more prominent
within the limited regions of where EAB has been observed in Minnesota since 2009 (i.e., in central and
southern Minnesota).

The complexity of species composition in Minnesota forests make remote sensing techniques
difficult, indicating that additional studies may be required to improve the accuracy of satellite time
series analyses. More accurate models may be generated in these additional studies with increases in
temporal and spatial resolution. The limitations of 30-m pixels are known to underrepresent highly
mixed forests [35], and this would include ash or forests with a high understory density of ash trees.
However, moderate resolution (i.e., 30 m) is likely sufficient to identify critical hotspots or connectivity
analysis. The RandomForest classification probability was a highly skewed positive distribution where
the majority of probability estimates were less than or equal to 0.1. Both the ash presence and absence
error were minimized when 0.1 probability of ash classification was used as the cutoff threshold
for ash presence. However, it is important to note that the relative abundance of ash on a plot will
impact the detection of ash. Lower abundance of ash is more difficult to detect and, in these instances,
the prevalence of misidentification of ash would increase.

Further research is required to understand how ash forest connectivity influences EAB dispersal
capabilities. In particular, lidar-derived metrics such as the Compound Topographic Index are essential
in determining dispersal capability as reflected in the presence of susceptible host trees. A wall-to-wall
map of forest cover types and species distribution can guide selection of these target areas for further
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investigation or management. In addition, and in particular with EAB, the time of insect arrival
(if known) should also be considered because decreases in ash abundance generally begins six to seven
years after EAB is first detected [7].

The detection of landscape change using satellite image time series is an instrumental tool for
understanding forests. The access to free data such as Landsat and Sentinel and open research platforms
such as GEE facilitates exponential growth in the realms of both research and management. Invasive
species, impacts from climate change including shifting disturbance regimes, and the incorporation of
multiple goals and objectives in forest management requires data on the composition and structure
of forests. The continued evolution and merging of remotely sensed data with on-the-ground forest
inventory data can aid managers in developing landscape-level plans. Whereas forest management often
happens at a stand scale, the disturbance event (in this example, EAB), will impact the landscape and
will cross ownership boundaries. County-, state-, and landscape-level maps promote communication
across forest ownership boundaries. These mapping efforts facilitate the development of management
plans that increase the health and resilience of forests.

5. Conclusions

In this study, the presence and abundance of ash species was predicted from a 30-m resolution
satellite image time series combined with lidar-derived layers. The specific physiographic characteristics
known to be suitable for ash trees were leveraged to aid classification. The annual phenologic fluctuation
due to leaf drop and relative topographic position were key inputs to the RandomForest classifier.
The highest success was in the detection of homogeneous black ash stands (72%) compared to the
overall ash detection rate of 64%, which included three ash species. Time series analyses with satellite
imagery provided a unique perspective on landscape characteristics that has promise for forest cover
type and tree species classification.

Ash species make up a large portion of Minnesota’s forests and are anticipated to be severely
impacted by EAB in the coming years. The impact of losing ash trees will unquestionably alter Minnesota’s
landscape. Understanding the location and abundance of ash in Minnesota’s forests is a requirement for
ecologic preservation and fostering a future with healthy and resilient forests. This research represents
our continual improvement in understanding the status and extent of ash in Minnesota that will lead
to many more questions in the future.
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