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Abstract: The Gaussian vertical backscatter (GVB) model has a pivotal role in describing the forest
vertical structure more accurately, which is reflected by P-band polarimetric interferometric synthetic
aperture radar (Pol-InSAR) with strong penetrability. The model uses a three-dimensional parameter
space (forest height, Gaussian mean representing the strongest backscattered power elevation,
and the corresponding standard deviation) to interpret the forest vertical structure. This paper
establishes a two-dimensional GVB model by simplifying the three-dimensional one. Specifically,
the two-dimensional GVB model includes the following three cases: the Gaussian mean is located
at the bottom of the canopy, the Gaussian mean is located at the top of the canopy, as well as a
constant volume profile. In the first two cases, only the forest height and the Gaussian standard
deviation are variable. The above approximation operation generates a two-dimensional volume
only coherence solution space on the complex plane. Based on the established two-dimensional GVB
model, the three-baseline inversion is achieved without the null ground-to-volume ratio assumption.
The proposed method improves the performance by 18.62% compared to the three-baseline Random
Volume over Ground (RVoG) model inversion. In particular, in the area where the radar incidence
angle is less than 0.6 rad, the proposed method improves the inversion accuracy by 34.71%. It suggests
that the two-dimensional GVB model reduces the GVB model complexity while maintaining a strong
description ability.

Keywords: P-band polarimetric interferometric synthetic aperture radar (Pol-InSAR); forest vertical
structure; Gaussian vertical backscatter (GVB) volume; multi-baseline optimization

1. Introduction

The essence of the model-based polarimetric interferometric synthetic aperture radar (Pol-InSAR)
parameter inversion is to solve the model equations established between the synthetic aperture radar
(SAR) observations and the theoretical forest vertical structure [1–7]. The Random Volume over Ground
(RVoG) model based on the assumption of vertical homogeneous random volume was widely verified
at relatively high frequencies (e.g., X-, C- and L-band) [5–14].

In the process of the Pol-InSAR model inversion, a non-negligible issue is whether the equations
has a unique solution. An effective precondition for single-baseline Quad-pol configuration to make
the RVoG model solution unique is the null ground-to-volume ratio assumption (commonly less than
−10 dB) [6]. Nevertheless, this assumption is no longer valid for P-band observations in which all
polarization channels generally contain significant ground responses [15–19].
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A common solution to this case is to fix the extinction coefficient in the RVoG model [15,16,20–22].
However, as the inversion performance depends heavily on the selection of extinction coefficient,
this technique is restricted in complex actual scene, in which it is unreasonable to apply only a
single extinction coefficient to the parameter estimation of whole scene. An alternative is to increase
the observation space through the multi-baseline configuration [8,17,23–26], and yet in this case,
the inversion based on RVoG model is still obviously underestimated, indicating that multi-baseline is
not enough to make up for the lack of the RVoG model [17,23]. Actually, when P-band SAR systems are
used to observe the low-density forest, the volume scattering layer exhibits a vertical heterogeneous
distribution, leading to the ineffectiveness of RVoG model [17].

To cope with this issue, the Gaussian vertical backscatter (GVB) model with a stronger expression
ability was proposed [27,28]. The GVB model is mainly used to describe the vertical heterogeneity
of volume scattering, which is often effective for the Pol-InSAR inversion where most backscatters
are concentrated in the middle or lower part of the canopy. Compared with the RVoG model which
has only two parameters (forest height and extinction coefficient), the GVB model describes the forest
vertical structure with three parameters (forest height, Gaussian mean and standard deviation), which
effectively improves the description ability of the model, yet brings serious inversion complexity
simultaneously [24,25].

In view of the characteristics of P-band Pol-InSAR observations and the limitations of the existing
methods, this paper proposes the two-dimensional GVB model and the corresponding multi-baseline
inversion. Concretely, in order to apply to the heterogeneity of the forest vertical volume under P-band
observations, the GVB model framework is used to interpret the forest vertical structure. Concurrently,
to alleviate the high complexity of the three-dimensional GVB model, the two-dimensional GVB model
is developed. As for the the model inversion, considering the assumption of null ground-to-volume
ratio is no longer tenable, the multi-baseline configuration is adoped to optimize the model equations.

The remaining part of the paper proceeds as follows. Section 2 retrospects the model-based
Pol-InSAR inversion theory. Section 3 presents the inversion based on the two-dimensional GVB model,
while Section 4 validates the proposed approach with the actual E-SAR data. Finally, the discussions
and conclusions are drawn in Section 5.

2. Model-Based Pol-InSAR Inversion Theory

Once temporal decorrelation and noise decorrelation are ignored, the interferometric coherence in
Pol-InSAR observation mainly includes the volume decorrelation [5–7,29,30]

γ =

∫ z0+hv
z0

F (z) ejkzzdz∫ z0+hv
z0

F (z) dz
(1)

where F (z) is the structure function related to the vertical coordinate z, hv and z0 refer to the forest
height and the ground starting coordinate respectively. The interferometric vertical wavenumber kz is
related to the radar wavelength λ, incidence angle θ and the incidence angle difference between two
interferometric antennas δθ [31]

kz =
4π

λ sin θ
δθ (2)

2.1. RVoG Model and Inversion

As shown in Figure 1, the vertical structure function based on the RVoG model is
given [6,7,29,30,32]
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F (z) = ρve(2σ(z−z0−hv)/ cos θ) + ρge(−2σhv/ cos θ)δ (z− z0) (3)

where σ indicates the extinction coefficient independent of polarization, δ (•) refers to the impulse
function, ρv and ρg related to the specific polarization state represent the backscatter intensities per
unit length corresponding to the volume and ground, respectively.

Figure 1. The profile of Random Volume over Ground model.

Substituting Equation (3) into Equation (1) gives the volume decorrelation under the assumption
of the RVoG model

γ (ω) = ejφ0
γv + µ (ω)

1 + µ (ω)
(4)

where φ0 = kzz0 is the ground interferometric phase, ω represents the unit vector characterizing
polarization, γv and µ (ω) indicate the volume only coherence and the ground-to-volume power
ratio [6,7,29,30,32]

γv (hv, σ) =

∫ hv
0 e(2σz/ cos θ)ejkzzdz∫ hv

0 e(2σz/ cos θ)dz
=

2σ

cos θ
(
e(2σhv/ cos θ) − 1

) ∫ hv

0
e(2σz/ cos θ)ejkzzdz (5)

µ (ω) =
2σ

cos θ
(
e(2σhv/ cos θ) − 1

) ρg

ρv
(6)

According to the random volume hypothesis, the extinction coefficient σ is independent of
polarization, while φ0 depends on the baseline. Therefore, once the baseline is determined, hv, σ and φ0

in Equations (4) and (5) remain unchanged, while only µ (ω) varies with polarization state. Since the
single-baseline Quad-pol provides three measured complex coherences corresponding to independent
polarization channels, the parameter inversion can be achieved by a six-dimensional optimization
process [5,6,15,17,19]

[
ĥv, σ̂, φ̂0, µ̂i

]T
= arg min

[hv ,σ,φ0,µi ]


∥∥∥∥∥∥∥
γ̂ (ω1)

γ̂ (ω2)

γ̂ (ω3)

−
γ (hv, σ, φ0, µ1)

γ (hv, σ, φ0, µ2)

γ (hv, σ, φ0, µ3)


∥∥∥∥∥∥∥
 (7)
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where
[

ĥv, σ̂, φ̂0, µ̂i

]T
is the parameter estimation and subscript i = 1, 2, 3 represent any three

independent polarization channels. ‖•‖ denotes the matrix 2-norm operation, γ̂ and γ represent
the radar observation and the theoretical prediction respectively. Although the optimization process
consists of six unknowns and six independent equations, the inversion cannot get a unique solution
due to the nonlinear form of the equation [17].

One way to guarantee a unique solution to the single-baseline configuration is to assume that
there is at least one polarization channel with little ground response [6,7,17]. Under this assumption,
µ3 = 0 can be set directly, and the optimization expression at this time is as follows

[
ĥv, σ̂, φ̂0, µ̂i

]T
= arg min

[hv ,σ,φ0,µi ]


∥∥∥∥∥∥∥
γ̂ (ω1)

γ̂ (ω2)

γ̂ (ω3)

−
 γ (hv, σ, φ0, µ1)

γ (hv, σ, φ0, µ2)

γ (hv, σ, φ0, µ3 = 0)


∥∥∥∥∥∥∥
 (8)

As mentioned before, the null ground-to-volume ratio assumption is no longer effective for P-band
SAR observations. In this case, a common single-baseline inversion method for P-band observations is
to fix the extinction coefficient [15,16,20–22]

[
ĥv, φ̂0, µ̂i

]T
= arg min

[hv ,φ0,µi ]


∥∥∥∥∥∥∥
γ̂ (ω1)

γ̂ (ω2)

γ̂ (ω3)

−
γ
(
hv, σ = σpre, φ0, µ1

)
γ
(
hv, σ = σpre, φ0, µ2

)
γ
(
hv, σ = σpre, φ0, µ3

)

∥∥∥∥∥∥∥
 (9)

where σpre represents the extinction coefficient that is determined by prior or empirical information.
Another method to ensure that the inversion has a unique solution while not requiring the null

ground-to-volume ratio assumption is the multi-baseline optimization [17,23]

[
ĥv, σ̂, φ̂

j
0, µ̂i

]T
= arg min[

hv ,σ,φj
0,µi

]



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



γ̂1 (ω1)

γ̂1 (ω2)

γ̂1 (ω3)

...
γ̂n (ω1)

γ̂n (ω2)

γ̂n (ω3)


−



γ1 (hv, σ, φ1
0, µ1

)
γ1 (hv, σ, φ1

0, µ2
)

γ1 (hv, σ, φ1
0, µ3

)
...

γn (hv, σ, φn
0 , µ1

)
γn (hv, σ, φn

0 , µ2
)

γn (hv, σ, φn
0 , µ3

)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥


(10)

where the superscript j = 1, 2, ..., n represent different baselines, among which n is the total
number of baselines involved in the optimization. Under similar experimental environments (radar
system parameters, weather conditions, etc.), µi of different interferometric pairs are assumed to be
constant in the same polarization [24,25,33]. Consequently, for each additional interferometric pair,
the corresponding optimization increases three observational complex coherences and produces
an unknown variable φ0 simultaneously. In other words, when n interferometric pairs are
involved in inversion, the optimization process includes 6n independent equations and n + 5
unknowns concurrently.

2.2. GVB Model and Inversion

As presented in Figure 2, the GVB model can be divided into three situations in line with the
position of δ. The first case in Figure 2a is similar to the RVoG model, which assumes that the strongest
backscatter power is located at the top of the canopy, while Figure 2b,c are supplements of GVB model
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for the heterogeneity of the canopy under P-band observations [25]. The volume only coherence based
on the GVB model is [27,28]

γv (hv, δ, χ) =

∫ hv
0 e
− (z−δ)2

2χ2 +jkzz
dz∫ hv

0 e
− (z−δ)2

2χ2 dz
= e−

χ2k2
z

2 +jδkz
er f
(

1√
2

(
jχkz +

δ
χ

))
− er f

(
1√
2

(
jχkz +

δ−hv
χ

))
er f
(

hv−δ√
2χ

)
+ er f

(
δ√
2χ

) (11)

where δ and χ represent the backscatter mean elevation and the corresponding standard deviation
respectively, and erf (•) indicates the error function.

Figure 2. The profile of Gaussian vertical backscatter volume over ground. (a): δ ≥ hv; (b): δ ∈ (0, hv);
(c): δ ≤ 0.

When δ or χ is fixed, the corresponding solution spaces of GVB model are shown in Figure 3,
from which it can be found that there is an overlapping area between the two solution spaces.
It illustrates that once δ and χ both can take arbitrary values, there are some identical elements
in the corresponding three-dimensional volume only coherence solution space. This will lead to
multiple solutions [24,25].

Under the assumption of the two-layer volume over ground model, the interferometric coherence
based on the GVB model also conforms to Equation (4). As more model parameters are included as
well as the Gaussian form of vertical structure function (resulting in multiple solutions as presented in
Figure 3), the GVB model inversion theoretically requires multi-baseline observations to ensure that
the forest vertical structure with reasonable physical significance can be obtained [24,25]

[
ĥv, δ̂, χ̂, φ̂

j
0, µ̂i

]T
= arg min[

hv ,δ,χ,φj
0,µi

]



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



γ̂1 (ω1)

γ̂1 (ω2)

γ̂1 (ω3)

...
γ̂n (ω1)

γ̂n (ω2)

γ̂n (ω3)


−



γ1 (hv, δ, χ, φ1
0, µ1

)
γ1 (hv, δ, χ, φ1

0, µ2
)

γ1 (hv, δ, χ, φ1
0, µ3

)
...

γn (hv, δ, χ, φn
0 , µ1

)
γn (hv, δ, χ, φn

0 , µ2
)

γn (hv, δ, χ, φn
0 , µ3

)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥


(12)

where
[

ĥv, δ̂, χ̂, φ̂
j
0, µ̂i

]T
is the the parameter estimation. Similarly, it is assumed that δ and χ

are independent of baseline and polarization. When n interferometric pairs are involved in inversion,
the optimization process will include 6n independent equations and n + 6 unknowns concurrently.
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In addition, in order to ensure the physical significance of parameter estimation, some prior or
empirical knowledge can be used to calibrate the initial values and constraints in the optimization
Equation (12) [24,25].

Figure 3. The solution space of Gaussian vertical backscatter model when δ or χ is fixed. Each blue
or red curve represents the volume only coherence for a given forest height at an interval of 1 m.
The terrain slope is set to 0.

3. Two-Dimensional GVB Model and Inversion

3.1. Two-Dimensional GVB Model

Corresponding to the three cases in Figure 2, the two-dimensional GVB model is constructed by
simplifying the original three-dimensional GVB model, as illustrated in Figure 4. Cases δ ≥ hv and
δ ≤ 0 are approximated to δ = hv and δ = 0 respectively, while case δ ∈ (0, hv) is approximated to a
constant volume profile. In these three cases, hv and χ are varied, while δ remains stationary. Since the
constant profile is equivalent to the case that χ is infinite when δ = hv or δ = 0, only the following two
cases are considered in the modeling of volume only coherence

γv (hv, δ, χ) |δ=0 =

∫ hv
0 e

− z2

2χ2 +jkzz
dz∫ hv

0 e
− z2

2χ2 dz
= e−

χ2kz2
2

er f
(

1√
2

jχkz

)
− er f

(
1√
2

(
jχkz − hv

χ

))
er f
(

hv√
2χ

) (13)

γv (hv, δ, χ) |δ=hv
=

∫ hv
0 e

− (z−hv)2

2χ2 +jkzz
dz∫ hv

0 e
− (z−hv)2

2χ2 dz

= e−
χ2kz2

2 +jhvkz
er f
(

1√
2

(
jχkz +

hv
χ

))
− er f

(
1√
2

jχkz

)
er f
(

hv√
2χ

) (14)
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Figure 4. The profile of two-dimensional Gaussian vertical backscatter volume over ground. (a): δ = hv;
(b): constant volume profile; (c): δ = 0.

In line with Equations (13) and (14), the solution space of the two-dimensional GVB model
γv (hv, δ = 0/hv, χ) on the complex plane can be drawn, as shown in Figure 5. Although δ may be 0
or hv, the two cases correspond to two completely non-overlapping regions (blue and green solution
spaces in Figure 5, respectively) on the complex plane. According to the setting of volume simulation
parameters, with the same constant profile, the forest height corresponding to P1 is smaller than that
corresponding to P2. Simultaneously, it can be seen that the solution volume only coherence and P2

are on the same forest height curve. Hence, when the solution volume only coherence lies in the blue
solution space, the solution space containing only δ = hv will cause underestimation, which can be
ameliorated by δ = 0 solution space. Since the null extinction (the extinction coefficient is zero) in
RVoG model has the same solution space curve as the constant profile of the two-dimensional GVB
model, and considering that the vertical structure described in Figures 1 and 4a are similar, the solution
space of RVoG model can be approximately equivalent to the case of δ = hv in two-dimensional GVB
model. In a word, the added δ = 0 solution space is the reason the two-dimensional GVB model is
superior to the RVoG model [25].

In accordance with Figure 5, the solution space relying on the two-dimensional GVB model
is a two-dimensional complex space. Therefore, each element in the solution space can be
uniquely identified

γv (hv, δ = 0/hv, χ) = γv
re + jγv

im (15)

where γv
re and γv

im are the real part and the imaginary part of the homologous volume only
coherence, respectively.

In line with Figures 4 and 5 and Equations (13) and (14), the solution spaces of δ = hv and δ = 0 are
not overlapped, so (δ = 0/hv, χ) can be marked with a factor η (δ = 0/hv, χ). The physical meaning
of (hv, η) represents the vertical structure profile with a unique volume only coherence. In this case,
Equation (15) can be rewritten as

γv (hv, η) = γv
re + jγv

im (16)

where η can be any marking mode in engineering implementation.
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Figure 5. The solution space of two-dimensional Gaussian vertical backscatter model. Each blue or
green curve, or red dot represents the volume only coherence for a given forest height at an interval of
1 m. The terrain slope is set to 0. The blue dot refers to the solution volume only coherence, and the
minimum distance between it and the δ = hv solution space is indicated by the black dotted line. P1 is
the final solution in δ = hv solution space, while P2 corresponds to the solution forest height in δ = 0
solution space. Both P1 and P1 lie on the solution space curve of the constant profile.

3.2. Pol-InSAR Inversion Based on Two-Dimensional GVB Model

The inversion conditions of the two-dimensional GVB volume over ground model and the
two-parameter (hv and σ) RVoG model are the same, i.e., single-baseline Quad-pol configuration
constructs six independent equations and six unknowns simultaneously. Therefore, in order to
ensure a unique solution and avoid the null ground-to-volume ratio assumption, the multi-baseline
configuration is used to carry out the two-dimensional GVB model inversion

[
ĥv, η̂, φ̂

j
0, µ̂i

]T
= arg min[

hv ,η,φj
0,µi

]



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



γ̂1 (ω1)

γ̂1 (ω2)

γ̂1 (ω3)

...
γ̂n (ω1)

γ̂n (ω2)

γ̂n (ω3)


−



γ1 (hv, η, φ1
0, µ1

)
γ1 (hv, η, φ1

0, µ2
)

γ1 (hv, η, φ1
0, µ3

)
...

γn (hv, η, φn
0 , µ1

)
γn (hv, η, φn

0 , µ2
)

γn (hv, η, φn
0 , µ3

)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥


(17)

where
[

ĥv, η̂, φ̂
j
0, µ̂i

]T
is the parameter estimation. Please note that since δ and χ are assumed

to be independent of baseline and polarization, the factor η is also independent of these two system
observation variables. In Equation (17), n baselines can provide 6n independent equations, while there
are n + 5 unknowns to be solved.

Figure 6 presents the flowchart of the proposed two-dimensional GVB modeling and
multi-baseline inversion. The flowchart begins by the conventional Pol-InSAR processing (including
imaging, coregistration, interferometry, flat earth removal, multilooking, filtering and coherence
estimation). It then goes on to the modeling of the two-dimensional GVB model and the corresponding
multi-baseline inversion, which is also the primary contribution made by this paper. First of all,
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the original three-dimensional GVB model is approximate to the two-dimensional GVB model.
Although δ in two-dimensional GVB model still exists two possible values (0 or hv), these two situations
constitute a two-dimensional solution space of the new model without overlapping. Therefore,
two parameters (hv and η in Equation (16)) can be used to mark every possible volume only coherence
in the solution space. In model inversion stage, the solution space corresponding to each baseline is
different, which is related to the interferometric vertical wavenumber kz, while (hv, δ = 0/hv, χ) is
independent of the baseline. Therefore, in line with the one-to-one mapping relationship between
(hv, η) and (hv, δ = 0/hv, χ), forest vertical structure estimates are ultimately available by using the
genetic algorithm to optimize the inversion consisting of no less than two baselines [17].

Figure 6. Flowchart of the proposed two-dimensional GVB modeling and multi-baseline inversion.

4. Validation with P-Band Pol-InSAR Data

4.1. BIOSAR 2008 Data Introduction

The data set applied in this paper is from European Space Agency (ESA) BIOSAR 2008 campaign,
under which the P-band Pol-InSAR experiment was conducted by German Aerospace Center (DLR)
E-SAR system. The experimental site is located in Krycklan catchment, Northern Sweden, mainly
covered by boreal forest (spruce, pine, and birch), and the Pauli-basis polarization composite map
is presented in Figure 7 [23]. On account of the significant topographic fluctuations in the test area,
the external Digital Elevation Model (DEM) data is used to generate terrain slope to compensate the
inversion model, without which there would be a certain degree of inversion error [23,26,29,30,34–37].
In addition, the LiDAR-measured forest height provided in the data set is used as the true value to
evaluate the inversion performance. To carry out the multi-baseline optimization, three interferometric
pairs with baseline lengths of 16 m, 24 m and 32 m are selected in this paper, and the corresponding
parameter information is illustrated in Table 1. Please note that the incidence angle range in Table 1 is
not corrected for terrain slope.
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Figure 7. Pauli-basis polarization composite map.

Table 1. Pol-InSAR data parameters.

Track Baseline (m) kz Range (rad/m) θ Range (rad) Band Polarization

Master Master Master 0.44–0.96 P Quad
Slave 16 0.014–0.135 Slave P Quad
Slave 24 0.021–0.181 Slave P Quad
Slave 32 0.026–0.245 Slave P Quad

4.2. Experimental Results and Analysis

In line with the flowchart in Figure 6, the Pol-InSAR process is first implemented to acquire the
multi-polarization coherences. In the process of coherence estimation, the coherence optimization is
used to suppress the influence of noise and other interferences [38]. The forest height inversion
is completed by inputting the estimated Pol-InSAR coherences into Equation (17), which is an
optimization process weighted by multi-baseline observations. In this paper, three P-band Quad-pol
interferometric pairs with uniform spatial baseline sampling are applied, as shown in Table 1.
200 verification stands are randomly selected to assess the inversion performance. The pixels in
the same stand have similar LiDAR forest heights.

Besides the two-dimensional GVB inversion (consisting of δ = hv and δ = 0), the two-dimensional
GVB with only δ = hv inversion and the RVoG inversion are carried out as well. Based on Equations (10)
and (17), all these three inversions use a three-baseline configuration to increase observation spaces,
thereby avoiding the assumption of null ground-to-volume ratio. In line with the previous analysis,
the advantage of two-dimensional GVB model over RVoG model is that the former not only has the
solution space corresponding to δ = hv (the green curves in Figure 5), but also has the solution space
corresponding to δ = 0 (the blue curves in Figure 5) which is actually a complement to the RVoG model.
Therefore, theoretically, the inversion performance of the two-dimensional GVB model with only δ = hv

should be very similar to that of the RVoG model, and the performance of these two inversions should
be inferior to that of the two-dimensional GVB model containing both δ = hv and δ = 0.

The inversions corresponding to the two-dimensional GVB model (Figure 8a), the two-dimensional
GVB model with only δ = hv (Figure 8b) and the RVoG model (Figure 8c) are presented in Figure 8.
The root mean square error (RMSE) of the three inversions is 3.19 m, 3.90 m, and 3.92 m in turn.
The homologous correlation coefficients R2 are 0.61, 0.62 and 0.62. Consistent with the theoretical
analysis, the performance of the two-dimensional GVB with only δ = hv inversion and the RVoG
inversion are very close. Simultaneously, it can be seen that these two inversions still present a
certain degree of underestimation, which cannot be compensated by a multi-baseline configuration.
After adding the case δ = 0 to the two-dimensional GVB solution space, the underestimation can
be alleviated. Compared with the two-dimensional GVB with only δ = hv inversion and the RVoG
inversion, the two-dimensional GVB inversion improves the performance by 18.21% and 18.62%
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respectively, which indicates the superiority of the proposed two-dimensional GVB model containing
both δ = hv and δ = 0. Since the three correlation coefficients R2 are very close, this indicator
cannot reflect the performance difference of different inversions. In addition, the statistical histogram
of the differences between the above three inversions and the LiDAR measurement is shown in
Figure 8d, which clearly reflects the underestimation of the two-dimensional GVB with only δ = hv

inversion and the RVoG inversion, and the improvement of the two-dimensional GVB inversion for
this underestimation.

0 5 10 15 20 25 30

Lidar forest height (m)

0

5

10

15

20

25

30

F
o
re

s
t 
h
e
ig

h
t 
e
s
ti
m

a
ti
o
n
 (

m
)

Forest Height Estimation

R2=0.61

RMSE=3.19 m

0.4

0.5

0.6

0.7

0.8

0.9

1

Incidence angle (rad)

Lidar forest height

80% of Lidar forest height

120% of Lidar forest height

Forest height estimation stand

(a)

0 5 10 15 20 25 30

Lidar forest height (m)

0

5

10

15

20

25

30

F
o
re

s
t 
h
e
ig

h
t 
e
s
ti
m

a
ti
o
n
 (

m
)

Forest Height Estimation

R2=0.62

RMSE=3.90 m

0.4

0.5

0.6

0.7

0.8

0.9

1

Incidence angle (rad)

Lidar forest height

80% of Lidar forest height

120% of Lidar forest height

Forest height estimation stand

(b)

0 5 10 15 20 25 30

Lidar forest height (m)

0

5

10

15

20

25

30

F
o
re

s
t 
h
e
ig

h
t 
e
s
ti
m

a
ti
o
n
 (

m
)

Forest Height Estimation

R2=0.62

RMSE=3.92 m

0.4

0.5

0.6

0.7

0.8

0.9

1

Incidence angle (rad)

Lidar forest height

80% of Lidar forest height

120% of Lidar forest height

Forest height estimation stand

(c)

-15 -10 -5 0 5 10

PolInSAR inversion - Lidar measurement (m)

0

10

20

30

40

50

60

B
in

 c
o
u
n
t

Distributions of Inversion Errors

2D-GVB Inversion

2D-GVB Inversion (δ=h
v
)

RVoG Inversion

(d)

Figure 8. The forest height estimation of validation stands with (a) two-dimensional GVB model,
(b) two-dimensional GVB model with only δ = hv, and (c) RVoG model, compared with the LiDAR
measurement. The histogram (d) shows the differences between the Pol-InSAR inversion and the
LiDAR measurement with the two-dimensional GVB model, two-dimensional GVB model with only
δ = hv, and RVoG model, respectively. The stands that are counted in (d) correspond to the stands
in (a–c).

In line with the previous work [17,23,25], the multi-baseline RVoG inversion has a relatively
satisfactory performance in the region with a large incidence angle, while the underestimation mainly
exists in the region with a small incidence angle. As a result, the following analysis will focus on the
inversion performance in the small incidence angle region. The stands with an incidence angle less than
0.6 rad (the lower the threshold is set, the more significant the performance difference) in Figure 8 are
selected for quantitative evaluation, as shown in Figure 9. The RMSEs of the three inversions are 3.48 m,
5.31 m and 5.33 m, and the homologous correlation coefficients R2 are 0.41, 0.41 and 0.41. Compared
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with Figure 8a, the two-dimensional GVB inversion in Figure 9a maintains almost the same RMSE, which
indicates that the inversion has a stable performance over the entire incidence angle range. Nevertheless,
compared with Figure 8b,c, the two-dimensional GVB with only δ = hv inversion (Figure 9b) and
the RVoG inversion (Figure 9c) deteriorated in the region with a small incidence angle. Specifically,
the performance of these two inversions is reduced by 36.15% and 35.97%, respectively. This is because
the two-dimensional GVB model with only δ = hv and the RVoG model are more effective in the region
with a large incidence angle , while the two-dimensional GVB model with only δ = 0 mainly works
in the region with a small incidence angle. Therefore, the performance improvement of the proposed
two-dimensional GVB inversion is more obvious in the area of small incidence angle, whose accuracy is
improved by 34.46% and 34.71% compared to Figure 9b,c, respectively. Similarly, from the histogram
in Figure 9d, it is apparent that the two-dimensional GVB inversion has a significant performance
improvement over the two-dimensional GVB with only δ = hv inversion and the RVoG inversion.
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Figure 9. The forest height estimation of validation stands with (a) two-dimensional GVB model,
(b) two-dimensional GVB model with only δ = hv, and (c) RVoG model, compared with the LiDAR
measurement. These validation stands correspond to those in Figure 8 with an incidence angle less
than 0.6 rad. The histogram (d) shows the differences between the Pol-InSAR inversion and the LiDAR
measurement with the two-dimensional GVB model, two-dimensional GVB model with only δ = hv,
and RVoG model, respectively. The stands that are counted in (d) correspond to the stands in (a–c).
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5. Discussions and Conclusions

Since the research in this paper is based on P-band Pol-InSAR observations, the characteristics
of P-band SAR systems were consistently the focus of the entire research. This paper analyzes the
relationships between model parameters and observation spaces (observation baselines). To ensure
that the RVoG optimization has a unique solution, the single-baseline inversion must be combined with
certain rules (such as the null ground-to-volume ratio assumption or guessing a model parameter based
on prior knowledge in advance) [17]. The multi-baseline inversion becomes an effective choice when
the null ground-to-volume ratio assumption is no longer valid (such as the sparse boreal forest under
P-band observations) and a parameter in the model cannot be accurately predetermined. Furthermore,
under P-band observations, the forest canopy exhibits vertical structure heterogeneity, which makes it
necessary to adjust the traditional RVoG model that uses the exponential function to describe the forest
vertical structure. This paper approximates δ ≥ hv, δ ≤ 0 and δ ∈ (0, hv) in GVB model as δ = hv,
δ = 0 and a constant volume profile, thereby simplifying the three-dimensional GVB model into a
two-dimensional GVB model. The two-dimensional GVB model achieves dimensionality reduction
while retaining the advantage of the GVB model over the RVoG model (that is, increasing the solution
space corresponding to δ = 0 in the GVB model). Due to the same mathematical conditions as the RVoG
model, the two-dimensional GVB model optimization also requires a multi-baseline configuration.

The experimental results illustrate that there is clear dependence of the RVoG inversion accuracy
from the incidence angle. A possible reasonable explanation is that the penetration depth of the
electromagnetic wave into the canopy is negatively related to the incidence angle. Specifically,
the RVoG model presents an underestimation in the region with a small incidence angle, while
this underestimation can be improved by the proposed two-dimensional GVB model. The reason for
the underestimation improvement is that the vertical backscatter profile is closer to Figure 4c, which
cannot be expressed by the RVoG model. The corresponding solution space is represented by the blue
curves in Figure 5. When the solution volume only coherence is located in this supplementary solution
space (e.g., the blue dot in Figure 5), the inversion performance based on the two-dimensional GVB
model will be better than that based on the RVoG model.

Compared with the previous work [25], the proposed method achieves similar accuracy
while simplifies the inversion process. Furthermore, the regularity among the parameters used
in reference [25] depends on the specific experimental data, which may not be universal. In contrast,
the method proposed in this paper has more advantages in general adaptability.

Some limitations are also noteworthy. Compared to the single-baseline, the multi-baseline
configuration increases the complexity of the optimization process. In practice, since it may fall
into an optimization without physical significance, the multi-baseline inversion depends to some
extent on optimization initial values and constraints [24,25]. Therefore, a possible solution is to
substitute with the single-baseline configuration to optimize the two-dimensional GVB model to
avoid multi-baseline instability. According to the relationships between independent observation
equations and unknown parameters based on the single-baseline configuration, the realization of the
single-baseline inversion depends on certain prior knowledge, which may be feasible due to a large
number of data sources obtained by multi-sensor at present. Furthermore, the reason for simplifying
the three-dimensional GVB model is that it is too complicated and causes great difficulties in the
inversion process, and yet this simplification may introduce some errors. Although the appearance
of the errors may rely on specific experimental data, it is meaningful to carry out an analysis on the
errors introduced by the simplification operation, which may become a key aspect of future research.
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