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Abstract: Seasonal inundation is an important effect that governs the distribution of ecosystems
in the tropics. In the Amazon Basin, the seasonal flood pulse causes a difference in high and low
water levels that can exceed 15 m. The associated flood duration and extent play an important role
in land-atmosphere carbon exchange and affect the ecosystem’s carbon pool that originates from
organic matter transported from upland and flooded forests. Studies of wetlands inundation across
the Amazon Basin have utilized dual season mosaics from JERS-1 and wide-swath ScanSAR data
from ALOS PALSAR to characterize inundation across the basin. This study builds upon past efforts
with JERS-1 and ALOS PALSAR and uses ALOS-2 PALSAR-2 ScanSAR data to generate annual
maximum and minimum inundation extent maps over the full Amazon Basin for the period spanning
November 2014–October 2017. The study uses decision tree classification to create a maximum
and a minimum inundation extent map for each year over this time period. The results show that
a generalized algorithm that fits the entire basin has an 86% overall accuracy compared with a
classification made for a local region from the same PALSAR-2 datasets. Comparisons with previous
full-basin inundation maps by other L-band radars shows similar results for inundated areas during
maximum inundation. The maps derived previously from JERS-1 and ALOS PALSAR show 7.3%
and 6.9% inundated vegetation, respectively, and this study using PALSAR-2 shows values ranging
between 5.5% and 7.0% across the three study years. Comparisons between the stage data across
the basin and acquisition dates/periods for JERS-1 and PALSAR-2 show that the sensors capture
the nature of the maximum and minimum flooding across the basins but have not successfully
captured the exact maximum and minimum flood levels that have been recorded in the stage data.
The inundation maps are publicly available under a Creative Commons (CC BY 4.0) license
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Abstract: Seasonal inundation is an important effect that governs the distribution of ecosystems in 
the tropics. In the Amazon Basin, the seasonal flood pulse causes a difference in high and low water 
levels that can exceed 15 m. The associated flood duration and extent play an important role in land-
atmosphere carbon exchange and affect the ecosystem’s carbon pool that originates from organic 
matter transported from upland and flooded forests. Studies of wetlands inundation across the 
Amazon Basin have utilized dual season mosaics from JERS-1 and wide-swath ScanSAR data from 
ALOS PALSAR to characterize inundation across the basin. This study builds upon past efforts with 
JERS-1 and ALOS PALSAR and uses ALOS-2 PALSAR-2 ScanSAR data to generate annual 
maximum and minimum inundation extent maps over the full Amazon Basin for the period 
spanning November 2014–October 2017. The study uses decision tree classification to create a 
maximum and a minimum inundation extent map for each year over this time period. The results 
show that a generalized algorithm that fits the entire basin has an 86% overall accuracy compared 
with a classification made for a local region from the same PALSAR-2 datasets. Comparisons with 
previous full-basin inundation maps by other L-band radars shows similar results for inundated 
areas during maximum inundation. The maps derived previously from JERS-1 and ALOS PALSAR 
show 7.3% and 6.9% inundated vegetation, respectively, and this study using PALSAR-2 shows 
values ranging between 5.5% and 7.0% across the three study years. Comparisons between the stage 
data across the basin and acquisition dates/periods for JERS-1 and PALSAR-2 show that the sensors 
capture the nature of the maximum and minimum flooding across the basins but have not 
successfully captured the exact maximum and minimum flood levels that have been recorded in the 
stage data. The inundation maps are publicly available under a Creative Commons (CC BY 4.0) 
license   from the Alaska Satellite Facility. 
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1. Introduction 

The Amazon Basin covers an area of approximately six million km2 and is a host to vast 
wetlands, complexes and biodiversity richness with the meandering of rivers creating a mosaic of 
habitats. River meandering and its effects on flood regimes and water and soil qualities result in 
varying distributions of species and habitat composition. The biotic interactions in river-floodplain 
systems within the basin are driven primarily by the seasonal flood pulse phenomenon [1,2]. This 
annual pulse moves from the west in the Andes eastward to the Amazon delta over the course of 
several months and results in large expanses of seasonally inundated and submerged vegetation, 

from
the Alaska Satellite Facility.
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1. Introduction

The Amazon Basin covers an area of approximately six million km2 and is a host to vast wetlands,
complexes and biodiversity richness with the meandering of rivers creating a mosaic of habitats. River
meandering and its effects on flood regimes and water and soil qualities result in varying distributions
of species and habitat composition. The biotic interactions in river-floodplain systems within the basin
are driven primarily by the seasonal flood pulse phenomenon [1,2]. This annual pulse moves from
the west in the Andes eastward to the Amazon delta over the course of several months and results in
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large expanses of seasonally inundated and submerged vegetation, with the corresponding difference
between high and low water levels commonly exceeding 15 m [3]. At the basin scale, the flood duration
and extent play important roles in the land–atmosphere exchange of greenhouse gases and affect
the Amazon’s carbon pool that originates from organic matter transported from upland and flooded
forests [4].

Accurate and consistent geospatial datasets of inundation extent and dynamics across the Amazon
Basin are needed to support study of this globally crucial tropical complex [2]. Such data records
support characterizing seasonal inundation processes so that current state and future changes related to
both natural and anthropogenic factors can be monitored, and associated impacts addressed. Satellite
remote sensing instruments have the capacity to provide geospatial information over large, remote
areas. Optical sensors are hindered by cloud cover and are unable to effectively observe inundation
below vegetation canopies. Synthetic aperture radar (SAR) instruments observe the Earth’s surface in
the microwave portion of the electromagnetic spectrum and are able to penetrate clouds and provide
observations day and night, independent of solar illumination. While shorter wavelength microwaves
(wavelength < 10 cm; e.g., X-band, C-band) are limited in their ability to penetrate closed canopy forest,
the longer L-band SAR signal (~23.5 cm) on the other hand, can penetrate the vegetation canopy and
interact with the vegetation structure and ground surface below. If the ground is covered by water,
a strong “double-bounce” reflection on the smooth water surface and vertical tree trunks will occur and
result in enhanced backscatter that will appear very bright in the resulting radar image, as observed
already 40 years ago [5]. L-band SAR is currently the only spaceborne remote sensing system that can
provide geospatially explicit mappings of inundation extents in forested wetlands.

Studies of wetlands inundation across the Amazon Basin have utilized dual season mosaics
from JERS-1 SAR and wide-swath ScanSAR data from ALOS PALSAR [6–8] to generate basin-wide
inundation maps [9–12]. PALSAR ScanSAR datasets have been employed to develop swath-by-swath
time-series mappings of wetlands inundation throughout the Amazon Basin [12] and are an integral
part of the NASA Earth System Data Record (ESDR) of inundated wetlands in distribution through
NASA’s Alaska Satellite Facility DAAC [13]. Research using L-band SAR datasets has also emphasized
regional studies, characterizing smaller watersheds within the Amazon Basin, such as the Jaú river
basin [14], the Curuaí floodplain [15], Pacaya–Samiria National Park [16] and the Óbidos floodplain [3].
Beyond the Amazon Basin, L-band SAR have also been used for wetland inundation studies in the
Pantanal [17], the Congo River basin [18] and Indonesia [19].

The objective of this study is to build upon past efforts with JERS-1 SAR and ALOS PALSAR, and
now use ALOS-2 PALSAR-2 ScanSAR data to generate annual maximum and minimum inundation
extent maps over the full Amazon Basin for the period spanning November 2014–October 2017.
We employ contemporary PALSAR-2 datasets for comparisons of inter-annual variations in spatial
extent and distribution and for comparisons with past results. The PALSAR-2 ScanSAR datasets
have improved temporal fidelity and spatial resolution compared to JERS-1 SAR and PALSAR-1
ScanSAR; both of which have advanced the ability to study seasonal change with Synthetic Aperture
Radar. PALSAR-2 ScanSAR data also have the advantage of dual-polarization (horizontal radar signal
transmission and reception, HH, and horizontal transmission and vertical reception, HV) capability,
with the HH channel responsive to forest inundation and the HV channel particularly sensitive
to vegetation structure and biomass and thereby providing additional information for classifying
inundation across vegetation communities.

Our analytical approach employs a decision tree classifier applied to sub-regions to wetlands and
non-wetlands regions for both maximum and minimum inundation extents, which is applied to the
entire basin. The results are corroborated with river gauge data to assess the temporal validity of the
datasets. The datasets developed in this study extend those developed previously, thereby supporting
assessment of inundation extent in the Amazon over a period spanning approximately two decades.
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2. Materials and Methods

2.1. Description of Datasets

2.1.1. Satellite Data

The ALOS-2 PALSAR-2 imaging radar is operated by the Japan Aerospace Exploration Agency
(JAXA). The SAR has a 14-day revisit cycle and a wide-swath (350 km) ScanSAR observation mode.
PALSAR-2 observations are scheduled over the Amazon Basin every 42 days as part of JAXA’s
PALSAR-2 systematic acquisition strategy [20,21]. PALSAR-2 operations commenced in August 2014,
but consistent data are typically scarce for the initial few months of operations. The ScanSAR data used
in this study are mosaic products generated within the framework of the ALOS Kyoto and Carbon
(K&C) Initiative project [22]. The mosaics are provided in 1◦ × 1◦ tiles, in geographic latitude/longitude
and a WGS84 geographic coordinate system with 1.6 arc second (~50 m) pixel spacing. They have been
radiometrically terrain-corrected by JAXA using SRTM 1-arcsecond digital elevation model (DEM),
and values are expressed as gamma-0 (linear amplitude) radar backscatter [8]. Figure 1 shows the
HH (left) and HV-polarization composite images over the central Amazon Basin that has combined
25 1◦ × 1◦ tiles into 5◦ × 5◦ blocks that were used as basis for the computations in this study.
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from ENVISAT MERIS data from January 2005 to June 2006 and was available at 300 m resolution 
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Figure 1. ALOS-2 PALSAR-2 ScanSAR 5◦ × 5◦ tile composite (PALSAR-2 cycle 27, July 2017) over the
Central Amazon Basin. (a) HH-polarization. (b) HV-polarization (© JAXA).

2.1.2. Ancillary Data

One arc second non-void Shuttle Radar Topography Mission (SRTM) digital elevation model [23],
resampled to the 50 m resolution of the ScanSAR mosaics was used to mask out high elevation
(non-floodplain) regions in the basin.

Global urban footprint (GUF) (spatial resolution 2.8 arcsec) data from the German Aerospace
Center (DLR) were used to mask out towns and cities from the ScanSAR mosaics. That product was
derived from TerraSAR-X/TanDEM-X data acquired between 2011 and 2012 by DLR [24].

The European Space Agency’s (ESA) GlobCover land cover classification map (v2.3) was derived
from ENVISAT MERIS data from January 2005 to June 2006 and was available at 300 m resolution [25].
The GlobCover product was used to mask croplands and deforested areas. Additional manual masking
was undertaken to remove residual deforestation and agriculture areas occurring after 2006.
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2.1.3. River Basin Framework and Gauge Data

The Amazon Basin catchment system used in this study was developed by Venticinque et al. [26].
Basins of level 2 (BL2) depicted in Figure 2 below are defined as, “Delimiting tributary basins larger
than 100,000 km2 whose main stems flow into the Amazon River main channel, as well as main stem
polygons that consists of the open waters of the Amazon River, its floodplain and adjacent small
tributary basins” [26]. A total of 25 BL2 catchments, listed in Section 3.1 below, have been used in
this study.
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Figure 2. Amazon River basin catchment areas, basin level 2 (major tributary basins) as defined by
Venticinque et al. [26] (Background: Google Earth).

River gauge data from the Brazilian National Water Agency (Agência Nacional de Águas,
ANA) [27] were used to assess how well the ScanSAR data acquisitions captured the maximum and
minimum flooding conditions across the basin during the three hydrological years covered in the
study. Ten gauging stations were selected along the main Amazon river floodplain and in the major
tributaries, presented in Figure 2 and Table 1. Stage height values in the table indicate the minimum
and maximum river levels captured in the ALOS-2 PALSAR-2 data during each of the three years,
given in meters above the all-time recorded minimum stage for each station. The figures in brackets
indicate the difference between the station annual maximum/minimum measurements versus the
corresponding maximum/minimum stage height captured in the PALSAR-2 data in the same period.
The bracket values consequently provide a measure of how representative of the SAR data (and thus
the classifications) are of the annual inundation extremes. Smaller values are thus preferred.
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Table 1. River height gauging stations used to assess ScanSAR data representations of annual maximum
and minimum flooding conditions across the basin. Values indicate the highest and lowest annual river
stages recorded during the ALOS-2 PALSAR-2 acquisitions. Figures in brackets indicate the difference
corresponding to the station maximum or minimum stage that same hydrological year. All values are
in meters (Source: Agência Nacional de Águas, ANA).

2014/2015 2015/2016 2016/2017ANA
Code

Station
Name

BL2 Drainage Basin
(basin# in Fig. 2) Lat Lon Max Min Max Min Max

o-326 Est. do
Repouso Javari (basin #8) −4.341 −70.906 13.18

(−1.87)
4.63

(+3.90)
14.42

(−0.04)
2.04

(+1.81)
14.77

(−0.15)

o-375 Acanaui Japurá (#6) −1.821 −66.600 10.30
(−0.05)

5.01
(+4.12)

9.65
(−0.07)

5.30
(+0.98)

8.42
(−0.50)

o-381 Est. da
Santa Cruz Tefé (#21) −4.292 −65.202 6.88

(−0.04)
1.80

(+1.01)
5.58

(−0.34)
0.84

(+0.36)
5.66

(−1.06)

o-385 Itapeua Solimões Floodplain (#3) −4.058 −63.028 16.64
(−0.06)

5.32
(+0.76)

14.52
(−0.11)

5.38
(+1.52)

15.37
(−0.16)

o-437 Paricatuba Purus (#19) −4.409 −61.899 17.46
(−0.03)

4.10
(+0.87)

14.38
(−0.14)

5.68
(+2.75)

16.35
(−0.11)

o-497 Moura Negro (#17) −1.457 −61.635 12.00
(−0.01)

1.60
(+1.11)

10.66
(−0.03)

2.78
(+0.81)

11.28
(−0.29)

o-618 Borba Madeira (#11) −4.389 −59.599 13.58
(−0.35)

1.31
(+0.21)

10.88
(−0.07)

1.55
(+0.20)

13.07
(−0.07)

o-681 Óbidos
Amazonas Floodplain

(#3) −1.919 −55.513 8.48
(−0.14)

1.69
(+0.22)

6.61
(−0.13)

1.57
(+0.18)

8.39
(−0.01)

o-733 Itaituba Tapajós (#20) −4.276 −55.982 N/A 0.59
(+0.12)

5.45
(−0.18)

0.38
(+0.12)

7.40
(−0.15)

o-811 Altamira Xingu (#25) −3.215 −52.212 N/A 2.23
(+0.57)

5.18
(−0.13)

2.84
(+0.22)

6.08
(−0.43)

2.1.4. Other Inundation Datasets

Existing inundation datasets were used for comparison purposes, developed by Hess et al. [9,10],
Chapman, et al. [12] and Jensen et al. [16].

The Hess inundation product (LBA-ECO LC-07) was derived from one pair of dual-season JERS-1
L-band HH-polarization SAR image mosaics, generated by the Jet Propulsion Laboratory as part of the
Global Rain Forest Mapping project [6,7]. The low-water mosaic data was acquired September through
November 1995, and the high-water mosaic May through August 1996. The resolution is 3 arc sec
(~90 m) pixels. These HH-polarization mosaics span a cross-basin temporal compositing time of 1.5
months between the east and west of the Amazon Basin. The region covered in the LBA-ECO LC-07
map is below 500 m elevation above sea level. The Amazon Delta (sub-basin 2 in Figure 2 above) is
only partially covered. A wetland mask was generated through segmentation of the SAR mosaics and
clustering based on the mean L-band backscattering coefficient (σ0). Classes within the wetland areas
were classified with a pixel-based parallelepiped classifier based on their dual season backscattering
characteristics [10].

The basin-wide inundation product by Chapman et al. was derived from ALOS PALSAR ScanSAR
time-series data acquired between late 2006 and mid 2010. The resolution of the PALSAR ScanSAR
data is 100 m and the polarization is HH. The dataset is based on a multi-temporal image mosaic for the
entire northern part of South America, derived from the average brightness of all the individual image
segments in the time stack. The associated inundation classification was based on the multi-temporal
averaged image and the ratios of pixel values from single ScanSAR images to the averaged image [12].

The product by Jensen et al. [16] covers an approximately 15,000 km2 region of the Pacaya-Samiria
National Reserve in Peru. The classification was derived from dual-polarization (HH+HV) ALOS-2
PALSAR-2 ScanSAR data acquired between November 2014 and February 2018, and is thus partially
contemporary with the PALSAR-2 ScanSAR data used in this study. The inundation map was derived
using an object-based classification method applied to the radar backscatter time series.
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2.2. Methodology

2.2.1. Generation of ALOS-2 PALSAR-2 Multi-Temporal Statistical Composite Imagery

Annual multi-temporal statistical composite imagery was produced from ALOS-2 PALSAR-2
ScanSAR time series to distinguish wetland from non-wetland areas. The composites generated covered
three annual epochs: 2014/2015, 2015/2016 and 2016/2017, with each epoch starting in November and
ending in October, in attempt to capture the beginning and end of the seasonal flood pulse across the
entire basin for each annual flood season. The statistical composites created were: maximum HH and
HV backscatter (MAX-HHYEAR and MAX-HVYEAR); minimum HH and HV backscatter (MIN-HHYEAR

and MIN-HVYEAR) for each year; and the six corresponding difference images ((MAX−MIN)-HHYEAR

and (MAX−MIN)-HVYEAR). Year = 14/15, 15/16 or 16/17).
Figure 3a,c show the maximum intensity images for HH-pol and HV-pol respectively, which

represent the brightest pixels extracted across the 2016/2017 flood season time series. Figure 3b,d show
the corresponding minimum intensity images for HH-pol and HV-pol respectively. Figure 3e,f show
the MAX–MIN difference for HH-pol and HV-pol.

Bright areas in Figure 3e (HH-pol MAX-MIN difference) consequently represent areas of significant
difference in HH backscatter between the maximum and minimum images. This can either indicate
vegetation that becomes inundated during high water (low water: low HH backscatter; high water: high
HH backscatter), or possible seasonal submergence of vegetation (low water: high HH backscatter; high
water: low HH backscatter). This classification ambiguity can be resolved by using HV polarization
data. As the HV polarized backscatter is sensitive to vegetation structure but not to inundation, bright
areas in the HV-pol MAX—MIN difference image in Figure 3f indicate areas also likely to be dominated
by seasonally submerged vegetation (low water: high HV backscatter; high water: low HV backscatter).
Inundated vegetation and seasonally submerged vegetation can thus be separated using both the HH
and HV data.
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Figure 3. Statistical images derived from ALOS-2 PALSAR-2 ScanSAR cycles for the 2016/2017 flood
season. (a) Maximum HH-pol backscatter image. Inundated vegetation can be seen as very bright
pixels. (b) Minimum HH-pol image. (c) Maximum HV-pol image. (d) Minimum HV-pol image.
(e) HH-pol difference (MAX–MIN) image. (f) HV-pol difference (MAX–MIN) image. Areas exhibiting
large seasonal variations in backscatter appear bright in (e) and (f). (© JAXA).
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2.2.2. Classification Algorithm

This study employs a decision tree method for classification. Building on methods developed by
Martinez, et al. [3], vegetation and inundation classes were characterized based on knowledge of the
L-band radar scattering behaviour of inundated vegetation. Four different classes were identified in
the classifier (see Figures 4 and 5):

n Inundated Vegetation (IV);
n Seasonally Submerged Vegetation (SV);
n Open Water (OW);
n Non-Flooded Vegetation (NF).
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Figure 4. Decision tree applied to derive classification for maximum inundation. IV: inundated
vegetation, SV: seasonally submerged vegetation, OW: open water, NF: non-flooded vegetation. The
SRTM elevation threshold was adjusted for each sub-basin to account for variations in elevation and
topography amongst the sub-basins. Ancillary data on urban areas and land cover were used to mask
anthropogenic areas. The elevation and anthropogenic areas are all under the “masked” class.

Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 25 

 

double bounce scattering effect, and the MAX-HHYEAR was thus used to separate the inundated 
vegetation from the non-flooded vegetation. 

 
Figure 4. Decision tree applied to derive classification for maximum inundation. IV: inundated 
vegetation, SV: seasonally submerged vegetation, OW: open water, NF: non-flooded vegetation. The 
SRTM elevation threshold was adjusted for each sub-basin to account for variations in elevation and 
topography amongst the sub-basins. Ancillary data on urban areas and land cover were used to mask 
anthropogenic areas. The elevation and anthropogenic areas are all under the “masked” class. 

Minimum Inundation Extent Classification 

The minimum inundation extent classification was limited to three classes: IV, OW and NF (as 
the seasonally submerged vegetation class, SV, by definition, was absent). The same statistical 
datasets and regions of interest (ROIs) used for the maximum inundation decision tree were used, 
and the thresholds were based on values extracted from the same ROIs as the maximum 
classification. The decision tree structure for classification of minimum inundation is presented in 
Figure 5. 

 
Figure 5. Decision tree for minimum inundation classification. IV: inundated vegetation, OW: open 
water, NF: non-flooded vegetation. 

The MAX-HHYEAR image reflects the minimum extent of open water, so it was used to separate 
OW regions. The (MAX−MIN)-HHYEAR image was used to distinguish NF from inundated or 
seasonally submerged areas. In the minimum inundation images, very small rivers, with widths 
similar to the ScanSAR pixel spacing (50 m) and smaller, could sometimes be misclassified as 
inundated due to the double-bounce scattering effect arising from trees along the banks of rivers that 
were not necessarily inundated. This classification artefact could not be corrected for. 

3. Results 

3.1. Classification 

Figure 6a shows the full-basin maximum inundation extent classification map for the 2014/2015 
hydrological year. Areas (pixels) classified as inundated (IV) or seasonally submerged (SV) 
vegetation have been identified as flooded in at least one of the (nine) acquisitions in the annual 
2014/2015 time series stack. The map thus represents the maximum extent of flooding across the 
whole basin within the full hydrological year in question, regardless of the timing or duration of the 
flooding condition. The minimum inundation extent classification map for 2015/2016 (Figure 6b) 
consequently represents areas that have been identified as non-flooded (NF) in at least one 
acquisition in the November 2015–October 2016 time period. The total flooded area for the entire 
basin for the 2014/2015 maximum period was estimated to 528,741 km2, and the total flooded area for 
the 2015/2016 minimum period to 58,487 km2. 

Figure 5. Decision tree for minimum inundation classification. IV: inundated vegetation, OW: open
water, NF: non-flooded vegetation.

The statistics for each class in the different statistical mosaics were extracted to determine optimal
separation of the various classes. The range of the classes was examined over a ±1 sigma range to
the mean DN or dB values. The thresholds applied in the classification were adjusted using the
classification maps by Jensen et al. [16], Rosenqvist et al. [14], Hess, et al. [9,10] and Chapman et al. [12]
to create thresholds suitable for application to all three years when used in the algorithm.

Seasonally submerged vegetation (SV) was defined as a region having a large difference in both
the HH and HV backscatter between the maximum and minimum intensity images with the algorithm
being optimized to be suitable across the entire basin.

As any changes in land cover occurring between data takes in the time series, such as deforestation
or agriculture, display similar change signals in the difference images as the seasonal inundation
classes, they were masked out to avoid misclassification. As all such areas could not be masked entirely
with the ancillary data available; however (as the GlobCover and GUF datasets extended only to 2006
and 2012, respectively), residual areas were masked manually. For smaller regions of deforestation
and agriculture, an elevation threshold was applied based on examination of algorithm performance,
reducing the misclassified SV regions. Special care was taken to assure that IV classification was not
compromised through this method of masking.
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Maximum Inundation Extent Classification

Figure 4 shows the decision tree applied for classification of maximum inundation. The SRTM
elevation threshold was adjusted within each sub-basin (Figure 2) to account for the differences in
topography across the Amazon Basin. The MIN-HHYEAR (MinHH) image was used to separate OW
and SV areas from other classes. as the largest area of open water is during the high-water season.
The (MAX−MIN)-HVYEAR image was subsequently used to separate SV and OW. A slope image
generated from the DEM was used in some sub-basins to separate the open water (zero slope) from bare
ground/low vegetation, an approach also employed by Chapman et al. [12]. L-band HH-polarization
is, as mentioned previously, highly sensitive to inundated vegetation as a result of the double bounce
scattering effect, and the MAX-HHYEAR was thus used to separate the inundated vegetation from the
non-flooded vegetation.

Minimum Inundation Extent Classification

The minimum inundation extent classification was limited to three classes: IV, OW and NF (as the
seasonally submerged vegetation class, SV, by definition, was absent). The same statistical datasets and
regions of interest (ROIs) used for the maximum inundation decision tree were used, and the thresholds
were based on values extracted from the same ROIs as the maximum classification. The decision tree
structure for classification of minimum inundation is presented in Figure 5.

The MAX-HHYEAR image reflects the minimum extent of open water, so it was used to separate OW
regions. The (MAX−MIN)-HHYEAR image was used to distinguish NF from inundated or seasonally
submerged areas. In the minimum inundation images, very small rivers, with widths similar to the
ScanSAR pixel spacing (50 m) and smaller, could sometimes be misclassified as inundated due to the
double-bounce scattering effect arising from trees along the banks of rivers that were not necessarily
inundated. This classification artefact could not be corrected for.

3. Results

3.1. Classification

Figure 6a shows the full-basin maximum inundation extent classification map for the 2014/2015
hydrological year. Areas (pixels) classified as inundated (IV) or seasonally submerged (SV) vegetation
have been identified as flooded in at least one of the (nine) acquisitions in the annual 2014/2015 time
series stack. The map thus represents the maximum extent of flooding across the whole basin within
the full hydrological year in question, regardless of the timing or duration of the flooding condition.
The minimum inundation extent classification map for 2015/2016 (Figure 6b) consequently represents
areas that have been identified as non-flooded (NF) in at least one acquisition in the November
2015–October 2016 time period. The total flooded area for the entire basin for the 2014/2015 maximum
period was estimated to 528,741 km2, and the total flooded area for the 2015/2016 minimum period to
58,487 km2.
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Figure 6. (a) Full-basin maximum inundation extent for 2014/2015. Light blue: inundated vegetation; 
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indicates the region shown in Figure 7. (b) Full basin minimum inundation extent classification for 

Figure 6. (a) Full-basin maximum inundation extent for 2014/2015. Light blue: inundated vegetation;
purple: submerged vegetation; blue: open water; grey: non-flooded; white: no data. The red box
indicates the region shown in Figure 7. (b) Full basin minimum inundation extent classification for the
hydrological year 2015/2016. Light blue: inundated vegetation; purple: submerged vegetation; blue:
open water; grey: non-flooded; white: no data.
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Figure 7. Minimum and maximum inundation extents over three hydrological years covering the
region in the bounding box in Figure 6. Light blue: inundated vegetation, blue: open water; purple:
seasonally submerged vegetation; grey: non-flooded; white: no data. (a) 2014/2015, (b,c) 2015/2016 and
(d,e) 2016/2017.

The classifications in Figure 6a,b above illustrate the vast extent of seasonal inundation in the
Amazon Basin, annually flooding an area the size of Spain. The majority of the seasonally inundated
varzea (white water) and igapò (black water) wetlands are located along the Amazon river main stem
and its largest tributaries and in the sub-Andean wetlands in Peru. White water rivers include the
Solimões, Madeira, Purus and Juruá rivers. They originate from the Andes and contain nutrient-rich
sediments that result in the light-coloured water. Black water rivers have transparent water due to low
volumes of suspended matter but are high in humic acids. Floodplains from black water rivers have a
lower fertility than white water floodplains [2]. The largest areas of seasonally submerged vegetation
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(purple areas in the lower part of Figure 6a) occur in the Beni savannahs in the Bolivian part of the
Madeira basin.

Figure 7 above shows the results for the three hydrological years for the central part of the
Amazon/Solimões floodplain, indicated by the bounding box in Figure 6, with the Solimões and Purus
river confluence in the central part of the images. Figures on the left are minimum inundation extent
and figures on the right are the maximum inundation extent for each hydrological year.

Table 2 below presents the estimated areas of flooded, open water and submerged regions across
the BL2 sub-basins for the years 2014–2017. The Amazon/Solimões floodplain (#3) had the largest
percentage of inundated vegetation with respect to sub-basin area (29.1% in 2014/2015), followed by
the Amazon Delta (#2) and Manacapuru (#13) basins that both had 20% inundation in the same year.
The Amazon Delta (#2) also has the largest percentage of open water due to its proximity to the Atlantic
Ocean. With the exception of the Bolivian savannahs, the percentage of submerged vegetation for each
sub-basin is low, with an average of 0.8% for 2014/2015. In general, the 2015/2016 hydrological year
exhibited less inundation across the basin than 2014/2015 and 2016/2017, with some exceptions being
in the sub-basins north of the Amazon floodplain. Overall, the maximum inundation extent for the
entire basin was 7% (412,824 sq. km) of the entire basin area in 2014/2015, 5.5% in 2015/2016 and 6%
in 2016/2017. The percentage of submerged vegetation was 0.8–0.9%, and that of open water was 1%
across all three years.

The minimum extent for 2014/2015 has been omitted in this study due to lack of consistent
PALSAR-2 data for that period. For the following years, the minimum inundation extent for the entire
basin was 0.1%, and the region of open water covered 0.9% of the basin.
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Table 2. Maximum and minimum inundation area estimates Nov. 2014 – Oct 2017 for Amazon basin tributary rivers, Basin Level 2 as per Venticinque et al. [26].

2014/2015 2015/2016 2016/2017

MAX MIN MAX MIN MAX

# Basin Name
(BL2)

Basin
Area

(sq. km)

Inund.
Veg

Subm.
Veg.

Open
Water

TOTAL
Flooded

Inund.
Veg

Open
Water

TOTAL
Flooded

Inund.
Veg

Subm.
Veg.

Open
Water

TOTAL
Flooded

Inund.
Veg

Open
Water

TOTAL
Flooded

Inund.
Veg

Subm.
Veg.

Open
Water

TOTAL
Flooded

1 Abacaxis 126,985 7661 419 1260 9340 78 1083 1160 5314 475 1238 7027 56 1143 1199 6784 339 1271 8395

2 Amazon Delta 67,868 13,873 2186 8820 24,880 261 8629 8890 11,901 2649 8555 23,104 181 8601 8782 13,409 2695 8373 24,478

3
Amazonas/
Solimões

Floodplain
255,043 74,171 8138 19,243 101,552 285 16,149 16,434 59,008 10,051 17,078 86,137 185 17,071 17,256 66,007 7670 19,059 92,736

4 Curuá-Una 30,670 136 93 14 243 22 0 22 337 122 12 471 21 1 21 334 118 14 466

5 Ica/Putumayo 118,240 15,361 209 763 16,333 27 635 662 15,607 283 753 16,642 12 635 647 12,448 252 755 13,454

6 Japurá 252,810 18,653 538 1477 20,668 66 1274 1340 18,883 679 1470 21,031 41 1270 1311 15,658 470 1464 17,591

7 Jari 134,108 3283 225 87 3595 107 64 172 3653 261 95 4009 84 56 140 3833 250 87 4170

8 Javari 107,605 5104 82 184 5370 13 47 60 4346 136 193 4675 19 41 60 4619 152 169 4940

9 Juruá 189,101 18,082 528 1265 19,875 34 458 492 10,766 420 1318 12,503 51 467 518 13,702 423 1422 15,547

10 Jutaí 89,100 6104 137 298 6540 11 125 135 3947 151 291 4388 21 117 138 4971 187 258 5416

11 Madeira 1,323,679 63,054 30,468 6408 99,930 2866 5767 8633 32,015 24,871 6516 63,403 4233 5784 10,017 39,977 28,428 6467 74,871

12 Madeirinha 37,091 3588 218 581 4387 13 286 300 2305 197 544 3047 16 314 330 3249 182 564 3996

13 Manacapuru 11,327 2358 142 314 2814 12 265 277 1703 107 308 2118 5 274 279 1978 109 324 2410

14 Marañón 361,885 36,803 631 2044 39,477 461 1092 1553 33,924 979 2018 36,921 337 1131 1468 35,476 733 2042 38,252

15 Napo 100,845 9924 114 497 10,535 17 377 394 9143 193 489 9825 9 388 397 8437 143 489 9069

16 Natay 16,721 931 5 33 969 2 13 15 1173 18 31 1223 1 15 16 993 11 34 1039

17 Negro 716,103 56,795 4954 6460 68,209 744 5565 6309 59,798 4269 6584 70,651 420 5835 6255 58,806 2369 6994 68,169

18 Piorini 8402 1481 46 145 1672 1 105 105 1063 66 110 1239 0 138 138 1008 23 160 1191

19 Purus 368,240 30,534 1927 866 33,327 166 685 852 19,697 1358 844 21,898 91 718 810 23,031 1182 885 25,098

20 Tapajós 494,412 8745 2 4141 12,888 156 4010 4166 5054 0 3914 8968 141 4121 4262 5820 2 3027 8849

21 Tefé-Urucu 59,878 3969 277 1046 5293 12 954 967 2702 206 1072 3980 2 1020 1023 2856 143 1133 4132

22 Trombetas 149,976 3545 287 529 4361 44 434 479 3401 396 517 4315 18 452 470 3081 241 535 3857

23 Uatumā 73,295 2226 310 1411 3948 283 360 642 3199 194 492 3885 17 424 441 2213 1048 1117 4378

24 Ucayali 353,922 19,813 930 2581 23,324 295 1562 1857 15,015 892 2488 18,395 262 1525 1787 19,229 908 2317 22,454

25 Xingu 507,108 6629 3 2580 9213 168 2404 2572 3920 1 2506 6426 172 2429 2601 5198 0 2556 7754

Total (sq. km) 5,954,414 412,824 52,870 63,048 528,741 6145 52,343 58,487 327,872 48,974 59,436 436,282 6395 53,972 60,367 353,118 48,076 61,517 462,711
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3.2. Temporal Representation of Annual Maximum and Minimum River Stages

In order to assess how accurately the inundation maps generated actually characterize the
minimum and maximum inundation extents across the basin for each of the three hydrological years,
we have assessed how well the PALSAR-2 acquisitions coincided with the high and low water extremes
across the ten river gauge stations described above in Table 1 and Figure 2.

The diagram in Figure 8 below shows river height measurements since 1990 at the Itapeua gauge
station (ANA code o-385) along the central part of the Solimões river, where water levels can differ
more than 16 m between the high and low water seasons. The PALSAR-2 observation period is shown
in yellow, with the acquisition dates for the ScanSAR data used in this study indicated with red crosses.
Despite the rather coarse 42-day temporal repeat of the ScanSAR datatakes, the high-water extremes at
this station have been captured within 6, 11 and 16 cm of the maximum levels recorded in 2015, 2016
and 2017, respectively. The low water extremes on the other hand, were captured less accurately, at 76
and 152 cm above the annual minimum levels recorded at Itapeua in 2015 and 2016.
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2 data. 
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20%. The differences can be expected to be driven partly by the different classification algorithms and 
masking techniques used, but perhaps even more so due to the fact that the PALSAR-2 time series 
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comprising the start of the next high water season in the Pacaya-Samiria region, resulting in the fact 
that the two products cannot be assumed to represent identical inundation conditions. 

Figure 8. River stages 1990–2018. Station o-385, Itapeua, Rio Solimões (S4.058◦/W63.028◦). Red,
green and yellow fields indicate JERS-1 SAR, ALOS-PALSAR and ALOS-2 PALSAR-2 acquisition
periods, respectively. Red crosses indicate PALSAR-2 acquisition dates and illustrate how well the
annual maximum and minimum inundation levels around the gauge station were captured in the
PALSAR-2 data.

Across the Amazon Basin, the differences between the annual extremes and the heights during the
ScanSAR datatakes for each of the ten gauging stations are provided in Table 1 above (see figures in
brackets). The corresponding stage height graphs for the other nine stations are given in Appendix A
(Figure A1a–i).

The results indicate that the PALSAR-2 acquisitions provide a good representation of the high
water extremes across the ten stations for all three years (two out of 28 datatakes within 50 cm of
annual max), and fair representation of the low water the two years in question (14 out of 20 within
100 cm of the annual minimum).

4. Discussion: Comparison with Other Inundation Datasets

The lack of reference data on inundation extent is a major challenge associated with validation
of wide-area inundation datasets such as the ones generated in this study. As standing water below
a closed forest canopy cannot be detected by optical remote sensing or short wavelength (C-band,
X-band) SAR sensors, and field measurements in situ only can provide point-wise or transect data,
long-wavelength (L-band) SAR sensors remain the only means to provide geospatial information about
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forest inundation. It thus follows that the best we can do in terms of “proxy” validation is comparisons
with other inundation datasets also generated by L-band SAR.

4.1. Local-Scale Comparison

A three-year maximum inundation extent map generated by Jensen et al. [16] over the
Pacaya-Samiria National Reserve in Peru was used as proxy reference dataset to assess the robustness of
the decision tree algorithm developed in this study for application across the entire Amazon Basin. The
Jensen map was generated using PALSAR-2 ScanSAR time-series data that overlapped the data used
in this study, spanning from November 2014 to February 2018, and accompanied by field validation
in Peru.

To allow a more direct comparison with the Jensen map, a combined three-year maximum
inundation extent image over the Pacaya-Samiria area was assembled from the three separate
maximum inundation products generated in this study. The landcover classes were combined to
represent only inundated vegetation, open water and non-flooded/masked/no data classes.

The two classified products are presented in Figure 9 and the corresponding confusion matrix
in Table 3. The results suggest an overall agreement (86%) between the two classifications, with
omissions and commissions in the inundated vegetation and open water classes in the order of 15–20%.
The differences can be expected to be driven partly by the different classification algorithms and
masking techniques used, but perhaps even more so due to the fact that the PALSAR-2 time series used
for the two classifications differ slightly. The PALSAR-2 data used in this study end in October 2017,
while the Jensen time series extends another four months until February 2018, thereby also comprising
the start of the next high water season in the Pacaya-Samiria region, resulting in the fact that the two
products cannot be assumed to represent identical inundation conditions.
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Table 3. Confusion matrix of the two decision tree classifications over Pacaya-Samiria National Reserve
by Jensen et al. (2018) and this study. Values are in km2.

This Study

Inund.
Veg.

Open
Water

Non-Flooded/
No Data

Total
[sq. km]

Comm.
Error

Jensen et al.
(2018)

Inundated Veg. 45,626 173 10,381 56,181 19%

Open Water 159 2456 525 3140 22%

Non-flooded/No Data 7969 471 71,192 79,633 11%

Total [sq. km] 53,755 3101 82,098 138,953

Omission error 15% 21% 13% Overall agreement: 86%

4.2. Basin-Wide Comparison

4.2.1. Dataset Characteristics

The inundation maps generated by Hess et al. from JERS-1 SAR [9,10] and Chapman et al. from
ALOS PALSAR [12] were used for a basin-wide comparison. Although the three datasets cover different
time periods and use different class definitions, this presents an interesting opportunity to compare the
classifications also at sub-basin scale across the 25 BL2 catchments defined by Venticinque et al. [26].

To accommodate a simple comparison between the datasets, the detailed and more numerous
classes present in the JERS-1 classification by Hess et al. were combined to form the four main classes
used in this study (i.e., IV, SV, OW and NF). As this study did not include macrophytes and did not
distinguish between different vegetation types, as was carried out for the JERS-1 study; the macrophytes
class in the JERS-1 study was therefore incorporated into the submerged vegetation class (SV), while
the inundated shrub, woodland and forest classes were all combined into the inundated vegetation
(IV) class.

Classes in the PALSAR-1 derived dataset by Chapman et al. included “occasionally flooded” and
open water, and these were combined with the inundated vegetation (IV) and open water (OW) classes,
respectively, for the maximum inundation extent. Similarly, occasionally flooded and occasionally
open water classes defined in the PALSAR-1 dataset were associated with the non-flooded class (NF)
in the minimum extent dataset.

It should be noted that the inundation figures for the JERS-1, PALSAR and PALSAR-2 products
are not directly comparable, as each product represents a slightly different definition of inundation.
The maps by Hess et al. are based on “snapshots” of the (September–December) 1995 low water and
(May-Aug) 1996 high water extents, while the Chapman et al. product depicts the high water and low
water averages during the 2006–2010 time period. The figures for this study used for this comparison,
in turn represent the three-year combined maximum and minimum values.

As flood extents can vary significantly between years and between sub-basins across the Amazon,
relative river gauge data from the ten ANA stations (in Table 1) are also provided in Tables 4 and 5.
For this study the stage values represent the water levels measured during actual PALSAR-2 acquisition
dates, while for the Hess and Chapman maps (for which the exact SAR acquisition dates are not
provided) the stage values indicate the station maximum and minimum readings for the respective
acquisition periods, and thus only provide an approximate indication of the river levels during the
JERS-1 and PALSAR acquisitions.



Remote Sens. 2020, 12, 1326 17 of 25

Table 4. Comparison of Amazon Basin high water/maximum inundation maps 1996–2017 by Hess et al. [8,9], Chapman et al. [11] and this study.

JERS-1 SAR (Hess et. al. 2003 & 2015) ALOS PALSAR (Chapman et. al. 2015) ALOS-2 PALSAR-2 (This study)
1996 HIGH Water Extent 2006-2010 AVERAGE HIGH Water Extent 2014-2017 MAXIMUM Extent

# Basin Name (BL2) Basin Area
(sq. km)

1996 MAX
Gauge (m)

Inund.
Veg

Subm.
Veg.

Open
Water

TOTAL
Flooded

2006-2010
MAX

Gauge (m)

Inund.
Veg

Subm.
Veg.

Open
Water

TOTAL
Flooded

PALSAR-2
MAX

Gauge (m)

Inund.
Veg

Subm.
Veg.

Open
Water

TOTAL
Flooded

1 Abacaxis 126,985 4.29% 0.13% 1.31% 5.7% 5.32% N/A 1.16% 6.5% 6.03% 0.37% 1.00% 7.4%
2 Amazon Delta 67,868 N/A N/A N/A N/A 24.28% N/A 4.90% 29.2% 20.44% 3.22% 13.00% 36.7%

3 Amazonas/Solimões
Floodplain 255,043 o-385: 14.78

o-681: 7.88 26.42% 3.71% 9.48% 39.6% o-385: 16.14
o-681: 9.04 17.30% N/A 9.22% 26.5% o-385: 16.64

o-681: 8.48 29.08% 3.94% 7.55% 40.6%

4 Curuá-Una 30,670 1.41% 0.05% 0.08% 1.5% 2.93% N/A 1.92% 4.8% 1.10% 0.40% 0.05% 1.6%
5 Ica/Putumayo 118,240 11.78% 0.68% 0.89% 13.3% 10.78% N/A 0.99% 11.8% 13.20% 0.24% 0.65% 14.1%
6 Japurá 252,810 9.08 7.36% 0.70% 0.78% 8.8% 9.80 9.21% N/A 2.92% 12.1% 10.30 7.47% 0.27% 0.58% 8.3%
7 Jari 134,108 1.51% 0.03% 0.06% 1.6% 4.98% N/A 0.55% 5.5% 2.86% 0.19% 0.07% 3.1%
8 Javari 107,605 13.61 3.15% 0.26% 0.06% 3.5% 15.09 3.89% N/A 0.11% 4.0% 14.77 4.74% 0.14% 0.18% 5.1%
9 Juruá 189,101 6.44% 0.75% 0.29% 7.5% 6.84% N/A 0.38% 7.2% 9.56% 0.28% 0.75% 10.6%

10 Jutaí 89,100 6.36% 0.59% 0.17% 7.1% 7.74% N/A 0.08% 7.8% 6.85% 0.21% 0.34% 7.4%
11 Madeira 1,323,679 13.16 7.40% 6.99% 1.17% 15.6% 14.52 4.68% N/A 3.45% 8.1% 13.58 4.76% 2.30% 0.49% 7.6%
12 Madeirinha 37,091 8.86% 0.22% 1.22% 10.3% 6.38% N/A 0.87% 7.3% 9.67% 0.59% 1.57% 11.8%
13 Manacapuru 11,327 9.32% 0.18% 3.16% 12.7% 9.23% N/A 2.55% 11.8% 20.82% 1.25% 2.86% 24.9%
14 Marañón 361,885 7.92% 0.98% 0.34% 9.2% 6.71% N/A 1.06% 7.8% 10.17% 0.27% 0.56% 11.0%
15 Napo 100,845 6.19% 0.69% 0.75% 7.6% 8.30% N/A 0.90% 9.2% 9.84% 0.19% 0.49% 10.5%
16 Natay 16,721 4.56% 0.39% 0.05% 5.0% 3.47% N/A 0.09% 3.6% 7.02% 0.11% 0.21% 7.3%
17 Negro 716,103 12.21 10.98% 0.40% 1.37% 12.8% 12.71 11.44% N/A 1.42% 12.9% 12.00 8.35% 0.69% 0.98% 10.0%
18 Piorini 8402 9.10% 0.13% 2.12% 11.3% 8.83% N/A 1.44% 10.3% 17.63% 0.79% 1.90% 20.3%
19 Purus 368,240 15.52 6.02% 0.58% 0.44% 7.0% 17.14 5.95% N/A 0.96% 6.9% 17.46 8.29% 0.52% 0.24% 9.1%
20 Tapajós 494,412 7.35 2.54% 0.06% 0.96% 3.6% 8.65 3.05% N/A 3.57% 6.6% 7.40 1.77% 0.00% 0.84% 2.6%
21 Tefé-Urucu 59,878 6.25 6.28% 0.07% 1.98% 8.3% 7.35 4.66% N/A 1.79% 6.5% 6.88 6.63% 0.46% 1.89% 9.0%
22 Trombetas 149,976 4.03% 0.09% 0.50% 4.6% 3.57% N/A 0.83% 4.4% 2.36% 0.26% 0.36% 3.0%
23 Uatumā 73,295 6.54% 0.31% 0.82% 7.7% 6.65% N/A 1.77% 8.4% 4.36% 1.43% 1.92% 7.7%
24 Ucayali 353,922 4.38% 0.64% 0.49% 5.5% 5.88% N/A 4.23% 10.1% 5.60% 0.26% 0.73% 6.6%
25 Xingu 507,108 5.11 5.17% 0.07% 0.66% 5.9% 6.13 3.63% N/A 4.44% 8.1% 6.08 1.31% 0.00% 0.51% 1.8%

7.43% 2.04% 1.22% 10.7% 6.81% N/A 2.73% 9.5% 7.02% 0.95% 1.08% 9.0%
Total 5,954,414 437,553 119,836 72,047 629,436 405,368 N/A 162,696 568,064 418,219 56,464 64,016 538,699
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Table 5. Comparison of Amazon Basin low water/minimum inundation maps 1995–2017 by Hess et al. [8,9], Chapman et al. [11] and this study.

JERS-1 SAR (Hess et. al. 2003 & 2015) ALOS PALSAR (Chapman et. al. 2015) ALOS-2 PALSAR-2 (This Study)
1995 LOW Water Extent 2006-2010 AVERAGE LOW Water Extent 2014-2017 MINIMUM Extent

# Basin Name (BL2) Basin Area
(sq. km)

1995 MIN
Gauge (m)

Inund.
Veg

Subm.
Veg.

Open
Water

TOTAL
Flooded

2006-2010
MIN

Gauge (m)

Inund.
Veg

Subm.
Veg.

Open
Water

TOTAL
Flooded

PALSAR-2
MIN

Gauge (m)

Inund.
Veg

Subm.
Veg.

Open
Water

TOTAL
Flooded

1 Abacaxis 126,985 1.43% 0.04% 1.12% 2.6% 0.49% N/A 0.88% 1.4% 0.04% 0.00% 0.85% 0.9%
2 Amazon Delta 67,868 N/A N/A N/A N/A 3.40% N/A 0.41% 3.8% 0.27% 0.00% 12.67% 12.9%

3 Amazonas/Solimões
Floodplain 255,043 o-385: 2.41

o-681: 0.66 8.13% 2.30% 7.34% 17.8% o-385: 0.00
o-681: 0.46 3.16% N/A 6.17% 9.3% o-385: 3.46

o-681: 1.23 0.07% 0.00% 6.33% 6.4%

4 Curuá-Una 30,670 0.36% 0.00% 0.06% 0.4% 0.03% N/A 0.06% 0.1% 0.07% 0.00% 0.00% 0.1%
5 Ica/Putumayo 118,240 4.98% 0.38% 0.89% 6.2% 0.40% N/A 0.60% 1.0% 0.01% 0.00% 0.54% 0.6%
6 Japurá 252,810 1.64 3.59% 0.41% 0.75% 4.8% 1.41 0.46% N/A 0.52% 1.0% 3.50 0.02% 0.00% 0.50% 0.5%
7 Jari 134,108 0.66% 0.02% 0.03% 0.7% 0.12% N/A 0.03% 0.1% 0.06% 0.00% 0.04% 0.1%
8 Javari 107,605 1.48 1.58% 0.18% 0.03% 1.8% 0.00 0.03% N/A 0.01% 0.0% 2.04 0.01% 0.00% 0.04% 0.1%
9 Juruá 189,101 2.85% 0.48% 0.23% 3.6% 0.51% N/A 0.06% 0.6% 0.02% 0.00% 0.24% 0.3%

10 Jutaí 89,100 2.61% 0.39% 0.16% 3.2% 0.12% N/A 0.05% 0.2% 0.01% 0.00% 0.13% 0.1%
11 Madeira 1,323,679 0.36 1.91% 2.75% 0.77% 5.4% 0.00 0.59% N/A 0.51% 1.1% 1.31 0.22% 0.00% 0.44% 0.7%
12 Madeirinha 37,091 3.86% 0.09% 0.81% 4.8% 1.56% N/A 0.56% 2.1% 0.04% 0.00% 0.77% 0.8%
13 Manacapuru 11,327 4.51% 0.09% 2.01% 6.6% 3.46% N/A 2.04% 5.5% 0.04% 0.00% 2.34% 2.4%
14 Marañón 361,885 6.54% 0.80% 0.34% 7.7% 1.33% N/A 0.22% 1.6% 0.09% 0.00% 0.30% 0.4%
15 Napo 100,845 3.22% 0.36% 0.72% 4.3% 0.61% N/A 0.51% 1.1% 0.01% 0.00% 0.37% 0.4%
16 Natay 16,721 2.92% 0.29% 0.04% 3.3% 0.06% N/A 0.03% 0.1% 0.01% 0.00% 0.08% 0.1%
17 Negro 716,103 1.38 3.71% 0.09% 0.93% 4.7% 0.00 2.19% N/A 0.80% 3.0% 1.60 0.06% 0.00% 0.78% 0.8%
18 Piorini 8402 3.88% 0.08% 1.36% 5.3% 2.08% N/A 1.15% 3.2% 0.00% 0.00% 1.25% 1.3%
19 Purus 368,240 0.93 2.88% 0.37% 0.29% 3.5% 0.00 0.75% N/A 0.19% 0.9% 3.32 0.02% 0.00% 0.19% 0.2%
20 Tapajós 494,412 0.37 0.87% 0.01% 0.93% 1.8% 0.00 0.13% N/A 0.85% 1.0% 0.38 0.03% 0.00% 0.81% 0.8%
21 Tefé-Urucu 59,878 N/A 3.30% 0.04% 1.42% 4.8% 0.00 0.74% N/A 1.50% 2.2% 0.84 0.00% 0.00% 1.59% 1.6%
22 Trombetas 149,976 1.33% 0.02% 0.43% 1.8% 0.10% N/A 0.31% 0.4% 0.01% 0.00% 0.29% 0.3%
23 Uatumā 73,295 3.65% 0.24% 0.74% 4.6% 0.35% N/A 1.10% 1.4% 0.02% 0.00% 0.49% 0.5%
24 Ucayali 353,922 2.88% 0.44% 0.44% 3.8% 0.51% N/A 0.52% 1.0% 0.07% 0.00% 0.43% 0.5%
25 Xingu 507,108 0.62 2.50% 0.02% 0.56% 3.1% 0.34 0.27% N/A 0.44% 0.7% 0.44 0.03% 0.00% 0.47% 0.5%

2.95% 0.89% 0.94% 4.8% 0.83% N/A 0.76% 1.6% 0.08% 0.00% 0.88% 1.0%
Total 5,954,414 175,814 53,188 56,018 285,020 48,984 N/A 44,510 93,494 4,982 0 52,287 57,270
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4.2.2. Observations

Table 4 below shows the high water/maximum estimates for the three products. The total area
of the Amazon Basin used in this study is 5,954,414 km2, corresponding to the sum of the 25 BL2
sub-basins by Venticinque et al. [26].

An initial observation is that both this study and Chapman have mapped fewer inundated
environments (IV, SV and OW) than that by Hess, despite the fact that maximum river heights
measured during the PALSAR and PALSAR-2 observations along most gauging stations are similar
or higher than the corresponding values during the JERS-1 observation period. The fractions of total
flooding mapped by this study and Chapman et al. amount to 9.0% and 9.5%, respectively; compare
that to 10.7% by Hess et al. The discrepancy is to the largest extent caused by the significantly different
estimates in the (enormous) Madeira basin (#11), where the difference in total flooded area estimated
by Chapman et al. and this study on one hand, and that by Hess et al. on the other, amounts to about
100,000 km2.

Excluding the Madeira basin (as well as the Amazon Delta (basin #2) which is only partially
covered in the JERS-1 product), we note much closer correspondence between the three products, with
total maximum flooded area (including IV, SV and OW) estimated at 414,000 km2, 441,000 km2 and
423,000 km2 for this study, Chapman et al. and Hess el al., respectively.

On a sub-basin level, we note that the Amazon/Solimões floodplain (Basin #3) has a greater
percentage of inundated vegetation mapped by PALSAR-2 compared to the other datasets. This
correlates well with the river stage data for Purus, Amazon and Solimões stations, where the maximum
for 2015 is the highest among the four years gathered between PALSAR-2 and JERS-1. The station
maximums among the three stations are also close in value with that of PALSAR-2, and the dates of the
station maximum and PALSAR-2 acquisition dates for its maximum across the three years for Purus,
Solimões and Amazon coincide very well. Basin #3 has a 10–20% lower inundation percentage for
2006–2011 compared to the other two decades.

The large Xingu basin (#25) shows very low (<1.5%) inundated vegetation regions for this study;
while twice and three times greater by Chapman and by Hess, respectively Comparing this to the
Xingu stage data, the maximum levels are lower for the sensors compared to the station’s values; and
2015 shows a very low stage level for the PALSAR-2 acquired date compared to the other years, but
that is not reflected in the estimated inundation percentage in Table 4.

At the Negro station, the maximum levels for all sensors show a very close correspondence to the
station level maximum. The maximum stage values for JERS-1 and the three years in this study are
within 1 m of one another. The percentages of inundation in the Negro basin (#17) for the three years
in this study range between 7.9 and 8.4%, and their similar inundation percentages correlate well with
the similar stage values across the three years. The inundation percentage for JERS-1 is 11.0%, which is
slightly higher than that from this study, despite the stage levels between the years being similar to
one another.

Table 5 shows the low water/minimum estimates for the three products. We note an overall
close correspondence between the PALSAR and PALSAR-2 classifications. This study’s “minimum
extent” constitutes the lowest total flooded area estimate (1% or 57,000 km2), even though the
PALSAR-2 datatakes did not manage to target the annual (2014–2017) minimum gauges very accurately.
The Chapman study estimates the “average low water” at 1.6% (93,000 km2), mainly due to high
estimates for Amazon/Solimões floodplain (and two of its small tributaries, #13 and #18). The JERS-1
“1995 low water” classification estimates total flooded areas at 4.8%.

5. Conclusions

This study has employed PALSAR-2 ScanSAR time series datasets along with ancillary data
(SRTM, landcover maps) within a decision tree classification scheme to create three maximum and two
minimum inundation extent datasets for the period 2014–2017 for the Amazon Basin. Comparisons
with existing local and basin-wide inundation maps also generated by L-band SAR indicate comparable
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results for inundated areas during the maximum inundation conditions, and uniquely low estimates of
minimum inundation extents. Although some available ancillary datasets may differ across regions,
the general technique should be transferable to other flood pulse-dominated wetlands, albeit with
corresponding adjustments made to the region-specific thresholds supporting implementation of the
decision tree. In principle, this architecture should be applicable to other types of wetlands ecosystems,
although some aspects of implementation need to be revisited.

Comparisons between the stage data across the basin and PALSAR-2 acquisition dates/periods
show that the sensor has captured the nature of the maximum and minimum flooding across the basin
but has not captured the precise maximum and minimum inundation levels that have been recorded in
the stage data. Better accuracy of the inundation datasets for all sensors would have been possible with
higher temporal fidelity in the SAR acquisition and in mosaic assembly. Some limitations included
the lack of overlapping temporal ancillary data to effectively mask present urban, agriculture and
deforested areas, and a lack of in situ data over multiple regions across the basin. Availability of these
datasets would have helped create a more accurate inundation product.

Future work will involve the use of the inundation extent datasets from this study to generate
inundation duration products over the entire basin. The inundation extent products will be used as a
mask to delineate the areas of maximum and minimum inundation extents. We will be extending the
time period of the inundation duration datasets to include ScanSAR data until 2018.

6. Data Access

The classification maps generated within this study are available for public download under a
Creative Commons (CC BY 4.0) license at the NASA Earth System Data Record (ESDR) at the Alaska
Satellite Facility Distributed Active Archive Center (DAAC) [13].
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River Stage Data across the Amazon Basin (Source: Agência Nacional de Águas [27])
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2018. o-381, Estirão da Santa Cruz, Rio Tefé (S4.292°/W65.202°). (d) 1990–2018. o-437, Paricatuna, Rio 
Purus (S4.409°/W61.899°); (e) 1990–2018. o-497, Moura, Rio Negro (S1.457°/W61.635°); (f) 1990–2018. 
o-618, Borba, Rio Madeira (S4.389°/W59.599°). (g) 1990–2018. o-681, Óbidos, Rio Amazonas 
(S1.919°/W55.513°); (h) 1990–2018. o-733, Itaituba, Rio Tapajós (S4.276°/W55.982°); (i) 1990–2018. o-
811, Altamira, Rio Xingu (S3.215°/W52.212°). 

Figure A1. (a) River stages 1990–2018. Station o-326, Estirão do Repouso, Rio Javari (S4.341◦/W70.906◦);
(b) 1990–2018. Station o-375, Acanaui, Rio Japurá (S1.821◦/W66.600◦); (c) 1992-2018. o-381, Estirão da
Santa Cruz, Rio Tefé (S4.292◦/W65.202◦). (d) 1990–2018. o-437, Paricatuna, Rio Purus (S4.409◦/W61.899◦);
(e) 1990–2018. o-497, Moura, Rio Negro (S1.457◦/W61.635◦); (f) 1990–2018. o-618, Borba, Rio
Madeira (S4.389◦/W59.599◦). (g) 1990–2018. o-681, Óbidos, Rio Amazonas (S1.919◦/W55.513◦); (h)
1990–2018. o-733, Itaituba, Rio Tapajós (S4.276◦/W55.982◦); (i) 1990–2018. o-811, Altamira, Rio Xingu
(S3.215◦/W52.212◦).
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