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Abstract: Rubber trees along the southeast coast of China always suffer severe damage from
hurricanes. Quantitative assessments of the capacity for wind resistance of various rubber tree clones
are currently lacking. We focus on a vulnerability assessment of rubber trees of different clones under
wind disturbance impacts by employing multidisciplinary approaches incorporating scanned points,
aerodynamics, machine learning and computer graphics. Point cloud data from two typical rubber
trees belonging to different clones (PR107 and CATAS 7-20-59) were collected using terrestrial laser
scanning, and a connection chain of tree skeletons was constructed using a clustering algorithm of
machine learning. The concept of foliage clumps based on the trunk and first-order branches was first
proposed to optimize rubber tree plot 3D modelling for simulating the wind field and assessing the
wind-related parameters. The results from the obtained phenotypic traits show that the variable leaf
area index and included angle between the branches and trunk result in variations in the topological
structure and gap fraction of tree crowns, respectively, which are the major influencing factors relevant
to the rubber tree’s capacity to resist hurricane strikes. The aerodynamics analysis showed that the
maximum dynamic pressure, wind velocity and turbulent intensity of the wind-related parameters in
rubber tree plots of clone PR107 (300 Pa, 30 m/s and 15%) are larger than that in rubber tree plots of
clone CATAS-7-20-59 (120 Pa, 18 m/s and 5%), which results in a higher probability of local strong
cyclone occurrence and a higher vulnerability to hurricane damage.

Keywords: aerodynamics; computer simulation; foliage clump; hurricane disturbance; laser scanning

1. Introduction

Wind is a common disturbance agent in forest ecosystems. In recent years, the frequency and
severity of wind damage through hurricanes have been increasing, causing significant losses in
forestry [1]. Damage due to hurricanes has caused wind throw in forests and reduced the carbon
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storage potential of forests [2], possibly resulting in climatic changes [3]. Rubber trees (Hevea brasiliensis
Müll.Arg.) are among the most important commercial sources of high-quality natural rubber in the
world [4], which makes rubber trees one of the most important industrial crops for tropical regions
in South and Southeast Asia [5]. In Hainan, China, a large number of rubber tree clones have been
planted, although the rubber forests are subjected to periodic hurricanes. For example, in 2011 and 2014,
the losses of tapping rubber trees reached 3.5 million and 4.7 million Yuan on the Leizhou Peninsula
due to hurricanes Nasha and Rammasun, respectively. In 2016, tropical storm Dianmu (August 18th),
severe tropical storm Mirinae (July 26th) and super hurricane Sarika (October 18th) caused extensive
wind damage in the rubber plantations and led to relatively low temperatures [6]. To better predict
wind damage to rubber trees, it is necessary to qualitatively and quantitatively measure the wind
resistance capability of rubber trees of different clones under high-wind conditions [7].

Previous analyses have shown that one of the key issues in predicting and mitigating hurricane
damage to trees is understanding the reasons behind tree damage [8,9]. Currently, the main methods
for studying hurricane-induced tree damage are performed either at the large scale, forest stand scale
or individual tree scale.

For the large scale, remote sensing data, such as satellite imagery, have been combined with
meteorological data to assess and analyse forest damage before and after a hurricane, thereby providing
guidance for forest management [10]. Commonly used satellites include the Google Earth satellite [11],
Ice Cloud and Elevation Satellite (ICE Sat) [12], Landsat Thematic Mapper (TM) and SPOT 16-m [13],
and these data have been applied to study wind-induced damage to forests in the Philippines,
the United States and Finland, respectively. Furthermore, high-spatial resolution (1-m panchromatic
and 4-m multispectral) IKONOS satellite imagery, which is finer in comparison to Landsat or SPOT
16-m imagery, has been used to reflect the disturbance severity of windstorm damage in north-eastern
Minnesota [14]. These approaches that use satellite imagery have the advantage of being simple and
therefore easily applicable; however, these approaches are limited in their power to retrieve detailed
and specific wind-related parameters in forest canopies.

At the forest stand scale, the common approach includes linking risk models with simulation
models of forest stand development, which has enabled the assessment of interactions between wind
and trees (e.g., through wind-induced changes in stand structure, which in turn influence future
susceptibility to disturbances) and the impacts to specific ecosystem services [15]. Simulation models
of forest stands are divided into simple reconstructions [16] and accurate reconstructions [17]. Simple
reconstructions simulate the canopy with a uniform and fixed shape for different tree species and
improves upon the lack of preciseness in the tree model [18]. For example, Forest GALES effectively
models the dynamics of wind damage to forest stands by treating the whole forest stand as a poroelastic
continuous medium [19]. However, these models are currently limited to predictions for structurally
uniform single-species stands [20]. Field measurements for modelling forest stands yield accurate
reconstructions but are extremely time consuming and computationally expensive [21].

A few finer individual tree models have been developed. The two major research objects are the
branch and the leaf. For the branch, measurements taken from trees growing in exposed and sheltered
areas within two structurally similar forests have been used to investigate the influence of wind on the
branch [22]. A multimodal approach was developed to represent the dynamic parameters of branches
on trees during wind using complex models and finite element analyses [23]. Chiba [24] studied
a hurricane-damaged sugi (Cryptomeria japonica D. Don) forest plantation by simulating physical
stress changes in the tree stems caused by wind. Others have investigated the effects of wind on
leaves. Models of tree geometry and leaf deformation have been combined to explore the role of wind
mechanical parameters on leaf inclination angle distributions [25]. Zhu and Shao et al. [26] tested
steady tulip tree (Liriodendron tulipifera L.) leaves under suspended conditions and obtained five critical
wind speeds that can lead to leaf vibration. However, these models are either unable to simulate the
wind parameters of the whole tree or can target only one type of tree.
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As 3D laser scanners become more accurate and affordable and their ability to capture
three-dimensional spatial arrangements increases, terrestrial laser scanning (TLS) is becoming an
increasingly popular resource in forest management and ecology. Biological parameters extracted
from TLS data, such as the gap fraction [27], tree volume [28], leaf area density [29] and tree
diameter at breast height [30], can be successfully assessed without the need for arduous manual
measurements. Furthermore, many algorithms for trees using TLS data have been derived, such as
algorithms for individual leaf property extraction [31], leaf phenotypic characteristic calculation [32]
and photosynthetic and non-photosynthetic part separation [33]. TLS is becoming increasingly useful
for providing information to support forest observations, although the terms of the algorithm aspect
for the detailed description of the whole tree from scanned data still require further improvement.

In summary, while many approaches can simulate wind damage in forests, models for hurricane
damage on forests are still worthy of study. The following issues need to be addressed in the
current researches. First, the forest stand is always considered to be porous media, and the internal
morphological structure of the canopy, plant spacing or planting arrangement cannot be described
accurately. Second, developing an individual tree scale model, including the phenotypic characteristics,
the biological parameters and spatial information of vegetative elements in forest canopies, requires
high computational complexity. Third, given the dangerous environment of a hurricane, using sensors
to effectively measure the wind-related parameters (i.e., dynamic pressure, velocity and turbulent
intensity) in various forest plots is infeasible due to heavy rain affection and unstable power supply.

We must therefore find an adequate compromise for modelling forest stands and propose the
following: (1) Based on the point cloud data obtained by terrestrial laser scanning, a tree skeleton
can be accurately identified and the trunk and multiple first-order branches automatically separated.
(2) A new concept of foliage clump composition based on trunks and different first-order branches
is suggested, in which an optimized rubber tree canopy is modelled by several foliage clumps, and
forest parameter retrievals of each foliage clump are performed to simplify the representation of the
tree models and to depict the spatial structures of the trees as much as possible. (3) By applying
aerodynamic modelling with 3D meshing for various forest plot scenarios composed of rubber tree
models of different clones based on real planting conditions, here, we analyse the performance of
rubber trees of different clones under a strong hurricane load.

2. Materials and Methods

2.1. Study Site and Data Collection

The study area was located in Hainan Dan Zhou (north-western area of Hainan Island,
109◦430–109◦510E; 19◦280–19◦380N) within a rubber tree plantation. The topography of the study area
is a hilly plateau with an elevation of 188 m above sea level at the centre. The plateau is surrounded by
flat lands with elevations of 20–160 m. As China’s largest rubber production base, Hainan Island is
continuously increasing the cultivation of rubber trees. The plantation has converted over 5000 ha of
cultivated land and tropical rain forest since it was established in 1957. Of these lands, nearly 3000 ha
were planted with natural rubber [34]. A wide variety of rubber trees clones was planted on the
plantation, and in this study, two typical clones were selected: PR107 and CATAS7-20-59 (Figure 1).
Based on prior knowledge, CATAS7-20-59 is more resistant to hurricanes than is PR107, although a
quantitative analysis has not been performed. Both rubber trees selected in this study belong to the
Chinese Academy of Tropical Agricultural Sciences Proving Ground and are managed identically.
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Figure 1. Location of the study area and the two forest plots of rubber trees within the Chinese 
Academy of Tropical Agricultural Sciences (CATAS) experimental farm in Danzhou, Hainan Island, 
China. (a) and (b) show the remote sensing images acquired from Google Earth, in which the green 
rectangles mark the edges of Forest Plot 1 (PR107) and the blue rectangles mark the edges of Forest 
Plot 2 (CATAS7-20-59). The photos on the right side show the environments of Forest Plot 1 (c) and 
Forest Plot 2 (d). 

In a previous study of rubber tree property retrieval [6], we proved that rubber trees belonging 
to the same clone have similar topological skeleton structures and phenotypic characteristics. 
Therefore, two typical rubber trees of each clone (PR107 and CATAS 7-20-59) were selected as the 
references for constructing the corresponding tree models. The point clouds of the two typical rubber 
trees, the canopy and skeleton, were obtained using a Leica C10 TLS system in May 2018. The Leica 
C10 instrument is a 532-nm phase-based scanner with a 360° × 270° upward field-of-view and a laser 
rate of 5000 points per second. The instrument setting height was 1.15 m, and the range measurement 
accuracy was ±1.5 mm at a distance of approximately 3.5 m. The circular laser beam diameter and 
beam divergence of the scanner exit were 3 mm and 0.22 mrad, respectively, yielding a minimum 
distance between consecutive beams of approximately 0.4 mm at a distance of 3.5 m from the 
instrument, with a scanning minimum deflection angle of 0.057°. Each tree plot was recorded using 
three scans around the target tree and using the “normal scanning” mode. The registration of the 
three point clouds corresponding to the three scans was carried out by manual adjustment based on 
a procedure in the software Cyclone (Leica Geosystem, Switzerland).  

The structures of the two typical rubber trees represented by the TLS point clouds are illustrated 
in Figure 2a,b. The ground-based scanned point density values were 117,615 points (pts) m−2 and 
88,249 pts m−2 for Rubber Tree 1 (PR107) and Rubber Tree 2 (CATAS7-20-59), respectively. The 
individual tree height, branch diameter, crown width, single-leaf area and angle between the 
branches were measured in situ. The tree height was measured using a Vertex IV hypsometer. The 
branch diameter was measured using a diameter tape. Crown widths were obtained as two values 
measured along two perpendicular directions from the treetop location. The single-leaf area and the 
angles between the trunk and branches were measured using an LI-3000C portable area metre and 
an angle measurement device, respectively.  

Figure 1. Location of the study area and the two forest plots of rubber trees within the Chinese
Academy of Tropical Agricultural Sciences (CATAS) experimental farm in Danzhou, Hainan Island,
China. (a) and (b) show the remote sensing images acquired from Google Earth, in which the green
rectangles mark the edges of Forest Plot 1 (PR107) and the blue rectangles mark the edges of Forest Plot
2 (CATAS7-20-59). The photos on the right side show the environments of Forest Plot 1 (c) and Forest
Plot 2 (d).

In a previous study of rubber tree property retrieval [6], we proved that rubber trees belonging to
the same clone have similar topological skeleton structures and phenotypic characteristics. Therefore,
two typical rubber trees of each clone (PR107 and CATAS 7-20-59) were selected as the references
for constructing the corresponding tree models. The point clouds of the two typical rubber trees,
the canopy and skeleton, were obtained using a Leica C10 TLS system in May 2018. The Leica C10
instrument is a 532-nm phase-based scanner with a 360◦ × 270◦ upward field-of-view and a laser rate
of 5000 points per second. The instrument setting height was 1.15 m, and the range measurement
accuracy was ±1.5 mm at a distance of approximately 3.5 m. The circular laser beam diameter and beam
divergence of the scanner exit were 3 mm and 0.22 mrad, respectively, yielding a minimum distance
between consecutive beams of approximately 0.4 mm at a distance of 3.5 m from the instrument, with
a scanning minimum deflection angle of 0.057◦. Each tree plot was recorded using three scans around
the target tree and using the “normal scanning” mode. The registration of the three point clouds
corresponding to the three scans was carried out by manual adjustment based on a procedure in the
software Cyclone (Leica Geosystem, Switzerland).

The structures of the two typical rubber trees represented by the TLS point clouds are illustrated
in Figure 2a,b. The ground-based scanned point density values were 117,615 points (pts) m−2

and 88,249 pts m−2 for Rubber Tree 1 (PR107) and Rubber Tree 2 (CATAS7-20-59), respectively.
The individual tree height, branch diameter, crown width, single-leaf area and angle between the
branches were measured in situ. The tree height was measured using a Vertex IV hypsometer.
The branch diameter was measured using a diameter tape. Crown widths were obtained as two values
measured along two perpendicular directions from the treetop location. The single-leaf area and the
angles between the trunk and branches were measured using an LI-3000C portable area metre and an
angle measurement device, respectively.
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point cloud, such as isolated laser points. The filtering noise algorithm [35] was adopted. We used 
balls with radii of 10 cm and removed all the balls containing less than 5 points. Figure 3 shows the 
wood-leaf separation results and noise reduction results. 
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Figure 2. Scanned point clouds of two typical tree types in two different forest plots were collected by
terrestrial laser scanning (TLS) and coloured based on height. (a) Typical rubber tree of Forest Plot 1
(PR107); and (b) typical rubber tree of Forest Plot 2 (CATAS7-20-59).

2.2. Data Preprocessing

First, based on the wood-leaf separation method [33], LiDAR points were separated into branch
point clouds (pb

i ) and leaf point clouds (pl
i). The second step required filtering noise from the TLS point

cloud, such as isolated laser points. The filtering noise algorithm [35] was adopted. We used balls with
radii of 10 cm and removed all the balls containing less than 5 points. Figure 3 shows the wood-leaf
separation results and noise reduction results.
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Figure 3. Separating the scanned points of the rubber trees into two parts (i.e., branch and leaf), where
red represents branch point clouds (pb

i ) and green represents leaf point clouds (pl
i). The segmentation

results include a typical rubber tree of (a) clone PR107 and (b) clone CATAS 7-20-59.

2.3. Branch Skeleton Reconstruction

2.3.1. Stratifying Branch Points and Obtaining the Central Points of Each Layer

According to the vertical heights of the individual trees, the branch point cloud is stratified into
LevelNum layers from the ground to the highest branch tip, and the number of layers depends on the
tree height Ht and the height interval ∆h.

LevelNum =
Ht

∆h
(1)
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After obtaining the branch point clouds (pb
i ) of every layer, we extract the central point from the

branch point clouds (pb
i ) in each layer using the cluster algorithm based on the Euclidean distance [36]

with a distance threshold of dist2. If the distance between each pb
i in every layer is less than dist1,

then the set of pb
i is identified as one class in this case. Processed by our algorithm, the central point

cl
j

(
cl

j,x, cl
j,y, cl

j,z

)
of every layer is extracted, where the jth central points in the lth layer are denoted by cl

j.

The central point connection between the adjacent layers is based on the minimum Dijkstra distance.
As shown in Figure 4, three branch point layers and the central point of each layer are marked with
different colours, and the black lines represent the connections between adjacent layers to produce the
3D tree skeleton.
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2.3.2. Adopting the Cylinder Model to Form the Tree Skeleton

We define three categories of nodes in bottom-up order to highlight the central points that will
be used.

1. Root node: root node c1
1 is the lowermost central point.

2. Bifurcation node: bifurcation node nl
j (nl

j ∈ cl
j) has two or more connected child nodes.

3. Edge node: edge node el
i(e

l
i ∈ cl

j) has no connected child nodes (the nearest central point to cl
j is in

the upper layer).

In Figure 5, pink points represent the extracted root node c1
1, red points represent the extracted

edge nodes el
j and green points represent the extracted bifurcation nodes nl

j.

Our algorithm begins from root node c1
1. According to the k-nearest neighbour and plant

growth characteristics, the tree skeleton is transformed into the connection chains from the root
node c1

1 to every edge node el
i. The connection chain between each central point belonging to the

adjacent layer is represented by a cylinder Dl,l−1
i, j

(
cl

i, cl−1
j , r

){
layer = 2, 3, 4, · · · · · · , levelnum

}
, where r is

the radius. According to the plant forest parameters, the diameter of the branch depends on the
height; therefore, the lower the layer of the cylinder, the larger is the radius of the cylinder. For each

cylinder Dl,l−1
i, j

(
cl

i, cl−1
j , r

)
, the radius is based on Dijkstra’s route distance along the connection chain

from the central point of the current cylinder to the root node, and this distance is denoted by Dis(cl
i, c1

1).
The radius r of each cylinder can be obtained as follows:

rDl,l−1
i, j

= λ× 3
√

Dis
(
cl

i, c1
1

)
(2)
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where λ is a constant related to the tree clones. As shown in Figure 6, the skeletons of Rubber Tree 1
(PR107) and Rubber Tree 2 (CATAS7-20-59) were reconstructed.
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Figure 6. Our programming results show the reconstructions of the two rubber trees. (a) Different
colours represent the central points of the branches in each layer of Rubber Tree 1 (PR107). (b) Cylinders
in different colours with different radii assembled into the tree skeleton according to the directions
and the properties of the branches of Rubber Tree 1 (PR107). (c,d) Equivalent figures for Rubber Tree 2
(CATAS7-20-59).
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2.3.3. Recognizing the Trunk and First-Order Branches

To more accurately describe the tree skeleton, we divided the tree skeleton into the trunk and
many first-order branches. For the rubber tree, the trunk, at least near the base of the tree, is often
nearly straight and extends with minimum changes in the growth angle. The trunk is a chain that
must start from the root node (c1

1), and the rest of the chains originating from the trunk will be defined
as different first-order branches. Therefore, our algorithm is based on Dijkstra’s algorithm and seeks
the connection chain regarding the trunk depending on the rule of minimal change in the growth
angle (see Appendix A). For the first-order branches, the connection composed of the central point is
searched from the bifurcation nodes on the trunk to the other edge node. In Figure 7, we use different
colours to represent our derivation results for the trunk and different first-order branches.
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Figure 7. Diagrams of the trunk and first-order branch classifications using our algorithm. The trunk
chain, which indicated in yellow, connected by the central points of each layer was started from the
root node with a nearly straight extension depending on the minimal change in the growth angle.
Other first-order branches stemming from the bifurcation nodes on the trunk and the corresponding
connection chains are represented in different colours. Classification results for (a) Rubber Tree 1
(PR107) and (b) Rubber Tree 2 (CATAS 7-20-59), where A, B, D and E represent first-order branches and
C represents the trunk.

2.3.4. Determining Foliage Clumps based on the Trunk and First-Order Branches

According plant physiological theory, positive pressure resulting from metabolic pumping by the
roots draws in water and nutrients from the soil to the leaves via sieve tubes and vessels, and similar
hydraulic resistance is observed within vascular tissue via the same branch transport [37], which means
that leaves belonging to the same first-order branch have not only a close spatial position and similar
illumination but also almost equivalent nutrients and physiological properties [38]. We therefore
defined a foliage clump as a leaf collection on the same trunk or first-order branch. The 3D watershed
segmentation method [39] was employed to segment the foliage clumps based on the spatial locations
of the trunk and first-order branches, and the segmented foliage clumps are represented by different
colours (Figure 8).
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2.3.5. Retrieving the Foliage Clump Properties

After foliage clump extraction, the parameters of every foliage clump were calculated, including
the leaf area index (LAI), crown volume, foliage clump volume, leaf area density and gap fraction.
Thus, the 3D reconstruction of the total tree can be simplified into a model consisting of a tree branch
skeleton and several foliage clumps.

1. LAI is the ratio of the total leaf area to ground area. First, after the single-leaf extraction and
the number of leaves in each foliage clump were obtained using the method described in [29],
Delaunay triangulation was adopted to deduce the area of each leaf. We acquired the LAI by
computing the ratio of the sum of all leaf areas in each foliage clump to the projected area of each
foliage clump.

2. Crown volume and foliage clump volume: A 3D convex hull algorithm [6] was used to deduce
the tree crown volume and volume of each foliage clump.

3. Leaf area density: For each foliage clump, the leaf area density was expressed as the ratio of total
leaf area to the volume of each foliage clump.

4. Gap fraction: The detailed derivation of the gap fraction of each foliage clump is available in
Appendix B.

2.3.6. Retrieval of the Wind-Related Parameters in the Rubber Tree Plot

We constructed rubber tree models based on the foliage clump concept proposed in Section 2.3.4.
Nine identical rubber tree models of each clone were placed into the plot according to the realistic line
and row spacing distances (for PR107 and CATAS7-20-59, the line spacing and row spacing distances
were 4 m and 9 m, respectively) to constitute the corresponding forest plot scenarios. After the 3D
meshing for the two forest plot scenarios of each clone, the built forest scenario models were brought
into the commercial computational fluid dynamics (CFD) software FLUENT (ANSYS Inc., Canonsburg,
PA, USA) to simulate a full two-way interaction between the hurricane and forest stands and to
calculate the wind-related parameters in the tree plots. The computational model using FLUENT
software is based on a standard k-ε two equation model [40] (Appendix C affording the full description).
The rubber tree plantation in Hainan usually suffers from Level 7 hurricanes with wind speeds of
13.9–17.1 m/s; therefore, we set the wind velocity to 15 m/s, and the results of the specific wind-related
parameters in the forest plot, such as the velocity, dynamic pressure and turbulent intensity, are shown
in the Results section.
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3. Results

3.1. Properties of the Two Rubber Trees

In our algorithm, for Tree 1 (PR107), the ∆h (in Section 2.3.1.) and λ (in Section 2.3.2.) values were
set as 0.05 m and 0.0778, respectively. For Tree 2 (CATAS7-20-59), the ∆h and λ values were set as
0.03 m and 0.0714, respectively.

In this study, some of the forest parameters obtained directly from the point cloud data are listed
in Table 1. Other essential parameters were validated by in situ measurements and are listed in Table 2,
where A, B, D and E represent first-order branches and C represents the trunk, as shown in Figure 7.

Table 1. Studied rubber tree parameters, which were derived directly from the data.

Tree Total Number
of Leaf Points

Tree Crown
Volume

(m3)

Average
Single-Leaf Area

(cm2)

Tree Crown
Projection Area

(m2)

LAI
(m2/m2)

Tree 1 117,615 168.73 75.53 16.08 3.08
Tree 2 88,249 142.51 79.54 12.65 2.62

Table 2. Forest parameters obtained from our method versus field measurements.

Tree
Height (m)/

Crown Diameter (m)
(E-W) × (N-S)

Branch Diameter (cm)
(Our Method/

Field Measurement)

Angle between the Trunk and the First-Order Branch (◦)
(Our Method/Field Measurement)

∠(A,C) ∠(B,C) ∠(D,C) ∠(E,C)

Tree 1 15.36/
3.85 × 5.71

A:21.6/22.1
B:22.3/20.8
C:28.7/30.5
D:25.3/23.9
E:18.7/20.8

45.19/
47.23

53.14/
49.36

47.37/
45.64

60.72/
57.56

Tree 2 17.13/
3.07 × 5.59

A:20.7/22.8
B:16.4/15.7
C:35.1/36.8
D:25.6/27.3
E:18.6/19.5

42.36/
41.78

37.89/
40.25

34.47/
32.92

43.91/
42.24

Note: E-W: east–west direction; N-S: north–south direction; C: trunk.

The growth properties of five foliage clumps of Tree 1 (PR107) and Tree 2 (CATAS7-20-59) are
shown in Figure 8. We computed the total number of point clouds on each foliage clump, foliage
clump volume, projection area, total number of leaves, leaf area, LAI, leaf area density and gap fraction
and compared the parameters for the two rubber trees (Table 3).

Table 3. The calculated growth properties of each foliage clump belonging to various branches.

Tree

Foliage
Clump

Belonging
to T/Fb

Number
of Leaf
Cloud
Points

Foliage Clump
Volume (m3)/

Projection Area
(m2)

Number of Leaves
[29]

Leaf Area
(m2)/LAI

Estimated Leaf
Area Density

(m2/m3)

Gap
Fraction(Our Method/

Field
Measurement)

Tree 1

A(Fb) 20832 29.28/3.26 1157/1274 8.74/2.68 0.30 0.42
B(Fb) 17411 27.65/2.87 967/1027 7.30/2.54 0.26 0.53
C(T) 21548 28.86/3.38 1197/1007 9.04/2.67 0.31 0.48

D(Fb) 38216 49.12/4.23 2123/2242 16.03/3.78 0.33 0.43
E(Fb) 19608 26.78/3.21 1089/1026 8.23/2.56 0.31 0.39

Tree 2

A(Fb) 11410 22.75/2.13 543/609 4.32/2.02 0.19 0.63
B(Fb) 14821 20.34/2.30 706/789 5.62/2.44 0.28 0.61
C(T) 8852 24.70/1.81 421/494 3.35/1.85 0.14 0.73

D(Fb) 11884 25.05/2.23 565/487 4.49/2.01 0.18 0.75
E(Fb) 41282 55.14/5.11 1966/2118 15.64/3.06 0.28 0.57

Note: T: trunk; Fb: first-order branch.



Remote Sens. 2020, 12, 1318 11 of 22

3.2. Reconstruction of the Forest Plot Model

Nine typical and identical tree models belonging to each clone (PR107 or CATAS 7-20-59) were
reconstructed according to the derived foliage clumps and branch attributes using our method, which
constitute the corresponding forest plots of two clones. Then, the meshing step for the two forest plots
was performed to facilitate the discrete solutions of the aerodynamic formulas (Equations (A9), (A12)
and (A13) in Appendix C) for calculation of the aerodynamic parameters in the forest plots, as shown
in Figure 9.
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Figure 9. Three-dimensional meshing step for calculating the flow field, in which the rubber tree
models are constructed according to the derived forest properties of the foliage clumps and branch
attributes. Different colours indicated different foliage clump, where A, B, D and E represent foliage
clump belonging to first-order branches and C represents foliage clump belonging to the trunk.
Tree model reconstruction results for (a) Rubber Tree 1 (PR107) and (b) Rubber Tree 2 (CATAS 7-20-59).
Three-dimensional meshing for the scenarios of (c) Forest Plot 1 and (d) Forest Plot 2 composed with
trees of clones PR107 and CATAS 7-20-59 for the discrete solution of the aerodynamic formulas.

3.3. Analysing the Wind-Related Parameters in Forest Plots of Different Clones

According to the hurricane classification criteria in China, hurricanes are divided into six levels
in accordance with the maximum wind velocity: Tropical depression (10.8~17.1 m/s); Tropical storm
(17.2~24.4 m/s); Severe tropical storm (24.5~32.6 m/s); Typhoon (32.7~41.4 m/s); Severe typhoon
(41.5~50.9 m/s); and Super Typhoon (>51.0 m/s). Our paper researched severe tropical storm Mirinae,
which landed in Wanning, Hainan, on July 26, 2016. The study retrieved the aerodynamic parameters
in the rubber tree forests of the Chinese Academy of Tropical Agricultural Sciences Proving Ground
in Danzhou. When Mirinae landed, the maximum wind velocity near the hurricane eye was 25 m/s.
It then moved northwestward and arrived in Danzhou at 6 a.m. the next day with the maximum
wind velocity near the hurricane eye 18 m/s. Since the rubber tree experimental farm is approximately
15 km away from the hurricane eye, two forest plots composed of rubber trees of clone PR107 and
CATAS7-20-59 were placed under the load of a hurricane with a speed of 15 m/s. We studied three
trees in the second (middle) row and obtained the velocity, dynamic pressure and turbulent intensity
results in the horizontal and vertical profiles, as shown in Figures 10 and 11.
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Figure 10. Horizontal profiles at Z = 7 m showing the velocity, dynamic pressure and turbulent
intensity of the wind flow field in the two forest plots using a computer simulation technique.
(a,b) Velocity distributions in Forest Plot 1 (PR107) and Forest Plot 2 (CATAS 7-20-59), respectively.
(c,d) Dynamic pressure distributions in Forest Plot 1 and Forest Plot 2, respectively. (e,f) Turbulent
intensity distributions in Forest Plot 1 and Forest Plot 2, respectively.

First, by comparing the horizontal section (Z = 7 m) of the velocity distribution for the two forest
plots, Figure 10a,b shows that the velocity inside Forest Plot 1 has a larger fluctuation range and a
speed of up to 24 m/s in the canopies of the second and third trees (approximately X = 7~8 m and
11~12 m). In contrast, inside Forest Plot 2, the velocity is relatively evenly distributed and less than that
of Forest Plot 1. Large speed changes occur on both sides of the rubber trees in rows (Y = 10~12 m and
19~22 m) because the hurricane propagation meets the barrier composed of rubber trees and rushes
through the spacing between the trees. Figure 11a,b presents the vertical velocity profiles (Y = 15 m).
The maximal values exceed 24 m/s and are mainly located in the windward area above the tree crown
of Forest Plot 1.

Second, from Figure 10c,d, for Forest Plot 1 (PR107), the dynamic pressure (i.e., the kinetic energy
per unit volume of a fluid particle) value is relatively higher than that of Forest Plot 2 (CATAS7-20-59)
and changes drastically inside a single tree, especially in the canopy of the third tree (X = 11~13 m),
reaching above 180 Pa. In contrast, in Forest Plot 2, the dynamic pressure tends to be stable and generally
less than 120 Pa. Then, we focused on a vertical section of dynamic pressure (Figure 11c,d). A great
change in pressure occurs near the windward area of the forest tops in Forest Plot 1 (Z = 16~42 m),
and this change is not as marked in Forest Plot 2. Local maxima in the horizontal and vertical profiles
of dynamic pressure are both formed in Forest Plot 1 (Figures 10c and 11c), with one on the leeside of
the tree and another above the windward side of the crown, and the dynamic pressure in both places
exceeds 180 Pa.
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Figure 11. Vertical profiles at Y = 15 m of the velocity distribution (a,b), dynamic pressure distribution
(c,d) and turbulent intensity (e,f) in Forest Plot 1 (PR107) and Forest Plot 2 (CATAS 7-20-59), respectively.

Finally, Figure 10e,f shows the turbulent intensity (i.e., the ratio of the standard deviation of the
fluctuating wind velocity to the mean wind speed) between the two forest plots. Turbulent intensity is
a measure of the degree of pulsation of airflow velocity, and generally divided into three categories
according to magnitude: high turbulence (5%–20%), medium turbulence (1%–5%) and low turbulence
(less than 1%). The larger the turbulent intensity, the more chaotic the behaviour of the airflow motion.
Upon combination with Figure 11e, it is obvious that unstable turbulence (up to 15%) occurs in both
sides of Forest Plot 1, which means that the air flows in Forest Plot 1 present a high variation in wind
velocity and generate a high wind shear force. Coupled with high LAI and larger crown volumes
leading to the increment in the frontal area opposing wind flow and small gaps among the forests,
hurricanes in Forest Plot 1 generate strong interactions with vegetative elements and are prone to
generate branch breakage and serious defoliation. However, in Forest Plot 2 (Figures 10f and 11f),
the turbulent intensity changes are not obvious and are generally lower than 5%, hinting at minor
fluctuations of wind velocity existing and air flowing more smoothly. Overall, the influence of
inhomogeneities in the aerodynamic parameters of Forest Plot 1 is more pronounced than that of Forest
Plot 2, which leads to a greater possibility of wind-induced tree body damage in Forest Plot 1.

We extracted a cuboid region (length x = 0~24 m, width y = 13~18 m and height z = 8~16 m in
Forest Plots 1 and 2) to represent the specific wind-related parameter distribution in the middle of
the forest canopy, as shown in Figure 12a,b. The range area graphs of velocity, dynamic pressure and
turbulent intensity in the cuboids of the two forest plots are shown in Figure 12c,e. Seen from the
graph of velocity (Figure 12c), the wind velocity in Plot 1 and Plot 2 tend to decrease when meeting
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the tree canopy due to the interception of the vegetative elements in the tree canopy. Meanwhile,
Figure 12c shows a larger velocity fluctuation in the tree canopies at X = 6~8 m and 10~12 m of Forest
Plot 1 than that in the Forest Plot 2. Figure 12d shows the distribution of dynamic pressure in the
cuboid regions of the forest plots, and it can be generally seen that the trend of the dynamic pressure
distribution is the same as that of the velocity distribution. The explanation of this case is the square of
the velocity proportional to the dynamic pressure based on Bernoulli’s equation [41]. Figure 12e shows
the distribution of turbulent intensity in each cuboid region of the two forest plots. The turbulent
intensity represents the intensity of wind velocity fluctuation [42]. A low gap fraction of the typical
trees in Forest Plot 1 induced by higher leaf area density results in a local strong wind current entering
the tree canopy, which causes the velocity to fluctuate greatly in the red area of the forest canopy
at X = 3~4 m, 7~8 m and 12~13 m. Overall, the velocity, dynamic pressure and turbulent intensity
of Forest Plot 1 are generally higher than those of Forest Plot 2, resulting in higher vulnerability to
hurricane damage for Forest Plot 1 than for Forest Plot 2.
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the forest canopy, as shown in Figure 12a,b. The range area graphs of velocity, dynamic pressure and 
turbulent intensity in the cuboids of the two forest plots are shown in Figure 12c,e. Seen from the 
graph of velocity (Figure 12c), the wind velocity in Plot 1 and Plot 2 tend to decrease when meeting 
the tree canopy due to the interception of the vegetative elements in the tree canopy. Meanwhile, 
Figure 12c shows a larger velocity fluctuation in the tree canopies at X = 6~8 m and 10~12 m of Forest 
Plot 1 than that in the Forest Plot 2. Figure 12d shows the distribution of dynamic pressure in the 
cuboid regions of the forest plots, and it can be generally seen that the trend of the dynamic pressure 
distribution is the same as that of the velocity distribution. The explanation of this case is the square 
of the velocity proportional to the dynamic pressure based on Bernoulli's equation [41]. Figure 12e 
shows the distribution of turbulent intensity in each cuboid region of the two forest plots. The 
turbulent intensity represents the intensity of wind velocity fluctuation [42]. A low gap fraction of 
the typical trees in Forest Plot 1 induced by higher leaf area density results in a local strong wind 
current entering the tree canopy, which causes the velocity to fluctuate greatly in the red area of the 
forest canopy at X = 3~4 m, 7~8 m and 12~13 m. Overall, the velocity, dynamic pressure and turbulent 
intensity of Forest Plot 1 are generally higher than those of Forest Plot 2, resulting in higher 
vulnerability to hurricane damage for Forest Plot 1 than for Forest Plot 2. 
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Simplification into foliage clumps decreases the number of simulated leaves for which calculations 
must be performed and retains the local phenotypic characteristics of the rubber tree crown. Multi-
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reconstruct various forest plot scenarios and to simulate the wind fields in different rubber tree plots 
to quantitatively analyse the distribution of the wind-related parameters. The method used in this 
paper is flexible and can be extended to any broad-leaved tree species because the branching habits 
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techniques, spatial planning, wind speeds and the phenotypic characteristics of tree species (such as 
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Figure 12. Cuboids in red were extracted in the forest plot scenario that pass through the tree crowns
and record the dynamic pressure, velocity and turbulent intensity values in (a) Forest Plot 1 (PR107)
and (b) Forest Plot 2 (CATAS 7-20-59). (c–e) Area range graphs of the wind-related parameters in the
two cuboids, where the red area represents the retrieved wind-related parameters in Forest Plot 1,
the blue area represents the retrieved wind-related parameters in Forest Plot 2, the red bidirectional
arrows represent the location of typical trees in Forest Plot 1 and the blue bidirectional arrows represent
the location of typical trees in Forest Plot 2. Distributions of (c) velocity, (d) dynamic pressure and
(e) turbulent intensity in the cuboids.

4. Discussion

In this study, we adopted a balance between the forest scale and individual tree scale, used the
concept of foliage clumps to facilitate rubber tree modelling and retained the original morphological
characteristics of rubber trees. The simplified model developed in this paper could represent the first
step towards a new generation of medium-view models for simulating broad-leaf trees. Simplification
into foliage clumps decreases the number of simulated leaves for which calculations must be performed
and retains the local phenotypic characteristics of the rubber tree crown. Multi-disciplinary approaches
from aerodynamics [43], forestry and computer graphics were combined to reconstruct various forest
plot scenarios and to simulate the wind fields in different rubber tree plots to quantitatively analyse
the distribution of the wind-related parameters. The method used in this paper is flexible and can be
extended to any broad-leaved tree species because the branching habits of broad-leaved trees and their
phenotypic characteristics are similar. Through computer simulation techniques, spatial planning,
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wind speeds and the phenotypic characteristics of tree species (such as the gap fraction, LAI, canopy
volume, etc.) can be adjusted to quantitatively investigate the aerodynamic parameters of different
stands under windy conditions. Moreover, comparing the damage risk of rubber tree plots in this
research provides a better understanding of the differences in damage patterns among the two rubber
tree clones and provides guidelines for suitable silvicultural management practices.

The simulation results are difficult to verify empirically. Experimental manipulations of wind at
the scale of forest stands are impossible. Obtaining measurements during a hurricane is dangerous,
and it is difficult to protect sensitive equipment from wind and rain damage during extreme weather.
Our approach to stand reconstruction is generally applicable to broad-leaved trees but will not transfer
as readily to conifers, which remain poorly covered by existing wind risk models. This is due to several
limitations. Terrestrial laser scanning is an inappropriate tool with which to detect conifer needles,
as they are generally smaller than the characteristic laser spot size. It is difficult to represent needles
using point clouds, and the relationship between needles and the mechanical load of wind is hard
to predict.

Our simulation results reveal a contrast between Forest Plot 1 (PR107) and Forest Plot 2
(CATAS7-20-59). Trees in Forest Plot 1 become more vulnerable to damage than do those in Forest
Plot 2 because of the stronger velocity, dynamic pressure and turbulent intensity, particularly between
the trunk and first-order branches. The analytical conclusion from our algorithm is consistent with
the experience of rubber tree growers. Tree characteristics, such as gap fraction and shape, may be
significant predictors of wind damage. Rubber trees of clone PR107 present a higher LAI and lower
gap fraction than do rubber trees of clone CATAS 7-20-59, which means that the leaves of the rubber
trees of clone PR107 are denser and cause considerable wind drag on the tree crown. Previous studies
of wind damage in forests have suggested that trees with large, dense crowns produce large wind drag,
resulting in tree lodging [44,45]. Moreover, the rubber trees of clone CATAS 7-20-59, which present a
small angle between the trunk and the first-order branches to form an ascending vase shape for the tree
crown, have a considerably more stable tree crown structure than do the rubber trees of clone PR107,
with a spread-out tree crown under the impact of wind. The effect of tree shapes on wind firmness
is also well documented [44,45], and tree architecture itself can alter the magnitude and the spatial
distribution of wind loading [46].

5. Conclusions

Based on our findings obtained from the simulation program, the following strategies are suggested
to reduce the risk of windthrow:

1. Trees with large or dense crowns are more vulnerable to windthrow than are trees with smaller
open crowns. Crown modification techniques, such as pruning and topping to reduce the effective
crown size and density, can considerably reduce the risk of windthrow. Where possible, creating
gaps that are too large and exposing individual branches or foliage clumps through these types
of cuts should be avoided.

2. A wide variety of rubber tree clones is planted in the coastal areas of China. The choice of
rubber tree clones should take into account the probability of wind damage. Before extensively
promoting a new clone of rubber trees, our method can be used to analyse the forest parameters,
determine their aerodynamic parameters under windy conditions and measure the resistance
capability of tree clones.

3. Quantification of wind damage under different forest cultivation practices (e.g., adjusting the
spatial distance between trees or changing the arrangement of trees) in the forest can be explored
using our method to analyse to identify suitable silvicultural management strategies for different
rubber tree clones.

Such management strategies will promote wind-resistant tree characteristics and help mitigate
the risk of tree failures and subsequent economic damage.
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Appendix A. Rule of Minimal Change in the Growth Angle

To determine the trunk chain, first, beginning from the root node (c1
1), the node connected to the

root node (c1
1) is stored in a queue until meeting a bifurcation node (nlayer

j ). Secondly, as suggested
by Figure A1, to implement the trunk chain determination, our algorithm presents a minimal
change judgement method based on an angle value comparison. For bifurcation nodes (nlayer

j ) on

the trunk chain with multiple central points (clayer+1
i and clayer+1

i+1 ) in the upper layer, we define the

included angle ∠
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) as θ2. Thirdly, the chain that belongs to the trunk is determined by

comparing θ1 and θ2. We choose the chain with the minimum change in the direction angle as the
trunk chain, and the angle comparison equation is as follows:



i f θ1 < θ2,
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k , nlayer
j , clayer+1

i

)
constitutes trunk

i f θ1 ≥ θ2,
(
clayer−1

k , nlayer
j , clayer+1

i+1

)
constitutes trunk

k = 1, 2, 3 · · · ; i = 1, 2, 3 · · ·
(A1)

Finally, when the edge node is determined, the central point belonging to the chain that begins
from the root node is classified as the trunk.
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To determine the trunk chain, first, beginning from the root node (c1
1), the node connected

to the root node (c1
1) is stored in a queue until meeting a bifurcation node (nlayer

j ). Secondly, as
suggested by Figure A1, to implement the trunk chain determination, our algorithm presents a minimal
change judgement method based on an angle value comparison. For bifurcation nodes (nlayer
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trunk chain, and the angle comparison equation is as follows:
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Finally, when the edge node is determined, the central point belonging to the chain that begins
from the root node is classified as the trunk.
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Appendix B. Derivation of the Gap Fraction

Each foliage clump is a collection of leaves and records the partial features of the whole tree crown.
According to theoretical principles [47,48], by assuming that the inside of each foliage clump is a turbid
medium, we have the following equation:

az,θ =
1

Sz,θ

∫

Sz,θ

exp(−G(θ)LDs(x, y, z,θ))dxdy (A2)

where az,θ is the gap fraction of each foliage clump along the θ direction at a height above z; Sz,θ

is the projection area of the foliage clump at the inclination angle θ at any height z; (x, y, z) is the
scanned point; G(θ) is the extinction coefficient defined as the projection of the unit foliage area on the
plane perpendicular to the inclination angle θ; and LD is the leaf area density. s(x, y, z,θ) is the optical
path through which the photon reaches a point in the direction θ, but s(x, y, z,θ) cannot be explicitly
determined and results in the lack of a calculated value for az,θ. In this paper, we apply Equation (A3)
as an approximate transform to retrieve az,θ:

az,θ ≈ exp(−G(θ)LDs̃(z,θ)) (A3)

s̃(z,θ) is the approximation of s(x, y, z,θ), and we have the following equation:

s̃(z,θ) = V(z)/(Sz,θcosθ) (A4)

where V(z) is the volume of the foliage clumps above height z.
G(θ) is calculated as follows:
First, taking Tree 1 (PR107) as an example, the point cloud data of the tree are first rotated into

a necessary position with an inclination angle θ (Figure A2b). Then, the voxelization procedure
is applied to the rotated tree. By defining the width w, length l and height h for each voxel, the
tree domain is divided into m × n × p voxels, where m = (xmax − xmin)/w, n = (ymax − ymin)/l, and
p = (zmax − zmin)/h. After the voxelization process of the Rubber Tree 1 (PR107) domain, each row or
column layer is regarded as a plane that extracts a part of the dataset, which is defined as a slice plane.

Secondly, the mean projection coefficient at the lth layer slice plane Gl(θ) for the incident radiation
with an inclination angle θ can be calculated by integrating the azimuth angle ϕ over the range [0, 2π]
as follows:

Gl(θ) =

∫ 2π

0
Gl(r)dϕ (A5)

where r(θ,ϕ) is the incoming direct solar beams formed by the inclination angle θ and the azimuth
angle ϕ.

Thirdly, this step involves calculating the projection coefficient for a given direction. We first
consider the incoming direct solar beams with a direction r(θ,ϕ) and take a slice plane perpendicular
to the beam. Based on the method described in [49], the projection coefficient can be obtained by
computing the ratio of the real foliage area Aξ to the projected foliage area AP,ξ, where ξ is the ξth
nonempty voxel in the lth slice layer. We construct a 3D convex hull based on the points in the
nonempty voxel to represent the projected foliage area AP,ξ, and one-half of the total surface area of this
3D convex hull is used to represent the real foliage area Aξ. By summarizing the projection coefficients
for a single slice plane normal to the direction of incident radiation, we have the following equation:

Gl(r) =
1
S

S∑

ξ=1

AP,ξ/Aξ (A6)

where S is the total number of nonempty voxels in the lth slice plane.
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The mean projection coefficient in the lth-layer slice plane Gl(θ) can be obtained from Equation
(A5). The total mean projection coefficient under the canopy for the incoming direct solar beams with
direction r(θ,ϕ) equals the following equation:

G(θ) =

∑p
l=1 Gl(θ)

p
(A7)

where p is the total number of slice planes. By combining Equations (A7) and (A3), we have the
following equation:

az,θ ≈ exp


−

∑M
l=1 Gl(θ)

p
LDV(z)/(Sz,θcosθ)


 (A8)

The leaf area density LD is calculated as shown above, and V(z) is calculated using a 3D convex
hull. Sz,θ is calculated as the projection area of Figure A2c with an incident angle θ. We obtain the
formula that can directly provide the gap fraction az,θ of each foliage clump.
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Appendix C.1. Momentum Model 

According to the momentum conservation law and Navier–Stokes equations, the momentum 
model is described by Equation (A9). 
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Here, 휌 = 1.293 kg/m³ and represents the density of a fluid; 휇  (in kg/m ) is the dynamic 
viscosity described by Equation (A16); p is the pressure of the wind; i and j represent any two 
directions of x, y and z in a three-dimensional coordinate system; 푥  and 푥  are the coordinate 
components in the i-direction and j-direction, respectively; 푢  (in m/s) is the wind speed in the i-
direction; 푢  (in m/s) is the wind speed in the j-direction; and 푆  is the source term in the i-direction 
described by Equation (A10): 

푆 = 퐶
1
2

휌 푢 푢  (A10) 

where 퐶  is the drag coefficient of the tree crown, and it is described with the LAI by Equation (A11): 

퐶 = 0.549 −
0.589

1 + 푒푥푝((퐿퐴퐼 − 0.393) /0.146)
 (A11) 

where the LAI can be obtained in Section 2.3.5. 
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The 푘 − 휖  model overcomes the problem with flow close to the surface elements due to a 
singularity in the governing equations, and the 푘 − 휖 model is described using the turbulent kinetic 
energy k and dissipation rate 휖 by Equations (A12) and (A13), respectively. The turbulent kinetic 
energy k and the dissipation rate 휖 in a fully developed neutral atmospheric boundary layer are 
defined by Equations (A14) and (A15), respectively. 

Figure A2. Schematic diagrams illustrating the extinction coefficient calculation. (a) Three-dimensional
convex hull construction based on the point cloud data of each foliage clump in Rubber Tree 1
(PR107). (b) Tree rotated counter-clockwise into the required relative position, and (c) nine horizontal
slicing planes for Rubber Tree 1 (PR107) with a bounding box for the convenient extinction coefficient
inversion computation.

Appendix C. Standard k-ε Two Equation Model

Appendix C.1. Momentum Model

According to the momentum conservation law and Navier–Stokes equations, the momentum
model is described by Equation (A9).

ρu j
∂ui
∂x j

= − ∂p
∂xi

+
∂
∂x j

µt

(
∂u
∂x j

+
∂u j

∂xi

)
− ρ

∂u′i u
′
j

x j
+ Si (A9)

Here, ρ = 1.293 kg/m3 and represents the density of a fluid; µt (in kg/m) is the dynamic viscosity
described by Equation (A16); p is the pressure of the wind; i and j represent any two directions of
x, y and z in a three-dimensional coordinate system; xi and x j are the coordinate components in the
i-direction and j-direction, respectively; ui (in m/s) is the wind speed in the i-direction; u j (in m/s) is the
wind speed in the j-direction; and Si is the source term in the i-direction described by Equation (A10):

Si = Cd
1
2
ρ
∣∣∣u j

∣∣∣u j (A10)
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where Cd is the drag coefficient of the tree crown, and it is described with the LAI by Equation (A11):

Cd = 0.549− 0.589
1 + exp((LAI − 0.393)/0.146)

(A11)

where the LAI can be obtained in Section 2.3.5.

Appendix C.2. k− ε Model

The k− εmodel overcomes the problem with flow close to the surface elements due to a singularity
in the governing equations, and the k − ε model is described using the turbulent kinetic energy k
and dissipation rate ε by Equations (A12) and (A13), respectively. The turbulent kinetic energy k
and the dissipation rate ε in a fully developed neutral atmospheric boundary layer are defined by
Equations (A14) and (A15), respectively.

ρ
Dk
Dt

=
∂
∂X j

(
µt

σk

∂k
∂X j

)
+ µt

(
∂ui
∂x j

+
∂u j

∂xi

)
∂ui
∂x j
− ρε (A12)

ρ
Dε
Dt

=
∂
∂X j

(
µt

σε

∂ε
∂X j

)
+ Cε1µt

ε
k

(
∂ui
∂x j

+
∂u j

∂xi

)
∂ui
∂x j
− ρCε2

ε2

k
(A13)

k =
1
2

u′i
2 (A14)

ε =
µt

ρ

(
∂u′i
∂x j

)2

(A15)

µt = ρCµ
k2

ε
(A16)

As shown in Table A1, Cµ, Cε1, Cε2, σk and σε are momentum and turbulence equation constants
used for simulating the forest canopy to retrieve some wind parameters. By combining Equations (A9),
(A12) and (A13), the velocity, dynamic pressure and turbulent intensity can be deduced.

Table A1. Momentum and turbulence equation constants used for simulating the forest canopy

Cµ Cε1 Cε2 σk σε

0.09 1.42 1.92 1.0 1.3
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