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Abstract: More than 3000 cities in China were used to study the effect of urbanization and local
climate variability on urban vegetation across different geographical and urbanization conditions.
The national scale estimation shows that China’s urban vegetation depicts a trend of degradation
from 2000 to 2015, especially in developed areas such as the Yangtze River Delta. According to the
panel models, the increase of precipitation (PREC), solar radiation (SRAD), air temperature (TEMP),
and specific humidity (SHUM) all enhance urban vegetation, while nighttime light intensity (NLI),
population density (POPDEN), and fractal dimension (FRAC) do the opposite. The effects change
along the East–West gradient; the influences of PREC and SHUM become greater, while those of
TEMP, SRAD, NLI, AREA, and FRAC become smaller. PREC, SHUM, and SRAD play the most
important roles in Northeast, Central, and North China, respectively. The role of FRAC and NLI in
East China is much greater than in other regions. POPDEN remains influential across all altitudes,
while FRAC affects only low-altitude cities. NLI plays a greater role in larger cities, while FRAC and
POPDEN are the opposite. In cities outside of the five major urban agglomerations, PREC has a great
influence while the key factors are more diversified inside.

Keywords: urban vegetation; multiple perspective; local variability; urbanization

1. Introduction

Urban vegetation is a key regulator for social, ecological, and economic processes of cities,
modulating their effects on public health, social equity, and the ecological environment [1–3].
Urban vegetation in forms of urban parks and forests provides respite and recreation for city residents
and is therefore related to multiple quality-of-life indicators [4], socialization, and reduced stress [5,6].
Furthermore, urban vegetation regulates ecosystem services, such as air and water purification, wind
and noise reduction, and microclimate regulation as well as social, cultural, and psychological values
through its control of biogeochemical cycling [7–10]. In addition, as vegetation cover mitigates the
damage to ecosystem function posed by excessive impervious surfaces, urban vegetation can be
interpreted as a trade-off between the amount of vegetation and impervious surfaces, the composition
of the urban landscape, and the health status of an urban ecosystem [11]. Therefore, it is of planning
significance and ecological significance to study the macro dynamics of urban vegetation and explore
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its relationship with various influencing factors. In recent decades, the world has experienced
unprecedented urban growth and land consumption; the pressures on vital ecosystem functions have
escalated rapidly [12,13]. By 2030, approximately five billion people will live in cities [14]. In this
context of global urbanization combined with climate variability, understanding the response of urban
vegetation to various factors and using it as a basis to protect urban ecosystems will help to achieve the
goal of sustainable cities in the United Nations’ sustainability framework [15–17].

The interaction between various human factors and climate factors in the city has a complex
impact on vegetation, which makes the driving factors of urban vegetation more heterogeneous than
those in natural areas [18]. For example, a change of land cover to impervious surfaces may result in
eco-environmental threats with net primary production reduction, surface temperature variation, and,
thus, vegetation degradation [19,20]. However, as evidenced by recent studies, urbanization factors can
also enhance urban vegetation activity [21–23]. The plant growth in urban areas might be promoted by
warmer temperatures and a greater tropospheric CO2 concentration [24,25]. Moreover, because the
advocation and the practice of promoting the value of urban ecosystem services are rooted in landscape
management [26], green infrastructure investments are supported, and some negative effects are
mitigated with the urbanization process [27–29]. As a result, the interconnection between vegetation
degradation and urbanization comes to be a complex and nonlinear system [19,23]. The spatiotemporal
relations between urbanization and vegetation degradation may be diversified and related to the stage
of urbanization level or geographical location [15,30,31]. However, a systematic evaluation of the key
influence factors of urban vegetation covering multiple cities over large areas is still lacking [18,23,32].
In addition, urban form factors are seldomly taken into account in urban vegetation research. It is
suggested that urban sprawl leads to greater air pollution, which is related to a larger numbers of
commuters owing to functional and spatial separation of places for living and working [33–35] and
reduced green space coupled with loss of habitats and ecosystem fragmentation [36]. All of these
effects have a direct or indirect impact on urban vegetation.

The primary goal of this paper was to study the heterogeneity of the impact of climatic
and urbanization factors on urban vegetation based on national scale urban samples in China.
We adopted the remote sensed Index (NDVI) as an effective index for describing the dynamics of urban
vegetation [37,38], which can indirectly estimate gross and net primary productivity, biomass, and green
leaf area in a variety of ecosystems [39–43]. We used more than 3000 refined cities nationwide as
research units to carry out this empirical study. The cities included all large-, medium- and small-sized
ones across China. We used the data from every five years between 2000 and 2015 to build fixed
effect panel models, which effectively took into consideration the impact of individual effects and
provided accurate estimations of each impact factor. We modeled the urban NDVI from multiple
perspectives, including geographical perspectives, altitude perspectives, urban scale perspectives,
and urban agglomeration or non-agglomeration perspectives. Then, the geographic variations and the
urbanization gradients of the effects of four climate factors (precipitation, humidity, solar radiation,
temperature) as well as four urban characteristic factors (urban area scale, population density, night
light intensity, shape spread index) on NDVI were evaluated from each perspective. Finally, the reasons
for the high heterogeneity of the impact on urban vegetation were also discussed. The accurate
knowledge of urbanization and climate variability effect on urban vegetation not only helps enhance
understanding the urban ecosystem responses to local or global environment change but is also
essential for formulating mitigation strategies in cities [44].

2. Materials and Methods

2.1. Identify the Spatial Range of Cities

Our study focused on the city areas in China, which refer to areas of the urban land according to
the land use classification system smaller than a city’s administrative boundary but larger than its
impervious surface (Figure 1a). Cities are traditionally defined based on administrative boundaries,
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such as municipalities, prefectural cities, and country-level cities in China. However, modern city
systems are complex and consist of strongly interrelated components [45–48]. In addition, urban form
has been dramatically changed during the past decades due to rapid urbanization globally [46,49,50],
especially in China. There is an apparent inconsistency between traditional administrative boundaries
of cities and the real densely populated or functional central urban extent. In some areas of China,
multiple urban units are connected into a mega city across administrative regions, while other cities
are leaping to form new independent cities far away from the core urban areas. Because we need to
calculate the geometric shape index of each city, such as the fractal dimension of the boundary, it is key
to effectively identify the mega city across the administrative region and the multi-cities within the
same administrative region.
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Figure 1. Urban land maps (a), distribution of the identified cities (b), and spatial range of the identified
urban units with unique colors (c–e).

In this paper, we define a city as an independent urban patch closely connected or adjacent in
space and closely related in socioeconomic function. Based on the high-resolution land use data and
the recognized spatial ranges of natural cities according to the previous study [51], we extracted the
spatial range of cities. According to Song et al., natural cities are redefined as real spatially, closely
connected urban central regions where population is dense, human activities are abundant and active,
and built environment and infrastructure conditions are relatively complete. The process of natural
city identification includes the following steps. The first step is to calculate point of interest (POI)
density and generate a POI density map with Kernel density functions with the spatial resolution of
500 m. The second step is to determine the threshold to classify the urban regions according to Kernel
and POI density maps. The final step is to convert the raster map to polygons to derive the initial
city boundaries.

However, the spatial resolution of the identified city, which influences the accurate estimation of
the fractal dimensions of the city boundary, is not enough. In addition, due to the discarding process,
the spatial range of urban land covered by the identified natural cities is not complete. Therefore,
we combined the spatial range of identified natural cities with the high-resolution urban land use
map to get the detailed spatial boundary of our study units. Firstly, we used the independent urban
patches obtained from the 30 m-resolution land-use map as the candidate objects of urban units. Then,
we defined the independent land use patches of multiple cities with overlapping parts with one natural
city as the parts of one city, which could effectively avoid the problem that some cities are separated
by rivers or that cities with a certain distance in space but closely related in function or population
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distribution are identified as multiple city units. Finally, we regarded urban patches derived from the
urban land map that do not overlap with the spatial range of natural cities as additional urban units.
Through the above processes, 3189 city units were finally obtained (Figure 1b).

The urban categories derived from 30 m land use data of 2000, 2005, 2010, and 2015 were obtained
from the Resource and Environment Data Cloud Platform, CAS (http://www.resdc.cn/DataList.aspx),
and the corresponding spatial ranges of identified cities for the four periods were obtained accordingly
(Figure 1c–e).

2.2. Metric of Urban Vegetation Cover

For the urban vegetation coverage, the normalized difference vegetation index (NDVI) was
derived from MODIS dataset MOD13Q1 with 250 m spatial resolution. In order to effectively match
with other annual scale data and to take into account the vegetation growth duration, we used the
averaged 16 days NDVI throughout the whole year to represent the overall greening level of each
natural city. The MOD13Q1 dataset was used because the MODIS satellite has a larger swath width,
which can effectively meet the needs of region-scale cross-section data analysis and modeling [52].
The cloud-contaminated area was removed in data preprocessing. The NDVI is a normalized transform
of the near-infrared radiation (NIR) to red reflectance (Red) ratio, %NIR/%Red. The NDVI has the
advantage of minimizing types of band-correlated noise and influences attributed to variations in
direct/diffuse irradiance, clouds and cloud shadows, sun and view angles, topography, and atmospheric
attenuation. The ratio process can also help to reduce calibration and instrument-related errors. It is
commonly expressed as Equation (1), which is as follows:

NDVI =
NIR−Red
NIR + Red

(1)

2.3. Measuring the Influencing Factors

We used precipitation rate (PREC), solar radiation (SRAD), air temperature (TEMP), and specific
humidity (SHUM) as independent variables to measure the impact of natural environmental changes
on urban vegetation [53]. The annual average wind speed and precipitation data are based on the
existing Princeton reanalysis data, GLDAS (Global Land Data Assimilation System) data, GEWEX-SRB
(Global Energy and Water Cycle Experiment—Surface Radiation Budget) radiation data, and TRMM
(Tropical Rainfall Measuring Mission) precipitation data, which are integrated with the records of
China’s meteorological stations [54]. The meteorological data with the spatial resolution of 0.1 degree
was resampled to 1 km for the subsequent zonal statistics.

We used four indicators, including night light intensity (NLI), population density (POPDEN), area
scale (AREA), and morphological fractal dimension (FRAC), as independent variables to measure the
impact of urbanization level or urban expansion pattern on urban vegetation. The AREA index was
directly calculated by using the aforementioned 30 m land use data. POPDEN was measured based on
the population density dataset from the Center for International Earth Science Information Network
at Columbia University (available at http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-
density-rev10). We used the NLI obtained by satellite remote sensing to measure the impact of
anthropogenic factors, because the traditional social survey data are difficult to match with the
identified urban spatial range. The NLI mean value of each city unit extracted by remote sensing
zonal statistics proved to be able to effectively approximate the city’s power consumption [55,56],
GDP, intensity of social and economic activities [57,58], urbanization level [59–61], etc. We used NLI
as a comprehensive urbanization indicator to measure the impact of comprehensive anthropogenic
factors, which also helped us control climate and other factors in the regression model. The Defense
Meteorological Satellite Program (DMSP)-Operational Linescan System (OLS) nighttime light (NTL)
version 4 stable average visible data were obtained from the NOAA-National Geophysical Data Center
(http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html), and then the NTL data were calibrated

http://www.resdc.cn/DataList.aspx
http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev10
http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev10
http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html


Remote Sens. 2020, 12, 1328 5 of 20

via the ridgeline sampling regression method to obtain a consistent NLI time series [62]. We used NLI
of 2013 as an alternative to that of 2015 due to the lack of data. Moreover, we calculated the FRAC of
each city based on the city boundary layer obtained from land use data. Compared with the basic
measures of urban forms, such as length, area, and density, fractal dimension is used to differentiate
shapes of cities, which tend to be circular or striped, and it is more efficient in describing space filling
or sprawl of urban evolution [63,64]. In our context, a larger FRAC corresponded to a higher level
of urban sprawl. According to the spatial range of the identified urban units, we made the zonal
statistics for four meteorological indicators, NLI and POPDEN, and we obtained the mean value of
the corresponding urban and climatic indicators of each city unit as regression variables. AREA and
FRAC were calculated directly based on the vector layer of each urban patch.

3. Econometric Model

We used panel data models, which took the period of 2000–2015 into consideration, to estimate
the impact of eight influencing factors on urban vegetation. In the panel model, more data points
could be considered for analysis so that the degrees of freedom were increased while the collinearity
was reduced [65,66]. In addition, the panel model usually had the power to control individual
heterogeneity [67]. When implementing a series of panel data models, an important premise is that
the natural logarithm transformation should be used for all dependent and independent variables to
avoid the effects of nonstationarity and heteroscedasticity [68–72]. We used the following equation to
create a fixed-effect model based on the panel data of the four study years:

ln(UVIit) = βitln(IFit) + λi + uit (2)

where UVIit is the urban vegetation index of urban extent i at time t; IFit is the value of the influencing
factors of urban extent i at time t; βit is the slope coefficient; λi is the fixed effects in urban extent i; and
uit is the residual error of urban extent i at time t. A Hausman test was applied to examine the validity
of the fixed-effect model (the result is shown in Table A1 in Appendix A).

4. Results

4.1. Spatiotemporal Dynamics of Urban Vegetation and Influencing Factors for All Natural Cities in China

According to the descriptive statistics (Table 1), NDVI was generally stable from 2000 to 2015 (the
median and the mean values of NDVI differences were close to zero), but there were large differences
in the changes of many cities, with a maximum and minimum difference of 0.43. The urbanization
index and the temperature showed obvious increments. The urban density and the night light
intensity increased drastically, with some cities shrinking. According to the descriptive statistics of
meteorological indicators over the years, we found that the overall temperature of the region had
significant changes, with the 15 years annual difference up to 0.62 K.

The map of NDVI of all identified cities in 2015 is shown in Figure 2, which is basically consistent
with the distribution pattern of NDVI in China’s natural regions. However, the spatial distribution
of NDVI changes from 2000 to 2015 shows the urban vegetation cover in the Yangtze River Delta
and the southeast coastal areas declined sharply, while the urban vegetation in the northeast and the
south-central areas had a certain trend of enhancement. The spatial-temporal changes of the eight
influencing factors were quite different. Among them, NLI and AREA were generally on the rise, with
the most dramatic changes in the Beijing-Tianjin-Hebei agglomeration. FRAC grew in most parts
of China, with the exception of some central and western regions. The increase and the decrease of
population density coexisted. The population density of several developed urban agglomerations
increased significantly, while the population density of some parts of central and western regions
decreased. Several climate factors showed inconsistent trends in which PREC generally increased in
Southwest China, while TEMP increased in most parts of the country. Cities in the north tended to be
drier, while those that lie south of the Yangtze River tended to be wetter. In addition, the increase and
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the decrease of solar radiation intensity received from the ground were not stable, but the absolute
amount of change was not substantial.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 23 
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Table 1. Statistics of status and temporal change for all cities.

NDVI PREC SHUM TEMP SRAD NLI POPDEN AREA FRAC

Units 1 mm/hr 10−2kg/kg K W/m2 pc/km2 km2

Status
(2015)

Mean 0.29 0.14 0.90 287.94 158.83 29.20 1618.18 20.25 1.14
Std 0.07 0.08 0.30 5.02 19.49 13.08 1972.62 82.59 0.04
25% 0.25 0.07 0.67 285.62 144.07 18.19 428.78 2.78 1.12
Median 0.29 0.12 0.94 288.93 156.17 29.09 946.93 6.87 1.14
75% 0.33 0.21 1.10 291.04 169.63 39.72 2002.11 16.44 1.17

Difference
(2000–2015)

Mean 0.00 0.03 0.03 0.62 0.50 11.20 144.36 12.03 0.01
Std 0.05 0.05 0.07 0.69 8.97 8.47 436.31 53.85 0.03
25% −0.03 0.00 −0.01 0.19 −5.58 4.88 −7.47 0.91 −0.01
Median 0.00 0.02 0.02 0.56 −0.04 10.02 45.54 3.00 0.01
75% 0.03 0.05 0.07 1.01 5.62 16.29 186.56 9.16 0.03

NDVI: Normalized Difference Vegetation Index; PREC: precipitation; SRAD: solar radiation; TEMP: air
temperature; SHUM specific humidity (SHUM); NLI: nighttime light intensity; POPDEN: population density; FRAC:
fractal dimension.

4.2. Panel Regression Results at the National Scale

The results of the Hausman test based on national scale samples showed that the fixed effect model
was reasonable (Table S1). The regression results (Table 2) showed that all eight factors had significant
estimation coefficients. PREC, SHUM, SRAD, and TEMP all promoted NDVI (coefficient less than 0.3),
and the coefficient of TEMP (coefficient larger than 8.0) was the largest. FRAC, NLI, and POPDEN all
had a negative effect on NDVI, while AREA had a slightly positive effect. It is worth noting that the
absolute value of the elasticity coefficient corresponding to FRAC in the four urbanization indicators
was more than five times greater than that of the others.

Table 2. Panel model estimations at the national scale.

Coef. Std. Err. t P > |t| [95% Conf. Interval]

ln(PREC) 0.043 0.005 9.040 0.000 0.034 0.052
ln(SHUM) 0.222 0.022 9.960 0.000 0.178 0.265
ln(SRAD) 0.118 0.025 4.730 0.000 0.069 0.167
ln(TEMP) 8.178 0.642 12.740 0.000 6.920 9.437
ln(FRAC) −0.448 0.069 −6.490 0.000 −0.583 −0.313
ln(AREA) 0.013 0.003 4.760 0.000 0.007 0.018
ln(NLI) −0.080 0.003 −24.330 0.000 −0.087 −0.074
ln(POPDEN) −0.026 0.015 −1.790 0.074 −0.056 0.003
cons −37.001 3.608 −10.260 0.000 −44.073 −29.929

R2-within 0.12
R2-between 0.52
R2-overall 0.49

4.3. The Relationships between NDVI and Influencing Factors with Different Geographical Locations

We compared the influence of various factors according to three geographical regions and six
geographical regions in China (Figure 3). When the coefficient was significant, the greater the absolute
value was and the greater the influence was. The results of three geographical regions showed that the
impact of climate factors and urbanization factors on NDVI presented an apparent east–west gradient.
From the east to the west, PREC and SHUM became more and more influential, while TEMP and SRAD
had less and less of an influence. Among the urbanization related factors, NLI and FRAC became more
influential in the east than in the west. POPDEN had a negative effect on the east and a positive effect
centrally but no significant effect on the west. AREA mainly played a role in NDVI in the central region.



Remote Sens. 2020, 12, 1328 8 of 20

Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 23 

 

mainly played a role in cities at lower altitudes, while POPDEN and NLI had definite influence in 

almost all altitudes. In particular, the impact of POPDEN gradually increased with the elevation, and 

the regression coefficient gradually transitioned from −0.05 to −0.64, whose value increased by more 

than ten times. Although NLI had insignificant influence in the area of ultra-high altitude, its 

influence tended to be intensified from low and medium altitude to high altitude, whose regression 

coefficient gradually changed from −0.03 to −0.06. In contrast, FRAC only had a significant impact on 

the low altitude plain area with altitude below 500 m. 

 

Figure 3. Geographical distribution of three geographical regions (a), six geographical regions (b), 

and altitude (c). 

 

Figure 3. Geographical distribution of three geographical regions (a), six geographical regions (b), and
altitude (c).

From the perspective of six more detailed geographical regions (Table 3a), PREC had the greatest
influence in Northeast China, while it had the smallest influence in Southwest China. SHUM had
the strongest promotion effect in Central China (coefficient 0.415) but the smallest effect in Southwest
China (coefficient insignificant). SRAD had the largest promotion effect in North China but the smallest
effect in Northwest and Southwest China (insignificant). In Northeast, East, and North China, the effect
of TEMP on NDVI was significant, with the coefficients as 14.95, 11.96, and 10.93, respectively, while in
South Central, Northwest, and Southwest China, the effect was small. The negative effect of FRAC
on NDVI in East China (coefficient is −0.842) was significantly higher than that in other regions
(coefficient absolute value was less than 0.53). The influence of AREA was significant in East China
and Central South China, but the absolute value of coefficient was very small at 0.0155 and 0.0253,
respectively. Except in Northeast China, NLI had a significant negative effect on other geographical
regions, especially in East China, where the corresponding coefficient was −0.110 higher than that in
other regions where most coefficients were lower than −0.06. The impact of POPDEN was the most
complex, with significant positive impact (in North and Northwest China), significant negative impact
(in East and Southwest China), and non-significant impact (Northeast, South Central China).

From the perspective of altitude, we divided the cities into five categories (Table 3b): low altitude
cities (altitude below 500 m), medium-low altitude cities (500 m ≤ altitude < 1000 m), medium altitude
cities (1000 m ≤ altitude < 1500 m), high altitude cities (1500 m ≤ altitude < 3500 m), and ultra-high
altitude cities (altitude above 3500 m). The results showed that the regression coefficients of most
factors were significant with low and medium altitude cities, but the regression coefficients of the
factors corresponding to cities with ultra-high altitude were not significant. Only the coefficients of
POPDEN were significantly positive. It is worth noting that climate factors such as SHUM and TEMP
mainly played a role in cities at lower altitudes, while POPDEN and NLI had definite influence in
almost all altitudes. In particular, the impact of POPDEN gradually increased with the elevation,
and the regression coefficient gradually transitioned from −0.05 to −0.64, whose value increased by
more than ten times. Although NLI had insignificant influence in the area of ultra-high altitude,
its influence tended to be intensified from low and medium altitude to high altitude, whose regression
coefficient gradually changed from −0.03 to −0.06. In contrast, FRAC only had a significant impact on
the low altitude plain area with altitude below 500 m.
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Table 3. The estimated coefficient of urbanization and climate factors with different geographical location: (a) with different geographical regions; (b) with
different altitudes.

(a)

Cities in Three Geographical Regions Cities in Six Geographical Regions

Eastern Central Western Northeast North East Central-SouthNorthwest Southwest

ln(PREC) 0.0344 *** 0.0441 *** 0.0579 *** 0.0660 *** 0.0211 0.0397 *** 0.0275 * 0.0340 ** 0.0119
(4.63) (4.84) (6.73) (4.75) (1.90) (4.51) (2.49) (2.63) (0.67)

ln(SHUM) 0.177 *** 0.215 *** 0.225 *** −0.336 *** 0.311 *** 0.277 *** 0.415 *** 0.224 *** 0.123
(4.79) (4.94) (5.82) (−3.95) (5.14) (6.40) (8.26) (3.40) (1.95)

ln(SRAD) 0.140 *** 0.122 ** 0.105 * −0.196 ** 0.379 *** 0.150 ** 0.258 *** 0.0834 0.0560
(3.68) (2.61) (2.14) (−2.69) (6.11) (2.95) (5.03) (0.87) (0.83)

ln(TEMP) 15.25 *** 7.113 *** 3.048 ** 14.95 *** 10.93 *** 11.96 *** −0.471 0.598 4.213 *
(12.99) (6.21) (2.74) (10.29) (7.59) (7.08) (−0.30) (0.33) (2.19)

ln(FRAC) −0.564 *** −0.385 ** −0.290 * −0.398 −0.0168 −0.842 *** −0.415 ** −0.348 −0.533 *
(−5.64) (−3.25) (−2.01) (−1.66) (−0.11) (−7.50) (−2.77) (−1.40) (−2.49)

ln(AREA) 0.00650 0.0355 *** −0.00262 0.00963 0.00592 0.0155 *** 0.0253 *** −0.00700 0.00763
(1.76) (7.40) (−0.44) (0.84) (0.90) (3.82) (4.67) (−0.63) (0.90)

ln(NLI) −0.0966 *** −0.0852 *** −0.0578 *** −0.0243 −0.0471 *** −0.110 *** −0.0654 *** −0.0422 *** −0.0887 ***
(−17.59) (−14.51) (−9.56) (−1.57) (−6.08) (−19.41) (−8.13) (−4.12) (−9.55)

ln(POPDEN) −0.0841 *** 0.130 *** 0.0427 −0.0379 0.208 *** −0.142 *** 0.0323 0.313 *** −0.373 ***
(−4.23) (3.74) (1.42) (−0.53) (6.24) (−5.43) (1.10) (6.33) (−7.83)

Cons. −76.86 *** −32.12 *** −8.476 −76.64 *** −55.31 *** −57.26 *** 11.60 3.567 −12.31
(−11.65) (−5.00) (−1.36) (−9.66) (−6.84) (−5.98) (1.30) (0.36) (−1.14)

N 4278 3279 3204 928 1473 3551 2323 1113 1394
R2 (within) 0.213 0.155 0.076 0.284 0.218 0.248 0.161 0.084 0.151
R2 (between) 0.324 0.306 0.617 0.171 0.321 0.100 0.001 0.157 0.054
R2 (overall) 0.311 0.295 0.574 0.163 0.289 0.107 0.003 0.140 0.083
rho 0.890 0.907 0.807 0.791 0.969 0.862 0.823 0.969 0.962
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Table 3. Cont.

(b)

Altitudes

Low Medium-Low Medium High Ultra-High

ln(PREC) 0.0390 *** 0.0183 0.0435 *** 0.0856 *** 0.0668
(7.04) (1.06) (3.52) (3.82) (1.03)

ln(SHUM) 0.244 *** −0.105 0.135 * 0.148 −0.0214
(9.31) (−1.38) (2.09) (1.66) (−0.09)

ln(SRAD) 0.128 *** 0.0653 0.250 * −0.498 *** −1.009
(4.58) (0.91) (2.36) (−3.96) (−1.12)

ln(TEMP) 10.79 *** 5.547 ** −2.585 −3.369 10.12
(14.45) (2.96) (−1.24) (−1.21) (0.90)

ln(FRAC) −0.679 *** 0.110 0.146 0.258 −0.194
(−8.66) (0.49) (0.66) (0.82) (−0.21)

ln(AREA) 0.0161 *** 0.0242 * −0.00476 −0.0323 * −0.0470
(5.55) (2.48) (−0.52) (−2.52) (−1.34)

ln(NLI) −0.0937 *** −0.0285 ** −0.0531 *** −0.0618 *** −0.000338
(−24.28) (−2.76) (−5.23) (−4.85) (−0.01)

ln(POPDEN) −0.0529 ** 0.247 *** 0.158 ** 0.156 * −0.644 *
(−3.26) (4.37) (3.03) (2.25) (−2.37)

Cons. −51.42 *** −25.77 * 21.29 29.99 −41.18
(−12.23) (−2.44) (1.83) (1.94) (−0.66)

N 8177 1069 967 641 61
R2 (within) 0.182 0.086 0.068 0.163 0.653
R2

(between)
0.409 0.030 0.114 0.189 0.105

R2 (overall) 0.382 0.032 0.113 0.180 0.155
rho 0.854 0.956 0.937 0.936 0.989

Note: t statistics in parentheses = “* p < 0.05, ** p < 0.01, *** p < 0.001”; rho refers to the fraction of variance.
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4.4. The Relationships between NDVI and Influencing Factors with Different Urban Characteristics

According to existing research classification standards, cities are divided into four categories
according to their area sizes [69]: small-sized cities (urban area size ≤ 50 km2), medium-sized cities
(50 km2 < urban area size ≤ 150 km2), large-sized cities (150 km2 < urban area size ≤ 250 km2),
and mega cities (urban area size > 250 km2) (Figure 4a). In addition, according to the administrative
region scope of urban agglomerations planned by the Chinese government, we extracted the cities of
five mature urban agglomerations, including the Beijing-Tianjin-Hebei urban agglomeration (BTH),
the Yangtze River Delta urban agglomeration (YRD), the Pearl River Delta urban agglomeration
(PRD), the Chengdu-Chongqing urban agglomeration (CC), and the Triangle of Central China urban
agglomeration (TCC) (Figure 4b).
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The regression results are shown in Table 4. Most of the estimated coefficients of the factors
of mega cities were not significant, which may have been due to the small number of city clusters.
In general, all climate factors, including PREC, SHUM, SRAD, and TEMP, showed greater impact on
smaller-sized cities, while NLI had significant constant impacts on cities of all sizes but had a greater
impact on larger cities (coefficient of small city was −0.08, while that of a big city was about −0.6).
FRAC, POPDEN, and AREA, on the other hand, had a greater impact on smaller-sized cities.

From the perspective of urban agglomerations, urban NDVI of five mature urban agglomerations
was not sensitive to PREC, while PREC played an important role in non-urban agglomeration
areas with the elastic coefficient up to 0.126. While POPDEN and FRAC played an important role
in urban agglomeration areas, their coefficients of non-urban agglomerations were not significant.
The coefficient estimation of the factors in each urban agglomeration were distinct. Compared with other
agglomerations, the coefficient value of POPDEN in Beijing-Tianjin-Hebei urban agglomeration was
the largest among all of the agglomerations, while the coefficients of SHUM and TEMP in the Yangtze
River Delta urban agglomeration were the largest. The Triangle of Central China urban agglomeration
consisted of many scattered urban patches. Compared with other urban agglomerations, its coefficients
of FRAC, NLI, and AREA were the largest. A noteworthy characteristic of the Chengdu-Chongqing
urban agglomeration is that SRAD had no significant impact on its NDVI, but POPDEN had a distinct
negative impact over other agglomerations whose absolute value of coefficient was more than twice
that of others.
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Table 4. The relationships between NDVI and urbanization/climate factors with different urban size and urban agglomerations.

Area Size Urban Agglomeration

Small Medium Large BTH YRD PRD MYR CC Non

ln(PREC) 0.0458 *** 0.0540 * 0.0645 0.0186 0.0260 −0.0438 −0.00835 0.0161 0.126 ***
(9.27) (2.20) (0.71) (1.21) (1.79) (−1.07) (−0.52) (0.44) (8.23)

ln(SHUM) 0.214 *** 0.221 1.003 −0.00280 0.601 *** 0.427 0.526 *** 0.186 −0.0465
(9.30) (1.71) (1.01) (−0.03) (8.79) (1.92) (7.26) (1.29) (−0.69)

ln(SRAD) 0.113 *** 0.0774 0.578 0.392 *** 0.355 *** 0.757 *** 0.376 *** −0.0660 0.192 *
(4.40) (0.63) (0.93) (4.73) (4.57) (4.64) (3.35) (−0.56) (1.99)

ln(TEMP) 7.924 *** 7.665 * −4.458 11.05 *** 27.39 *** 1.313 −5.260 11.74 ** −3.139
(11.97) (2.07) (−0.26) (5.11) (7.90) (0.18) (−1.77) (2.82) (−1.41)

ln(FRAC) −0.489 *** −0.0495 0.258 −0.384 −0.738 *** −0.836 −1.164 *** −0.310 −0.185
(−6.85) (−0.10) (0.12) (−1.84) (−4.43) (−1.72) (−5.32) (−0.71) (−0.92)

ln(AREA) 0.0122 *** 0.0911 *** 0.0168 0.00233 −0.00178 −0.00735 0.0359 *** 0.0263 0.00999
(4.43) (4.27) (0.16) (0.23) (−0.30) (−0.52) (4.89) (1.45) (1.28)

ln(NLI) −0.0780 *** −0.344 *** −0.471 −0.0593 *** −0.113 *** −0.0382 −0.127 *** −0.119 *** −0.0711 ***
(−23.36) (−7.82) (−1.72) (−4.33) (−14.44) (−1.27) (−12.16) (−6.54) (−6.36)

ln(POPDEN) −0.0338 * −0.0325 0.149 0.124 ** −0.0417 0.104 0.123 * −0.256 ** −0.0810
(−2.18) (−0.43) (0.89) (3.02) (−1.24) (1.83) (2.26) (−3.03) (−1.76)

Cons. −35.53 *** −32.03 37.61 −56.99 *** −144.9 *** −1.848 38.50 * −54.54 * 25.75 *
(−9.54) (−1.55) (0.39) (−4.70) (−7.39) (−0.05) (2.31) (−2.27) (2.08)

N 10441 420 54 696 1491 286 1032 458 1162
R2 (within) 0.12 0.38 0.49 0.23 0.35 0.36 0.26 0.24 0.12
R2

(between)
0.51 0.37 0.30 0.18 0.04 0.11 0.13 0.11 0.00

R2 (overall) 0.49 0.39 0.26 0.17 0.09 0.03 0.06 0.10 0.00
rho 0.81 0.87 0.82 0.85 0.79 0.88 0.89 0.85 0.93

Note: * is significant at the 0.05 level (2-tailed); ** is significant at the 0.01 level (2-tailed); and *** is significant at the 0.001 level (2-tailed).
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5. Discussions

5.1. Impact of Urbanization and Climate Factors from a National Perspective

The spatial pattern of NDVI changes in the past 15 years is almost the opposite of the current
pattern in 2015 (Figure 2). For example, the Yangtze River Delta was the area with the best vegetation
growth in 2015, but it was also the area with the most serious urban vegetation degradation. On the
other hand, although the total amount of vegetation in a large number of northern cities was low,
it showed a high increase in the past. This pattern difference was caused by the complex combined
effect of climate factors and urbanization factors, such as the severe urbanization and urban sprawl in
the Yangtze River Delta and the strong promotion of climate warming on vegetation growth in the
northern region.

According to the estimation of the national scale regression model, precipitation, humidity, solar
radiation, and temperature all play an important role in promoting urban vegetation because of their
enhanced transpiration and photosynthesis [73]. Among the climate factors, the elasticity coefficient
of TEMP was the largest, which was far higher than the other three factors, indicating that climate
warming had a strong impact on urban vegetation. Among the urbanization factors, the elasticity
coefficient of FRAC was negative with the absolute value far greater than that of other factors. This is
because the process of sprawling urbanization often results in inefficient development and utilization
of land, and, thus, more natural surface is occupied [74–78]. In addition, a wealth of research shows
that, on the urban scale, sprawl strongly increases traffic flow, reduces traffic efficiency, increases traffic
pollutant emissions, etc. [34,79–82]. Air pollution directly harms the growth of plants and indirectly
affects the growth of vegetation by reducing air visibility and the intensity of solar radiation received
by vegetation [83,84].

In general, the level of urban economic development represented by nighttime lighting restrains
the growth of vegetation, and its mechanism is similar to that of population density, which suggests
increased buildings, high-intensity development or land use, etc., may have a negative effect on the
urban ecosystem, compressing the growth space of urban vegetation [85,86]. However, the expansion
of urban area does not entirely mean the degradation of urban vegetation. On the whole, the expansion
of urban area promotes the increase of overall urban vegetation to a certain extent, which may be
related to the enhancement of green infrastructure construction in the process of urban growth [87].
In addition, urban expansion may bring or build more ecological spaces in their edging areas near
suburbs. It is worth noting that our AREA is based on the area of urban categories derived from land
use data rather than the impervious surface area, thus it is inconsistent with some existing conclusions
based on the impervious surface area [88]. Our results provide new insights to the relationship between
urban size and vegetation on an urban scale other than a pixel scale.

5.2. The Reasons and Implications of the Influence by Geographical Location

According to the subpanel models of the three geographical regions, the elastic coefficient values
corresponding to climate factors and urbanization factors all showed clear gradient laws of gradual
change from east to west. This gradient feature was closely related to natural and urban fundamental
features underlying the geographical location [89]. For example, water resources in the eastern region
were generally more abundant than those in the western region, and further westward, the more likely
water was to become a limiting factor for vegetation growth. Therefore, from the east to the west,
PREC and SHUM became more and more influential. However, the solar radiation in the west may
have become too strong, which may have had a nonlinear effect on vegetation growth, such as the
negative effect of drying caused by high temperature on vegetation growth. Therefore, from the east to
the west, the elastic coefficients of TEMP and SRAD were growing smaller and smaller.

The geographical distribution of urbanization factors may be related to background social and
economic characteristics of eastern and western cities. The economic development level of eastern
cities is higher, and the corresponding urban building density and economic intensity in the same area
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are larger [52]. Therefore, in the eastern cities, the changes of biophysical and socio-economic activities
brought by NLI, AREA, and FRAC with the same proportion increment were more significant, which
led to the increasing trend of the elasticity coefficient corresponding to NLI, AREA, and FRAC from
the west to the east.

China’s six geographical divisions are a natural environmental division as well as an economic
division. Each geographical region corresponds to a unique climate, vegetation type, comprehensive
development level, and local culture, which directly or indirectly affect the relationship between natural
or urbanization factors and the urban ecosystem. For example, Southwest China has abundant water
resources, and a small amount of additional precipitation change is difficult to have a further significant
impact on urban vegetation, thus the coefficients of PREC and SHUM were small or not significant
in the southwest. In contrast, the temperature in the north is generally lower than that in the south,
which may make TEMP the limiting factor for vegetation growth in the north. Therefore, the increase
of SRAD and TEMP in Northeast, East, and North China showed a greater role in urban vegetation
enhancement. The impact of NLI on East China was much higher than other regions. This was because
the NLI changes in East China were a very intense urban development process, and the occupation of
natural land and the transformation of natural surfaces were also the strongest. It suggests that the
investment of vegetation renovation and ecosystem improvement should be increased in developed
areas such as East China. The relationship between several indices and NDVI showed a dependence on
altitude (TEMP, AREA, NLI, POPDEN, FRAC), while others (PREC, SHUM, SRAD) did not. POPDEN
had a certain degree of influence at all altitudes, and it had a greater influence at high altitudes
(corresponding to −0.64 at ultra-high altitudes, while the absolute value of low-altitude coefficient
was less than 0.3), which is related to the more vulnerable urban ecosystem in high-altitude cities.
While FRAC only played a significant role in low-altitude areas, the urban sprawl in low-altitude plain
areas meant the emergence of a large number of inefficient spaces on the edge of the city. The results
indicate that controlling urban density at a high altitude and urban sprawl at a low altitude is of
significance to urban ecosystem enhancement.

5.3. The Reasons and Implications of the Influence by Urbanization Characteristics

With the development and the expansion of the city, the fundamental characteristics of the city,
including building density, industrial structure, etc., were altered, further changing the intensity and
the pattern of land use, green infrastructure construction, and microclimate change and then indirectly
affecting the relationship between various indicators and urban vegetation. In general, due to the larger
impervious surface area and the drier microclimate [90,91], the impact of precipitation on vegetation
may be greater in larger cities. However, the change of land use intensity caused by urbanization may
be nonlinear, which leads to NLI playing a more important role in vegetation in larger cities. The urban
sprawl of small cities and the increase of population density are also noteworthy. Due to the small size
of these cities, the small proportion increase of these two indicators may have a greater negative effect
on the overall urban ecosystem.

The five mega urban agglomerations we selected are the most mature, urbanized areas in China,
whose development has regional effects on economic society and natural ecology. The results show
that urban vegetation is very dependent on precipitation in non-urban agglomeration areas, while in
urban agglomeration regions, due to more artificial irrigation and the intense construction of green
infrastructure [29,92], the influencing factors of vegetation become more diverse. The key influencing
factors of each city group, though, are distinct. For example, the wealth of small and medium-sized
cities as well as the ultra-high population capacity in the Beijing-Tianjin-Hebei urban agglomeration is
densely distributed, and, thus, the additional increase of high-density population there contributes to a
far greater impact on vegetation than other urban agglomerations. Therefore, the population density
control in this area is significant to the improvement of urban ecology, but it should be considered in
accordance with local conditions for other urban agglomerations.
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5.4. Limitations and Future Studies

There are several limitations in the research. First, the panel models were used in this paper to
evaluate the impact differences of specific factors across regions. The limitation is that the statistics
depend on the panel models, which lack a consideration of the nonlinear relationship between urban
morphology, climatic factors, and urban vegetation. In the future, it would be interesting to study and
simulate the overall impact of urban development and climate variability on an urban ecosystem with
co-variates controlled by constructing refined mechanism models or machine learning models at the
urban scale with full consideration of the interactions among closely related factors.

Second, we used the spatial range of the cities changing with the year to extract the average NDVI.
The average NDVI of each spatiotemporal sample ensures that the samples can be compared vertically
and horizontally at the same time so as to effectively carry out panel analysis. However, due to the
rapid change of land use within cities, it is difficult to confirm whether the change of NDVI is caused
by vegetation growth or green area change without considering more detailed land use within cities.
In this paper, we could not get the data of land use within cities all over the country. The addition of
these data could help us better distinguish the specific impact of urbanization on urban ecosystem for
future studies.

Third, NLI is used to study the impact of the comprehensive urbanization level on an urban
scale, but NLI indicators cannot more finely separate the impact of specific anthropogenic factors,
such as GDP, green infrastructure investment, and so on. In the future, more specific anthropogenic
indicators could be incorporated into the statistical modeling based on remote sensing inversion as
well as downscaling grids of socio-economic survey data, which would provide us with deeper insight
into the impact of urbanization on vegetation from multiple perspectives.

Furthermore, the study only used NDVI to measure the state of an urban ecosystem, but the net
primary productivity of the vegetation and other spatial fine inversion products (such as Landsat or
worldview satellite data) could be used as improved indicators. It is also necessary to further expand
the observation range because, from a global scale, the impact of climate and urban development may
have more feedback, which will lead to more complex spatial differentiation of impact.

6. Conclusions

In this paper, more than 3000 city samples were used to study the impact of urbanization and
climate factors on urban vegetation. For the first time, the research samples covered all sizes of
cities in China and supplemented the understanding of the heterogeneity of various factors from the
perspective of geographical location and urbanization. The results show that the changes of urban
vegetation in China from 2000 to 2015 exhibited complex spatial differences, and the degradation in
the Yangtze River Delta was most significant. Panel regression estimation shows how the increase
of precipitation, light, temperature, and humidity all improved urban vegetation. Nighttime light
intensity, population density, and morphological sprawl of the city had serious, negative effects on the
urban vegetation.

The magnitude of the effect followed obvious gradient change patterns from east to west.
Among the climate factors, PREC and SHUM had more influence, while TEMP and SRAD had less
influence. Among the urbanization factors, NLI, AREA, and FRAC became less influential. PREC had
the greatest effect in Northeast China, SHUM had the strongest promoting effect in Central China
(coefficient 0.415), SRAD had the largest promoting effect in North China, and TEMP had a great
promoting effect in Northeast China, East China, and North China (14.95, 11.96, and 10.93, respectively),
while FRAC and NLI played a far greater role in East China than in other regions. POPDEN had
influence at all altitudes, especially at high altitudes. On the contrary, FRAC had significant influence
only in low-altitude cities. NLI played a greater role in larger cities, while the urban sprawl and the
population density of small cities played greater roles. Urban vegetation was very dependent on
precipitation in non-urban agglomeration areas, but the influence factors of vegetation in urban areas
were more diverse. Among them, the population density of Beijing-Tianjin-Hebei urban agglomeration
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had a far greater impact on vegetation than other areas. The heterogeneity was driven by background
climate and urbanization condition.
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Appendix A

Table A1. Result of fixed effect test.

Coefficient

Fixed Effect Random Effect Difference S.E.

ln(PREC) 0.043 0.064 −0.021 0.003
ln(SHUM) 0.222 0.289 −0.067 0.014
ln(SRAD) 0.118 0.146 −0.027 0.016
ln(TEMP) 8.178 2.985 5.193 0.567
ln(FRAC) −0.448 −0.092 −0.356 0.033
ln(AREA) 0.013 0.005 0.008 0.002
ln(NLI) −0.080 −0.090 0.010 0.001
ln(POPDEN) −0.026 −0.003 −0.024 0.015
Cons. −37.001 −7.489 −29.512 3.152

Chi2 335.000
Prob. 0.000
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