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Abstract: In this work, a semantic segmentation-based deep learning method, DeepLabV3+, is applied
to classify three vegetation land covers, which are tree, shrub, and grass using only three band color
(RGB) images. DeepLabV3+’s detection performance has been studied on low and high resolution
datasets that both contain tree, shrub, and grass and some other land cover types. The two datasets
are heavily imbalanced where shrub pixels are much fewer than tree and grass pixels. A simple
weighting strategy known as median frequency weighting was incorporated into DeepLabV3+ to
mitigate the data imbalance issue, which originally used uniform weights. The tree, shrub, grass
classification performances are compared when all land cover types are included in the classification
and also when classification is limited to the three vegetation classes with both uniform and median
frequency weights. Among the three vegetation types, shrub is found to be the most challenging one
to classify correctly whereas correct classification accuracy was highest for tree. It is observed that
even though the median frequency weighting did not improve the overall accuracy, it resulted in
better classification accuracy for the underrepresented classes such as shrub in our case and it also
significantly increased the average class accuracy. The classification performance and computation
time comparison of DeepLabV3+ with two other pixel-based classification methods on sampled
pixels of the three vegetation classes showed that DeepLabV3+ achieves significantly higher accuracy
than these methods with a trade-off for longer model training time.

Keywords: deep learning; vegetation classification; imbalanced data; median frequency weighting;
DeepLabV3+

1. Introduction

Land cover classification has been used in change monitoring [1], construction surveying [2],
agricultural management [3], digital terrain model (DTM) generation [4], and identifying emergency
landing sites for UAVs during engine failures [5,6]. Some other uses of land cover classification are for
biodiversity conservation [7], land-use [8], and urban planning [9].

Tree, shrub, and grass are three of the vegetation-type land covers and classification of them using
remote sensing data has several important applications. For example, people have utilized shrub
information for assessing the condition of grassland to determine whether a grassland has become
unusable because of shrub encroachment or not [3]. In emergency landing of unmanned air vehicles
(UAVs), it is critical to land on grassland rather than on trees or shrubs [5,6]. Removing tall vegetation
from the digital surface model (DSM) such as trees and shrub is an important step in developing an
accurate digital terrain model (DTM) [2]. Traditionally, normalized difference of vegetation index
(NDVI) has been used for vegetation detection. However, NDVI cannot differentiate tree, shrub,
and grass because of their similar spectral characteristics. Moreover, NDVI requires near infrared (NIR)
band, which may not be available sometimes.
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For accurate classification of these three vegetation land covers, the use of light detection and
ranging (LiDAR) data with height information via the extracted digital terrain model (DTM) is highly
beneficial to assist the classification process [3] since these three vegetation types differ with respect to
their height. Nonetheless, LiDAR may help detecting tall trees, but it is still challenging to distinguish
some shrubs from grass [10]. Moreover, NIR and LiDAR data may be expensive to acquire.

Other than the use of LiDAR for extracting height information in the form of DTM, there is also
considerable interest in the remote sensing community to estimate DTMs using stereo images [11–14].
The DTM estimations from the stereo images could however be noisy at lower heights. Auxiliary
methodologies that utilize spatial information of land covers together with their spectral information
could be helpful to make these DTM estimations more accurate. In contrast to NIR and LiDAR data,
RGB images can be easily obtained with low-cost color cameras. The cost issue is especially important
for farmers who may have limited budget. In many agricultural monitoring applications, farmers
like to simply use a low-cost drone with an onboard low cost color camera to fly over farmlands for
agricultural condition monitoring.

There is an increasing interest in adapting deep learning methods for land cover classification
after several breakthroughs have been achieved in a variety of computer vision tasks, including image
classification, object detection and tracking, and semantic segmentation. In [7], a comparison of
convolutional neural network (CNN)-based methods with the state-of-the-art object-based image
analysis methods is provided for the detection of a protected plant from a shrub family, Ziziphus
lotus shrubs, using high-resolution Google Earth TM images. The authors reported higher accuracies
with the CNN-detectors compared to other investigated object-based image analysis methods. In [15],
progressive cascaded convolutional neural networks are used for single tree detection with Google
Earth imagery. In [16], Basu investigated deep belief networks, basic CNNs, and stacked denoising
autoencoders on the SAT-6 remote sensing dataset, which includes barren land, trees, grassland, roads,
buildings, and water bodies as land cover type. In [17], low-color descriptors and deep CNNs are
evaluated on the University of California Merced Land Use dataset (UCM) with 21 classes. In [18],
a comprehensive review on land cover classification and object detection approaches using high
resolution imagery is provided. The authors evaluated the performances of deep learning models
against traditional approaches and concluded that the deep learning-based methods provide an
end-to-end solution and show better performance than the traditional pixel-based methods by utilizing
both spatial and spectral information. A number of other works have also shown that semantic
segmentation classification with deep learning methods at a pixel level are quite promising in land
cover classification [19–22].

In this paper, we focused on three vegetation land cover (tree, shrub, and grass) classification
using only RGB images. We used a semantic segmentation deep learning method, DeepLabV3+ [23],
which has been proven to perform better than conventional deep learning methods such as Semantic
Segmentation (SegNet) [24], Pyramid Scene Parsing Network (PSP) [25], and Fully Convolutional
Networks (FCN) [26]. DeepLabV3+ uses color image as the only input and does not need any feature
extraction process such as texture. In our experiments, we used the Slovenia dataset [27], which is a
low resolution dataset (10 m per pixel) and a custom dataset from Oregon, US area. The land cover
map of this area, which has 1 m per pixel resolution is in public domain [28] and we obtained the color
image (~0.25 m/pixel) from Google Maps. Both Slovenia and Oregon datasets included these three
vegetation types in addition to some other land cover types.

DeepLabV3+ is first applied to both to low and high resolution datasets using all land covers.
In both datasets, the number of pixels representing some of the land covers are fewer in number in
comparison to other land covers, making the two datasets heavily imbalanced. Using suggestions from
the developers of DeepLabV3+, which are posted in their GitHub page [29], we extracted the number of
pixels information for each of the land covers and then computed the median frequency weights [30] and
we assigned these weights to land cover classes when training DeepLabV3+ models. For comparison
purposes, we considered using both uniform weights and median frequency weights when training.
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With uniform weights, we noticed that the classification accuracies of the underrepresented classes
such as shrub, had quite low classification accuracies. After the use of median frequency weights [30],
the classification accuracies of the underrepresented classes were improved considerably. The trade-off

for this was degradation in the accuracies of overrepresented classes such as tree. We then applied the
same classification investigation on the two datasets but this time by including only the three vegetation
classes (tree, shrub, and grass) and excluding all other land cover classes from the classification.
In doing this, it is assumed that the three vegetation classes can be separated from other land covers.
The objective of this investigation was to create a pure classification scenario that focuses only on these
three vegetation classes by eliminating the impact of all other land covers’ misclassifications on these
three vegetation classes’ accuracy and thus better assess DeepLabV3+’s classification performance.
This investigation showed similar trends with respect to using median frequency weights. With uniform
weights, shrub detection was very poor, which then significantly improved with median frequency
weights. Moreover, when the vegetation-only classification results are compared with the classification
results of all land covers, a considerable classification accuracy improvement had been observed in all
three vegetation types. Other than these, this analysis also indicated that the highest correct classification
accuracy corresponded to tree whereas shrub was the most difficult one to correctly classify.

The classification performance and computation time comparison of DeepLabV3+ with two
other pixel-based machine learning classification methods, support vector machine [31] and random
forest [32] showed that DeepLabV3+ generates more accurate classification results with a trade-off for
longer model training time.

It should be emphasized that we only used RGB bands without any help from LiDAR, NIR bands,
or stereo images and we still managed to get 78% average classification accuracy in Slovenia dataset
and 79% average classification accuracy in Oregon dataset for trees, shrubs, and grass (vegetation-only
classification). Compared to the results in [3] (even though the dataset used in that work was different
from ours), the results in [3] attained only 53% for the combined class of trees and shrubs when
Red+Green+NIR bands were used. This clearly shows that the standalone use of DeepLabV3+ with
only RGB images for classifying trees, shrubs, and grass is effective to some extent. It is also low cost
since low resolution color cameras can be used. Moreover, this can be considered as an auxiliary
methodology to help making LiDAR-extracted or stereo-image extracted DTM estimations more
accurate. The contributions of this paper are:

1. Provided a comprehensive evaluation of a deep learning-based semantic segmentation method,
DeepLabV3+, for the classification of three similar looking vegetation types, which are tree,
shrub, and grass, using color images only with both low resolution and high resolution and
outlined classification performance and computation time comparisons of DeepLabV3+ with two
pixel-based classifiers.

2. Discussed the data imbalance issue with DeepLabV3+ and demonstrated that the average class
accuracy can be increased considerably in DeepLabV3+ using median frequency weights during
model training in contrast to using uniform weights.

3. Demonstrated that a higher classification accuracy can be achieved for each of the three vegetation
types (tree, shrub, and grass) with DeepLabV3+ if the classification can be limited to the three green
vegetation classes only rather than including all land covers that are present in the image datasets.

4. Provided insights about which of these three vegetation types are more challenging to classify.

Our paper is organized as follows. Section 2 provides technical information about DeepLabV3+ and
the datasets used in our experiments. Section 3 contains two case studies (8-class and 3-vegetation-only
class) for Slovenia dataset and another two case studies (6-class and 3-vegetation-only class) for the
Oregon dataset, and a performance and computation time comparison study of DeepLabV3+ with two
pixel-based classifiers. Finally, Section 4 concludes the paper with some remarks.
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2. Vegetation Classification Method and Data

2.1. Method

DeepLabV3+ [33] is a semantic segmentation method that provided very promising results in
the PASCAL VOC-2012 data challenge [34]. For the PASCAL VOC-2012 dataset, DeepLabV3+ has
currently the best ranking among several methods including SegNet [24], PSP [25], and FCN [26]. In a
very recent study [35], which involves land cover type classification, it was reported that DeepLabV3+

performed better than PSP and SegNet.
DeeplabV3+ uses the Atrous Spatial Pyramid Pooling (ASPP) mechanism which exploits the

multi-scale contextual information to improve segmentation [23]. Atrous (which means holes)
convolution has advantages over the standard convolution by providing responses at all image
positions and while the number of filter parameters and the number of operations stay constant [23].
DeepLabV3+ has an encoder-decoder network structure. The encoder part of it consists of a set
of processes that reduce the feature maps and capture semantic information and the decoder part
of it recovers the spatial information and results in sharper segmentations. The block diagram of
DeepLabV3+ can be seen in Figure 1.
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Figure 1. Block diagram of DeepLabV3+ [33].

2.1.1. Training with DeepLabV3+

A Windows 10 machine with a GPU card (RTX2070) and 16 GB memory is used for DeepLabv3+

model training and testing, which uses TensorFlow framework to run. For training a DeepLabV3+

model for any of the two datasets, the weights of a pre-trained model with the exception of
the logit layer weights are used for initialization and these weights are fine-tuned with further
training. These initial weights belong to a pre-trained model for the PASCAL VOC 2012 dataset
(“deeplabv3_pascal_train_aug_2018_01_04.tar.gz”). Because the number of land covers in the two
investigated training datasets is different from the number of classes in the PASCAL VOC-2012 dataset,
the logit weights in the pre-trained model are excluded. The DeepLabV3+ training parameters used in
this work can be seen in Table 1. The training number of steps in DeepLabV3+ was set to 100,000 for
both datasets.
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Table 1. Training parameters used in DeepLabV3+.

Training parameter Value

Learning policy Poly

Base learning rate 0.0001

Learning rate decay factor 0.1

Learning rate decay step 2000

Learning power 0.9

Training number of steps ≥100,000

Momentum 0.9

Train batch size 2

Weight decay 0.00004

Train crop size ”513,513”

Last layer gradient multiplier 1

Upsample logits True

Drop path keep prob. 1

tf_initial_checkpoint deeplabv3_pascal_train_aug

initialize_last_layer False

last_layers_contain_logits_only True

slow_start_step 0

slow_start_learning_rate 1 × 10−4

fine_tune_batch_norm False

min_scale_factor 0.5

max_scale_factor 2

scale_factor_step_size 0.25

atrous_rates [6,12,18]

output_stride 16

2.2. Datasets Used for Training DeepLabV3+Models

2.2.1. Slovenia Dataset

The Slovenia dataset [27] was collected by the Sentinel-2 satellite. It has a resolution of 10 m and
6 bands (L1C bands). Among these 6 bands, only the three-color image bands (RGB) are used in this
investigation. In this dataset, there are originally 293 images with size of 1010 × 999. After excluding
91 images, which mostly consist of “no data” labels in their ground truth annotations, the remaining
202 images are partitioned into four non-overlapping images with size of 505 × 499. The total number
of images in the modified dataset becomes 808 after this. Among these 808 images, 708 of them are
randomly selected for training a DeepLabV3+ model, and 100 of them are left for testing. The eight
land covers in the Slovenia dataset are: cultivated land, forest, grassland, shrub land, water, wetlands,
artificial surface, and barren land. These satellite images are captured over the European country of
Slovenia for the year of 2017. The Slovenia dataset contains all three vegetation types we are interested
in (forest, shrub land, and grassland). An example color image from the Slovenia dataset and its ground
truth annotation can be seen in Figure 2. White pixels correspond to unlabeled samples. In Figure 2b,
red color is used to annotate forest, green color is used for grassland and yellow mustard color is used
for shrub land annotation.
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Figure 2. Sample image from Slovenia dataset and its annotation. (a) Color image (eopatch-10 × 4_21); 
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2.2.2. Oregon Dataset 

Figure 2. Sample image from Slovenia dataset and its annotation. (a) Color image (eopatch-10 × 4_21);
(b) ground truth mask (eopatch-10 × 4_21).

2.2.2. Oregon Dataset

The commercial company, EarthDefine, [36] provides sample land cover maps that are publicly
accessible. One of these sample land cover maps containing the three vegetation types (tree, shrub
and grass) is used as the second dataset in this work. Other than the tree, shrub and grass, there are
three other land covers, which are bare land, impervious and water. The land cover map belongs to
an area in Gleneden Beach, Oregon. The land cover map together with its reconstructed color image
using the image tiles downloaded via Google Maps API [37] can be seen in Figure 3. In the land cover
map, yellow color is used for shrub, dark blue color is used for grass, and orange color is used for
tree annotation.
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using Google Maps API. (a) Land cover map (orange: tree, yellow: shrub, dark blue: grass);
(b) color image.

The land cover map is a single band image in geotiff format. According to the information that
accompanied the sample land cover map [28], the Oregon land cover map is a high resolution (1 m)
land cover data product and it is derived from 1 m, 4 band color infrared imagery flown between 5 June
2016 and 11 August 2016 as part of the National Agriculture Imagery Program (NAIP). The website also
mentions that LiDAR data flown between 2009 and 2012 was used to aid the classification process [28].
Google Map API is used to retrieve corresponding the high-resolution color image tiles at an image
resolution close to 25 cm for the same area of the land cover map. The procedure in [4] is used to
retrieve the color image tiles from Google Maps and to reconstruct the corresponding color image.
To register the reconstructed color image to the land cover map, a GDAL tool [4] is used that warps
the land cover map into the same WGS84 model of the reconstructed color image. For DeepLabV3+

application, the color image and the land cover map are partitioned into 404 image patches of size
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512 × 512. All these 404 image tiles contain at least one type of vegetation type or more. Among these
404 image patches, 304 of them are randomly selected for training and 100 of them are randomly
selected for testing. Because the land cover map has a data collection time of 2016 and the color image
data collection time is 2019, it is likely that there could be some discrepancies between the land cover
map and the color image.

3. Vegetation Classification Results

3.1. Forest-Grassland-Shrub Classification in Slovenia Dataset with Eight Classes

In this investigation, all eight land covers in Slovenia dataset are used, of which three of the land
covers are forest (tree), shrub land (shrub), and grassland (grass). Two DeepLabV3+ models are trained
for two cases: (a) Uniform weights for the 8 classes in model training, (b) median frequency weights
for the 8 classes.

The number of pixels for each land cover, which is denoted by “pixel count,” its frequency and
the median frequency balancing weights for the Slovenia dataset can be seen in Table 2. To provide
a physical sense of pixel count values to area, it is worth mentioning that 10,000 pixels correspond
to an area of 1 km2 in the Slovenia dataset. In Table 2, the term frequency represents the number
of pixels of the class divided by the total number of pixels in images that had an instance of that
class [30]. The median frequency balancing weight of class C is then computed by median frequency
divided by the frequency of class C [30]. In Table 2, the median frequency balancing weights are
denoted by the “weights” row. From Table 2, it can be noticed that the number of pixels for some of
the classes such as Wetlands and Water and their corresponding frequency are quite low in number.
A significant imbalance can be seen between shrub land and other vegetation classes (grassland and
forest). After median frequency weighting, the Water and Wetlands have heavier weighting.

Table 2. Pixel numbers for each class and the computed median frequency class weights used in
DeepLabV3+ training (Slovenia 8-class).

Cultivated
Land Forest Grassland Shrub

Land Water Wetlands Artificial
Surface

Bare
Land

Pixel Count 22,027,446 1.14 × 108 35,172,713 7,186,382 1,285,398 115,238 10,689,454 1,189,780

Frequency 0.1192 0.5942 0.1838 0.0375 0.0070 0.0022 0.0558 0.0242

Weights 0.3918 0.0786 0.2541 1.2437 6.6455 21.4237 0.8361 1.9334

The confusion matrix for the uniform weights and median frequency weight cases can be seen
in Tables 3 and 4, respectively. The class accuracy for each land cover, averaged class accuracy for
eight classes, averaged class accuracy for three vegetation classes, overall accuracy and the kappa
metric values [38] can be seen in Table 5. Intersection over union (IoU) values for each land cover
and mean IoU (mIoU) can be seen in Table 6. IoU is defined as the intersection area over the
union of the area [39]. With respect to the three vegetation classifications, using uniform weights,
shrub land classification accuracy is extremely poor with a value of 0.0945 and from the confusion
matrix in Table 3, it is noticed that the shrub land pixels are misclassified mostly as forest or grassland.
This observation indicates the challenges using only RGB color images especially when the training
data is heavily imbalanced. In many classifiers including the deep learning ones when the dataset
is heavily imbalanced, the error from the overrepresented classes contributes much more to the loss
value than the error contribution from the underrepresented classes. This makes the deep learning
method’s loss function to be biased toward the overrepresented classes resulting in poor classification
performance for the underrepresented classes such as shrub in this case.
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Table 3. Confusion matrix with uniform weights (Slovenia—8 classes).

Cultivated
Land Forest Grassland Shrub

Land Water Wetlands Artificial
Surface

Bare
Land

Cultivated Land 1,807,364 90,850 931,365 5676 5207 0 117,708 0

Forest 30,394 12,821,508 299,710 29,455 13,244 0 31,234 864

Grassland 614,857 512,343 3,304,042 26,335 9551 0 181,282 1585

Shrub land 57,773 402,058 280,887 85,051 10,690 0 39,455 24,269

Water 13,113 30,500 28,924 3476 76,374 0 15,258 0

Wetlands 162 3443 4086 189 139 0 267 0

Artificial Surface 119,005 143,645 345,149 7845 10,636 0 761,973 1

Bare land 13 12,678 4968 20,947 268 0 573 35,527

Table 4. Confusion matrix with median frequency class weights (Slovenia—8 classes).

Cultivated
Land Forest Grassland Shrub

Land Water Wetlands Artificial
Surface

Bare
Land

Cultivated Land 1,953,238 19,478 487,144 149,709 61,131 2282 285,188 0

Forest 93,435 10,808,853 349,884 1,593,515 229,474 18,139 126,762 6347

Grassland 933,246 196,031 2,210,529 608,756 158,336 12,963 524,870 5264

Shrub land 61,029 122,016 109,380 430,463 65,617 3692 71,298 36,688

Water 9122 3667 6399 6840 131,225 561 9831 0

Wetlands 543 1298 2072 2211 774 611 777 0

Artificial Surface 122,403 52,069 140,862 95,020 89,631 3188 885,050 31

Bare land 0 1846 2113 25,618 1513 0 223 43,661

Table 5. Accuracy (uniform and median weights, Slovenia—8 classes).

Cultivated
Land Forest Grass

Land
Shrub
Land Water Wet

Lands
Artificial
Surface

Bare
Land

Average
(8classes)

Average
(3vegcls)

Overall
Accuracy Kappa

Uniform 0.6110 0.9694 0.7105 0.0945 0.4556 0.0000 0.5489 0.4739 0.4830 0.5915 0.8082 0.6798

Median 0.6603 0.8172 0.4754 0.4782 0.7828 0.0737 0.6375 0.5823 0.5634 0.5903 0.7044 0.5610

Table 6. Intersection over union (IoU) (uniform and median weights, Slovenia—8 classes).

Cultivated
Land Forest Grass

Land
Shrub
Land Water Wetlands Artificial

Surface
Bare
Land mIoU

IoU (Uniform) 0.4764 0.8890 0.5048 0.0856 0.3513 0.0000 0.4295 0.3494 0.3858

IoU (Median) 0.4675 0.7934 0.3846 0.1273 0.1695 0.0124 0.3677 0.4675 0.3346

With the use of median frequency weights when training a DeepLabV3+ model, the shrub land
class accuracy increased significantly from 0.0945 to 0.4782 and the average eight-class accuracy also
increased considerably from 0.4830 to 0.5634. The overall accuracy (eight classes) is found to be 0.8082
with uniform weights and was reduced to 0.7044 with median frequency weights. The decrease
in the overall accuracy with median frequency weights is understandable since even though using
median frequency weights helps to improve the classification accuracy of underrepresented classes,
the trade-off comes as a reduction in the classification accuracy values of the overrepresented classes
which then results in the reduction in overall accuracy. With respect to kappa and mIoU measures,
both have lower values when median frequency weights are used. Even though the average accuracy
for the eight classes is significantly improved, with respect to the three vegetation classes, the average
accuracy stayed the same with median frequency weights in comparison to uniform weights.



Remote Sens. 2020, 12, 1333 9 of 20

3.2. Forest-Grassland-Shrub Classification in Slovenia Dataset with Three Vegetation Classes

The same investigation is applied by including only the three vegetation classes (forest, shrub,
and grass) and excluding all other land cover types from the classification. This investigation assumes
that the three vegetation classes can be separated from other land covers. The objective of this
investigation was to create a pure classification scenario that includes the three vegetation classes
only to eliminate the impact of all other land covers’ misclassifications on the three vegetation classes’
accuracy. Similarly, two DeepLabV3+ models are trained with uniform and median frequency weights.
All other non-vegetation classes (cultivated land, water, wetlands, artificial surface, and bare land) are
excluded by labeling them as ignore during training of DeepLabV3+ models. The pixel counts for each
of the three vegetation classes, class frequency, and the median frequency balancing weights for the
three classes can be seen in Table 7. It can be noticed that forest has the highest pixel count followed by
grassland. The shrub land has the lowest number of pixels among the three vegetation classes.

Table 7. Pixel numbers for the three classes, class frequency and median frequency class weights used
in DeepLabV3+ training (Slovenia—3 classes).

Forest Grassland Shrub Land

Pixel Count 1.14 × 108 35,172,713 7,186,382

Frequency 0.7286 0.2253 0.0460

Weights 0.3093 1.0000 4.8944

Tables 8–10 correspond to the confusion matrix, accuracy, and IoU-related measures for the three
vegetation-class-only results with uniform and median frequency weights. It can be noticed from
Table 9 that with median frequency weights, the correct classification accuracy of shrub land, which
was very poor with uniform weights, significantly improved from 0.1597 to 0.6915. When uniform
weights are used, most of the shrub land pixels were mostly misclassified as forest according to the
confusion matrix. The average classification accuracies also improved from 0.6702 to 0.7802 with
median frequency weights. The overall accuracy values were reduced from 0.9099 to 0.8310 since forest
and grassland accuracy values dropped with the use of median frequency weights as a trade-off to the
significant accuracy improvement in shrub land classification. Similar patterns are observed with the
IoU measure.

Table 8. Confusion matrices for uniform and median frequency class weights (Slovenia—3 classes).

Uniform Weights Median Frequency Class Weights

Forest Grassland Shrub Land Forest Grassland Shrub Land

Forest 12,854,713 321,868 49,828 11,276,673 305,569 1,644,167

Grassland 512,527 4,087,228 50,240 134,329 3,703,555 812,111

Shrub land 409,089 347,316 143,778 111,943 165,749 622,491

Table 9. Accuracy (uniform and median weights, Slovenia—3 classes).

Forest Grassland Shrub Land Average Overall Accuracy Kappa

Uniform weights 0.9719 0.8790 0.1597 0.6702 0.9099 0.7855

Median weights 0.8526 0.7965 0.6915 0.7802 0.8310 0.6651
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Table 10. IoU (uniform and median weights, Slovenia—3 classes).

Forest Grassland Shrub Land mIoU

Uniform weights 0.9086 0.7684 0.1437 0.6069

Median weights 0.8370 0.7232 0.1855 0.5819

Table 11 shows the three vegetation classification accuracy comparisons with three and eight
class DeepLabV3+ models. From Table 11, it can be noticed that classification accuracies for all three
vegetation types (forest, grass, and shrub) improve with the three-vegetation-class classification only
in comparison to including all land covers in an 8-class classification. Even though using median
frequency weights results in some reduction in the classification accuracies of forest and grassland,
in return, the classification accuracy of shrub land gets a significant boost. From Table 11, it can be
also noticed that among the three vegetation classes, shrub land has the lowest correct classification
accuracy whereas forest has the highest. This finding about the classification difficulty ranking of these
three vegetation types makes sense from a visual perspective, since among them forest and grass land
have more easily distinguishable spatial features relative to shrub and form the two opposite sides
of the visualization range and shrub stays somewhere between forest and grass land in this range.
The confusion matrices support this by revealing that shrub land is misclassified as tree or grass by
large amounts whereas the misclassification ratio is smallest in forest followed by grass land.

Table 11. Vegetation class accuracy comparisons for three and eight class models in DeepLabV3+.

Forest Grassland Shrub Land Average Accuracy

Uniform, (Slovenia—8 classes) 0.9694 0.7105 0.0945 0.5915

Uniform, (Slovenia—3 veg.
classes only) 0.9719 0.8790 0.1597 0.6702

Median, (Slovenia—8 classes) 0.8172 0.4754 0.4782 0.5903

Median, (Slovenia—3 veg.
classes only) 0.8526 0.7965 0.6915 0.7802

We provided screenshots of two images in the Slovenia test dataset (three-vegetation class
DeepLabv3+ model trained using median frequency weights). We included the color images together
with the estimated and ground truth land cover maps. In the land cover maps in Figure 4, black color
corresponds to forest, red color corresponds to grassland, green color corresponds to shrub land,
and white color corresponds to ignore class which corresponds to the pixel locations that are excluded
from DeepLabV3+ model training. Even though color images look very challenging for classification
due to low resolution, DeepLabV3+ is found to perform considerably well.

3.3. Tree-Grass-Shrub Classification in Oregon Dataset with Six Land Cover Types

In this investigation, all six land covers of Oregon dataset are used in the classification, three
of which are tree, grass, and shrub. Table 12 shows the pixel counts for each land cover and the
corresponding median frequency weight values used for DeepLabv3+ model training. Considering the
~25 cm image resolution, an area of 1 km2 corresponds to about 16 million pixels in the Oregon dataset.
Tables 13 and 14 correspond to the resultant confusion matrices with uniform and median frequency
weights, respectively. Tables 15 and 16 show the accuracy-and IoU-related measures. With the use
of median frequency weights, the shrub classification accuracy increased significantly from 0.4951 to
0.6279 and the average classification accuracy increased from 0.7156 to 0.7688. Similar trends that
were observed in the Slovenia dataset with respect to shrub and average classification accuracy were
also observed in this dataset. Different from Slovenia dataset results, there are almost no changes in
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the overall accuracy and kappa values when switching from uniform weights to median frequency
weights. An increase in mIoU value is also observed with median frequency weights.
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Figure 4. Demonstrations of vegetation class annotations from two samples in Slovenia test set
(black color corresponds to forest, red color corresponds to grassland, green color corresponds to shrub
land, and white color corresponds to ignore class in land cover map annotations). (a) Groundtruth land
cover map for test image no: 15; (b) estimated land cover map for test image no: 15; (c) color image for
test image no: 15; (d) groundtruth land cover map for test image no: 19; (e) estimated land cover map
for test image no: 19; (f) color image for test image no: 19.

Table 12. Pixel numbers for each class and the computed median frequency class weights used in
DeepLabV3+ training (Oregon—6 classes).

Tree Shrub Grass Bare Impervious Water

Pixel Count 40,196,934 3,531,951 21,257,350 10,390,934 16,691,487 350,309

Frequency 0.4777 0.0666 0.2376 0.1309 0.2636 0.1114

Weights 0.3857 2.7669 0.7755 1.4076 0.6991 1.6543

Table 13. Confusion matrix with uniform weights (Oregon—6 classes).

Tree Shrub Grass Bare Impervious Water

Tree 10,176,979 26,739 420,678 14,881 390,883 0

Shrub 278,319 500,512 194,788 6451 30,835 0

Grass 642,276 163,119 4,043,947 298,527 237,164 711

Bare 36,687 12,655 393,307 1,502,801 42,893 0

Impervious 529,003 2173 154,265 18,337 2,821,653 0

Water 6340 0 40,766 3020 0 66,076
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Table 14. Confusion matrix (with median frequency class weights, Oregon—6 classes).

Tree Shrub Grass Bare Impervious Water

Tree 9,716,493 41,448 617,935 37,610 615,087 1587

Shrub 208,148 634,776 135,480 9258 23,243 0

Grass 513,603 215,910 3,957,360 423,519 267,767 7585

Bare 25,499 20,973 259,716 1,641,949 40,206 0

Impervious 414,228 18,684 188,444 20,350 2,883,725 0

Water 5014 0 26,883 0 0 84,305

Table 15. Accuracy (uniform and median weights, Oregon—6 classes).

Tree Shrub Grass Bare Imp. Water Average
(6 Classes)

Average
(3 veg

Classes)

Overall
Accuracy

Kappa
(6 Classes)

Uniform 0.9227 0.4951 0.7509 0.7558 0.8004 0.5686 0.7156 0.7229 0.8289 0.7458

Median 0.8809 0.6279 0.7348 0.8258 0.8180 0.7255 0.7688 0.7479 0.8205 0.7386

Table 16. IoU (uniform and median weights, Oregon—6 classes).

Tree Shrub Grass Bare Imp. Water mIoU

IoU (uniform weights) 0.8127 0.4117 0.6137 0.6451 0.6675 0.5652 0.6193

IoU (median weights) 0.7967 0.4853 0.5983 0.6623 0.6449 0.6724 0.6433

3.4. Tree-Grass-Shrub Classification in Oregon Dataset with Three Land Cover Types

Only the three vegetation classes (tree, shrub, and grass) are included in the classification. Table 17
shows the pixel counts for the three vegetation classes and median frequency weightsTables 18–20
correspond to the confusion matrices, accuracy-, and IoU-related measures with uniform and median
frequency weights. Here, tree is the overrepresented class and shrub is the underrepresented class.
It is worth mentioning that relatively there are more shrub pixels in the Oregon dataset in comparison
to Slovenia dataset. With median frequency weights, considerable improvements can be seen mainly
in shrub classification accuracy, increasing from 0.5456 to 0.5918, followed by an improvement in grass
classification accuracy, from 0.8216 to 0.8470. Tree classification accuracy, however, drops from 0.9523 to
0.9284 as was expected since it is the overrepresented class. Overall, the average classification accuracy
improves by about 1.6%, from 0.7732 to 0.7890. The improvement in average classification accuracy
after switching to median frequency weights is not as significant as the improvement that was observed
in the Slovenia dataset, since there are relatively more shrub pixels in the Oregon dataset and since
Oregon dataset is a higher resolution dataset relatively better classifications for shrub are observed
with uniform weights in comparison to the Slovenia dataset where shrub is severely underrepresented.

Table 17. Pixel numbers for the three classes, class frequency and median frequency class weights used
in DeepLabV3+ training (Oregon—3 class).

Tree Shrub Grass

Pixel Count 40,202,025 3,533,766 21,267,871

Frequency 0.6612 0.1018 0.3427

Weights 0.5183 3.3657 1.000
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Table 18. Confusion matrices for uniform and median frequency class weights (Oregon—3 classes).

Uniform Weights Median Frequency Class Weights

Tree Shrub Grass Tree Shrub Grass

Tree 10,505,813 31,198 494,456 10,241,835 62,228 727,404

Shrub 288,384 551,809 171,122 260,426 598,451 152,438

Grass 807,860 153,182 4,427,040 603,966 220,577 4,563,539

Table 19. Accuracy (uniform and median weights) and Kappa values (Oregon—3 classes).

Tree Shrub Grass Average (3 Classes) Overall
Accuracy Kappa

Uniform weights 0.9523 0.5456 0.8216 0.7732 0.8883 0.7703

Median weights 0.9284 0.5918 0.8470 0.7890 0.8837 0.7662

Table 20. IoU and mean IoU (mIoU) values (uniform and median weights, Oregon—3 classes).

Tree Shrub Grass mIoU

Uniform weights 0.8663 0.4615 0.7313 0.6864

Median weights 0.8610 0.4624 0.7281 0.6838

Table 21 shows the three vegetation classification accuracy comparisons with both three and
six class models in DeepLabV3+. From Table 21, it can be seen that classification accuracies for all
three vegetation types (tree, grass, and shrub) improve with the three-vegetation-only classification in
comparison to including all land covers. The only exception was shrub with median frequency weights.
Even though using median frequency weights results in some reduction in the classification accuracies
of tree, in return, the classification accuracy of shrub and grass improves. Similar to the Slovenia
dataset, among the three vegetation classes, shrub is found to have the lowest correct classification
accuracy whereas tree has the highest correct classification accuracy. Sample screenshots from two
image samples of Oregon test dataset (three-vegetation class DeepLabv3+ model trained using median
frequency weights) can be seen in Figure 5.

Table 21. Vegetation class accuracy for six and three-class models in DeepLabV3+.

Tree Grass Shrub Average Accuracy

Uniform, (Oregon—6 classes) 0.9227 0.7509 0.4951 0.7229

Uniform, (Oregon—3 veg. classes only) 0.9523 0.8216 0.5456 0.7732

Median, (Oregon—6 classes) 0.8809 0.7348 0.6279 0.7479

Median, (Oregon—3 veg. classes only) 0.9284 0.8470 0.5918 0.7890

3.5. Sampled Pixels Investigation for Comparison of DeepLabv3+ with Pixel-Based Classifiers

The classification performance and computation time comparison of DeepLabV3+ with two
pixel-based classification methods are conducted on sampled pixel sets from the three vegetation
classes. These two classifiers are support vector machine (SVM) [31] and random forest (RF) [32].
The features used with the two classifiers are the RGB values (for baseline), GLCM, and Gabor texture
features extracted from batch images of size 21 × 21, and a combined set of GLCM and Gabor texture
features. This investigation is to assess DeepLabV3+’s performance with respect to two well-known
pixel-based classification methods. Both Slovenia and Oregon datasets are used in the investigation.
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Figure 5. Demonstrations of vegetation class annotations from two samples in Oregon test set (black
color corresponds to forest, red color corresponds to grassland, green color corresponds to shrub land,
and white color corresponds to ignore class in land cover map annotations). (a) Groundtruth land
cover map for test image no: 13; (b) estimated land cover map for test image no: 13; (c) color image for
test image no: 13; (d) groundtruth land cover map for test image no: 79; (e) estimated land cover map
for test image no: 79; (f) color image for test image no: 79.

Using the ground truth land cover maps, separate maps for each of the three vegetation types are
generated. An erosion morphology operator is applied to these maps with a square structuring element
of size 21. From each of the eroded individual land cover maps of the training data set, ~100,000 pixels
for each vegetation type (~300,000 total) are randomly selected from the Slovenia dataset. Using these
pixel locations, the batch images of size 21 × 21 are identified where the selected pixel is in the center
of the identified batch image. This process enabled selecting homogeneous land cover pixels for the
three vegetation types which can then be used for training the pixel-based classifier models. By using
equal number of pixels from each vegetation type when forming training data, it is aimed to exclude
the data imbalance effects from the classification analyses. In addition to training separate models
using GLCM features, Gabor features and combined GLCM/Gabor texture features, we also trained
SVM and RG models using RGB values of the selected pixels for baseline.

GLCM texture features (total of 17 features) and Gabor textures features (total of 28 features) are
extracted from the batch images for the ~300,000 pixels locations [5]. Using these extracted training
features, ~100,000 for each vegetation type (~300,000 total), SVM and RF models are trained for Slovenia
and Oregon datasets separately. Regarding test data, we randomly selected ~26,000 pixel locations from
each of the three vegetation types (~78,000 total) to form the test data in Slovenia dataset. We randomly
picked 400,000 pixel locations from each of the three vegetation types (1,200,000 total) to form the test
data in Oregon dataset. We needed to use less number of pixels in the Slovenia test data since there
were not that many homogenous shrub image patches in the Slovenia test data.

For SVM we used LibSVM tool [40] with C-SVM classification with the RBF (radial basis function)
kernel. For optimal SVM parameters (g and c), LibSVM’s parameter selection tool is used. This tool
uses cross validation (CV) technique to estimate the accuracy of each parameter combination in the
specified range. When using this tool, five-fold cross validation is applied. For c parameter, we scanned
the a range of c as: c_range = 2ˆ{-5,-3,-1,1,3,5,7,9,11,13,15} and for g parameter, we scanned a range of g
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as: g_range = 2ˆ{3,1,-1,-3,-5,-7,-9,-11,-13,-15}. For RF, we used the Matlab source codes in [41]. We set
the number of trees, ntree, to 500 after trial and error to find the highest classification and let the other
RF parameter, mtry, to be automatically identified based on the total number of features. For technical
information about RF and its parameters (ntree and mtry), one can refer to [41].

Table 22 shows the three vegetation class accuracies, average classification accuracy and kappa
values for DeepLabV3+, and the two pixel-based classifiers for the Slovenia dataset. The two
pixel-based classifiers use RGB pixel values (for baseline), GLCM features, Gabor features and
combined GLCM/Gabor features. For DeepLabV3+, the segmentation estimations of DeepLabV3+ for
the randomly selected pixel locations are simply retrieved from the previously generated results with
median frequency weights and used in generating the performance measures. Table 23 shows the IoU
measures for each of the three vegetation class and mIoU. Similarly Tables 24 and 25 correspond to the
accuracy and IoU-related measures for the Oregon dataset. From the results, it can be seen that in both
datasets DeepLabV3+ performs significantly better than the two pixel-based classifiers.

Table 22. Accuracy and kappa values for sampled pixels investigation in Slovenia dataset.

Accuracy
(Forest)

Accuracy
(Grassland)

Accuracy
(Shrub Land)

Average
Accuracy Kappa

DeepLabv3+ (median weights) 0.9610 0.9297 0.8770 0.9226 0.8839

SVM (RGB) (c = 2048, g = 2) 0.8538 0.8246 0.6161 0.7648 0.6474

SVM (GLCM) (c = 32, g = 2) 0.8994 0.7981 0.6151 0.7709 0.6564

SVM (Gabor) (c = 8, g = 2) 0.9684 0.0945 0.7244 0.5958 0.3935

SVM (GLCM/Gabor) (c = 32, g = 2) 0.9409 0.5609 0.6448 0.7155 0.5733

Random Forest (RGB) (ntree = 500,
mtry = 1) 0.8154 0.8133 0.6569 0.7618 0.6428

Random Forest (GLCM) (ntree = 500,
mtry = 4) 0.8800 0.7706 0.6521 0.7675 0.6513

Random Forest (Gabor) (ntree = 500,
mtry = 5) 0.9904 0.0604 0.6393 0.5634 0.3449

Random Forest (GLCM/Gabor)
(ntree = 500, mtry = 6) 0.9622 0.6576 0.6429 0.7542 0.6314

Table 23. IoU and mIoU values for sampled pixels investigation in Slovenia dataset.

IoU (Forest) IoU (Grassland) IoU (Shrub Land) mIoU

DeepLabv3+ (median weights) 0.8811 0.8887 0.8006 0.8568

SVM(RGB) (c = 2048, g = 2) 0.6512 0.7022 0.5051 0.6195

SVM(GLCM) (c = 32, g = 2) 0.6404 0.6905 0.5459 0.6256

SVM(Gabor) (c = 8, g = 2) 0.4854 0.0919 0.6090 0.3954

SVM(GLCM/Gabor) (c = 32, g = 2) 0.5699 0.5233 0.5705 0.5545

Random Forest (RGB) (ntree = 500,
mtry = 4) 0.6392 0.6995 0.5148 0.6178

Random Forest (GLCM)
(ntree = 500, mtry = 4) 0.6243 0.6832 0.5621 0.6232

Random Forest (Gabor) (ntree = 500,
mtry = 5) 0.4559 0.0600 0.5649 0.3603

Random Forest (GLCM/Gabor)
(ntree = 500, mtry = 6) 0.6103 0.6238 0.5811 0.6051
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Table 24. Accuracy and kappa values for sampled pixels investigation in Oregon dataset.

Accuracy
(Tree)

Accuracy
(Grass)

Accuracy
(Shrub)

Average
Accuracy Kappa

DeepLabv3+ (median weights) 0.9629 0.9111 0.7157 0.8632 0.7948

SVM(RGB) (c = 2048, g = 8) 0.7632 0.4520 0.7210 0.6364 0.4546

SVM (GLCM) (c = 512, g = 2) 0.8076 0.6814 0.7670 0.7520 0.6280

SVM (Gabor) (c = 8, g = 2) 0.9067 0.7523 0.4036 0.6875 0.5313

SVM (GLCM/Gabor) (c = 8, g = 0.5) 0.9337 0.8686 0.6939 0.8321 0.7481

Random Forest (RGB) (ntree = 500,
mtry = 1) 0.7394 0.5136 0.6758 0.6430 0.4644

Random Forest (GLCM)
(ntree = 500, mtry = 4) 0.8165 0.7140 0.7364 0.7556 0.6334

Random Forest (Gabor) (ntree = 500,
mtry = 5) 0.9416 0.7147 0.3472 0.6678 0.5018

Random Forest (GLCM/Gabor)
(ntree = 500, mtry = 6) 0.9242 0.8486 0.7151 0.8293 0.7440

Table 25. IoU and mIoU values for sampled pixels investigation in Oregon dataset.

IoU (Tree) IoU (Grass) IoU (Shrub) mIoU

DeepLabv3+ (median weights) 0.7480 0.8400 0.6892 0.7591

SVM(RGB) (c = 2048, g = 8) 0.5481 0.4001 0.4456 0.4646

SVM(GLCM) (c = 512, g = 2) 0.6246 0.6520 0.5455 0.6074

SVM(Gabor) (c = 8, g = 2) 0.5577 0.6143 0.3713 0.5145

SVM(GLCM/Gabor) (c = 8, g = 0.5) 0.7045 0.8252 0.6163 0.7153

Random Forest (RGB) (ntree = 500,
mtry = 1) 0.5471 0.4336 0.4403 0.4737

Random Forest (GLCM)
(ntree = 500, mtry = 4) 0.6240 0.6618 0.5472 0.6110

Random Forest (Gabor) (ntree = 500,
mtry = 5) 0.5350 0.6252 0.3176 0.4926

Random Forest (GLCM/Gabor)
(ntree = 500, mtry = 6) 0.7013 0.8217 0.6156 0.7129

Table 26 shows the comparison of DeepLabV3+ with these two classifiers with respect to
computation time (model training and testing). Slovenia dataset is used for computation time
comparison and GLCM features (total 17 features) are used in the two pixel-based classifiers. It can be
seen that DeepLabV3+ has the longest model training time but its test time is less than SVM. RF is the
fastest method both in training and testing times while providing classification accuracy close to SVM.
Overall, the results showed that DeepLabV3+ provides more accurate classification results than these
two pixel-based classifiers with a trade-off for a longer model training time.
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Table 26. Approximate computation times of the three classification methods for three-class
Slovenia dataset.

Data Training Testing Comments

DeepLabv3+ (median
weights)

All pixels in 808 images each
with size 499 × 505 (178,412,460
pixels for 708 training images

and 25,199,500 test image pixels)

15 h 22 mins 40 s
(100,000 epoch
training of 708

images with size
499 × 505)

36 s (for 100 test
images of size

499 × 505)

DeepLabv3′s pascal model
is used as the initial

checkpoint in training.
RTX2070 GPU is used.

SVM (GLCM, 17 features,
c = 32, g = 2)

Sampled pixels (300,000 training
pixels and 78,107 test pixels for
three vegetation classes) from

808 images

1 h 14 min 55 s 2 min 5 secs
PC with Intel i7-9700K
CPU, 16GB RAM, and

Win10 operating system

Random Forest (GLCM,
17 features, ntrees = 500,

mtry = 4)

Sampled pixels (300,000 training
pixels and 78,107 test pixels for
three vegetation classes) from

808 images

10 min 21 secs 4.58 sec
PC with Intel i7-9700K
CPU, 16GB RAM, and

Win10 operating system

3.6. Discusssion

Even though height data in the form of DTM could add significant capability to classify the three
similar looking vegetation land covers (tree, shrub, and grass), obtaining height data via LiDAR could
be costly and DTM estimates from LiDAR for lower heights may also not be highly accurate. DTM
estimation via stereo images could be an alternative to LiDAR but this also has its own challenges
in terms of noisy DTM estimations especially at lower heights. The use of NIR band helps detecting
vegetation when used with Red band via NDVI index but faces setbacks when it comes to classifying
vegetation land covers with similar spectral characteristics such as tree, shrub, and grass. As an
example, in [3], together with Red, Green, NIR band images, LiDAR were also used for land cover
classification and different from our work, the authors combined trees and shrubs into a single class
which is relatively a less challenging problem than ours since in our case tree, shrub, and grass are set
as three separate classes. In [3], it is reported that if only RG and NIR data were used, the classification
accuracy of “trees and shrubs” was only 52.9%. With LiDAR, the authors stated that the classification
performance was improved to 89.7%. We achieved ~59.0% average classification accuracy for the
three vegetation classes in the 8-class case and 78.0% for the three-class vegetation-only case in the
low-resolution Slovenia dataset. In the high-resolution Oregon dataset, we achieved ~74.8% average
classification accuracy for the three vegetation classes in the 6-class case and ~78.9% for the three-class
vegetation-only case. Considering that only RGB color bands were used without LiDAR or NIR
bands and that each of these three vegetation types has its own class, the classification results with
DeepLabV3+ using median frequency weights are found quite remarkable.

4. Conclusions

Without using NIR and LiDAR, it is challenging to correctly classify trees, shrubs, and grass.
In some cases, even the use of NIR and LiDAR may not provide highly accurate results and it is
important to utilize auxiliary methods which could be used as supportive information to increase the
confidence of the classification decisions using LiDAR data. In this paper, we report some new results
using a semantic segmentation based deep learning method to tackle the above challenging problem
using only RGB images.

We provided a comprehensive evaluation of DeepLabV3+ for classification of three similar looking
vegetation types, which are tree, shrub, and grass, using color images only with both low resolution
and high resolution datasets. The data imbalance issue with DeepLabV3+ is discussed and it is
demonstrated that the average class accuracy can be increased considerably in DeepLabV3+ using
median frequency weights during model training in contrast to using uniform weights. It is observed
from both datasets that higher tree, grass, and shrub classification accuracy can be achieved with
DeepLabV3+ if the classification can be limited to these three vegetation classes only rather than
including all other land cover types that are present in the color image datasets. In both Slovenia
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and Oregon datasets, it is observed that the highest classification accuracy corresponds to “tree” type
whereas “shrub” type is found the most challenging to classify accurately. In addition, the performance
of DeepLabV3+ is compared with two state-of-the-art machine learning classification algorithms (SVM
and random forests) which use RGB pixel values, GLCM and Gabor texture features, and combination
of the two sets of texture features. It is observed that DeepLabV3+ outperforms both SVM and random
forests. Being a semantic segmentation-based method, DeepLabV3+ has advantages over pixel-based
classifiers by utilizing both spectral (via RGB bands only) and spatial information.

Future research directions include customization of DeepLabV3+ framework to accept more than
three channels (adding NIR band to three color bands) and utilization of digital terrain model (DTM)
in the form of using LiDAR sensor data or in the form estimating DTM through stereo satellite images
to further improve the classification accuracy of tree, grass, and shrub.
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