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Abstract: This study aims to calculate and analyse the spatial and temporal variation of aerosol
optical thickness (AOT) and precipitable water vapour (PWV) and their effects on solar radiation at
the surface in the Mediterranean basin, one of the maritime areas with the largest aerosol loads in
the world. For the achievement of this objective, a novel and validated methodology was applied.
Satellite data, specifically CERES (Clouds and the Earth’s Radiant Energy System) SYN1deg products
during the period 2000–2018, were used. Results show that the spatial distribution of AOT and PWV
are closely linked to the spatial distributions of its effects on solar radiation. These effects are negative,
indicating a reduction of solar radiation reaching the surface due to aerosol and water vapour effects.
This reduction ranges between 2% and 8% for AOT, 11.5% and 15% for PWV and 14% and 20% for
the combined effect. The analysis of the temporal distribution has focused on the detection of trends
from their anomalies. This study has contributed to a better understanding of AOT and PWV effects
on solar radiation over the Mediterranean basin, one of the most climatically sensitive regions of the
planet, and highlighted the importance of water vapour.

Keywords: radiative effects; aerosol optical depth; precipitable water vapour; Mediterranean
basin; CERES

1. Introduction

Atmospheric aerosols and water vapour play an important role in the Earth’s radiation balance,
modifying the solar radiation that reaches the Earth’s surface. When interacting with these atmospheric
constituents, the solar radiation is affected by scattering and absorption processes. The effects of
these constituents on the surface solar radiation are very important, affecting the diurnal and seasonal
temperature variations (e.g., [1]), the surface energy balance (e.g., [2]), as well as the water cycle
(e.g., [3]).

The Mediterranean basin, including the Mediterranean Sea and the surrounding land masses of
Europe, Africa and Asia, is a very interesting region to analyse aerosol and water vapour effects on
surface solar radiation. This interest is due to several reasons: the first and most important is that the
Mediterranean basin is one of the regions most vulnerable to climate change [4]. This vulnerability is
due to the fact that its meteorology is strongly influenced by the ocean-land interactions and by the
complex orography, modifying the thermal regime and hydrological cycles. Another reason is that it is
one of the sea areas with the highest aerosol load in the world [5]. In the Mediterranean basin, aerosols
from different natural and anthropogenic sources converge and are mixed, such as mineral dust from
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African and the Middle Eastern deserts, pollution from Europe and nearby coastal regions and marine
aerosols [6]. This, together with the prolonged duration of sunlight and the small cloud cover in
summer, produces large radiative effects. Several studies confirm that aerosol radiative effects during
summer over the Mediterranean basin are among the highest in the world [7,8]. Another factor to be
considered is the existence of an important source of water vapour in this region, the Mediterranean
Sea, allowing for the study of the availability of water vapour over the Mediterranean basin and their
radiative effects.

Due to great interest on the Mediterranean basin, several studies have analysed aerosols, water
vapour and their effects on solar radiation in this area [9–18]. However, most of these studies are
local (measurements taken at specific locations) or use a short period of study (specific campaigns),
preventing a complete analysis of the spatial and temporal variability. Thus, only a few studies analyse
the existence of trends in aerosols (e.g., [16]), water vapour (e.g., [19,20]) or their effects (e.g., [21]).
The detection of long-term trends is of great interest because they help to understand the aerosol and
water vapour cycles.

The main limitation of the existing studies comes from the fact that they examine the effect of
aerosols (e.g., [9–14,17]) or water vapour (e.g., [15,18,22]) individually. Thus, to our knowledge, only
the study by Obregón et al. [23] has analysed the joint effect of both atmospheric constituents and
focuses on nine specific stations representative of different regions of the world. Studying the joint effect
is of great interest since aerosols and water vapour are always present in the atmosphere, producing
interactions between them that are masked if considered individually.

In this study, we propose to extend this methodology to a wide area such as the Mediterranean
basin. For this purpose, data from CERES (Cloud and Earth Radiant Energy System) satellites have
been used. Satellites provide long-term data records with a large spatial coverage, being the ideal
source of information for this type of studies. They have already been used to monitor aerosols [17,24]
and water vapour [25] in the Mediterranean basin but, as mentioned above, none of the previous
studies have analysed the combined effect of both components.

Therefore, the present study aims to calculate and analyse the spatial and temporal variation
of aerosols and water vapour and their combined effect on solar irradiation at ground level in the
Mediterranean basin. In addition, the individual effects of aerosols and water vapour were calculated
for comparison purposes. In contrast to previous existing studies, mainly focused on short campaigns
and specific locations, this is, to our knowledge, the first study that analyses the combined effect of
aerosols and water vapour in a wide area for a long period. In fact, the study period extends along 19
years (from 2000 to 2018), using one of the longest remote sensing derived climate data sets in the region,
with the advantage of covering a wide area that is also considered one of the regions in the world most
sensitive to climate change. Other authors have used shorter time series to evaluate AOD and PWV
trends [26,27]. It is also the first study to apply a new methodology (which has been successfully tested
on nine specific stations previously [23]) to a wide area, taking advantage of the extensive coverage
provided by satellites. The long period and the wide area allow this study to perform a complete and
significant analysis of the spatial and temporal variability of the area. The interest is enhanced by its
application to the Mediterranean basin. As mentioned before, this area is of high importance due to its
large vulnerability to climate change and because of being one of the sea areas with the highest aerosol
load in the world.

The paper is structured as follows: The dataset and the methodology are presented in Section 2,
the obtained results are discussed in Section 3, and the conclusions are summarized in Section 4.
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2. Dataset and Methodology

The aim of this study is to calculate and analyse the effect of aerosols and water vapour on
solar irradiance at ground level in the Mediterranean basin. For that purpose, the methodology
recently developed by Obregón et al. [23] has been used in this study. This methodology, which was
successfully validated at nine stations representative for different regions in the world [23], is here
applied to a wide area such as the Mediterranean basin using satellite data. According to it, aerosols
are characterized by the aerosol optical thickness (AOT) and water vapour by the integrated water
vapour (PWV). AOT is representative for the aerosol load in the atmospheric column. Specifically, AOT
at 550 nm has been used since it is a reference wavelength extensively used (e.g., [28,29]), therefore
convenient for comparison purposes. PWV is the column integrated amount of water vapour. AOT
and PWV data used in this study have been obtained from satellite-based instruments, offering
an unprecedented opportunity since they provide data with a global coverage. In this framework,
CERES (Clouds and the Earth’s Radiant Energy System) provides long-term global estimates of the
radiative fluxes within the Earth’s atmosphere and consistent cloud and aerosol estimates. Specifically,
CERES SYN 1deg [30–32] daily AOT at 550 nm and PWV products, version Ed4A, have been used
to calculate aerosol and water vapour effects. The “1deg” stands for 1-degree spatial resolution.
The temporal resolution used is daily. The SYN1deg product combines Terra and Aqua CERES and
MODIS observations, and 3-hourly geostationary (GEO) data. In particular, aerosol data comes from
the NASA/GSFC MODIS MOD04_L2/MYD04_L2 products [33] as assimilated by MATCH Aerosol
Transport Model constituents [34]. These MODIS retrievals consist of two readings (1030 and 1330
local time on Terra and Aqua, respectively) at 1-degree resolution. The dataset used was composed
of 6880 daily CERES values of AOT and PWV, corresponding to the available period from March 1,
2000 to December 31, 2018. It should be mentioned that the stable anticyclonic weather conditions in
the Mediterranean region facilitate the availability of long periods with continuous measurements,
especially in summer. The uncertainty on AOT is ±0.03±0.05*AOT over ocean and ±0.05±0.15*AOT
over land [33]. The uncertainty on PWV ranges between 5% and 10% [35]. MODIS retrievals of
AOT have been thoroughly validated by comparison to AERONET (Aerosol Robotic Network) data
worldwide. For instance, Sayer et al. [36] compare Deep Blue Collection 6 AOT at 550 nm from MODIS
Aqua against AERONET data from 60 sites worldwide, obtaining a good correlation between the
two datasets, with R = 0.92. Chu et al. [37] made an extensive validation of MODIS and AERONET
data encompassing 315 co-located AOT from more than 30 AERONET sites, finding retrieval errors of
∆AOT = ±0.05 ±0.2 AOT. Moreover, Remer et al. [33] made an extensive validation effort with over 8000
MODIS retrievals collocated with AERONET measurements of AOT. They concluded that, globally,
MODIS products are accurate to within prelaunch expectations, namely, ±0.05 ± 0.15 AOT over land
and ±0.03 ±0.05 AOT over ocean. Regarding our area of study, Mishra et al. [38] compared AOT
from MODIS and AERONET at 15 sites around the Mediterranean basin and obtained a strong spatial
agreement and relatively low biases of model AOT against MODIS observations, with moderate to high
correlations (R > 0.5) around each site up to ~200–500 km radius. With regard to PWV, Prasad et al. [39]
found that MODIS NIR clear column (R2= 0.97, RMSE = 5.44 mm) and IR (R2= 0.81, RMSE = 7.17 mm)
water vapour show similar performance on comparison with AERONET data.

Obregón et al. [23] estimated the effect of AOT and PWV on solar radiation at the surface as a
function of the AOT and PWV values. Following that methodology, downwelling shortwave (SW)
irradiances under cloud-free conditions were simulated using the libRadtran (Version 1.7) radiative
transfer model for each of 100 combinations consisting of pairs of selected values for AOT (between
0 and 1.5) and for PWV (between 0 and 60 mm). Thus, the individual effect of AOT or PWV was
estimated as the variation in SW irradiance caused by a change in one variable (AOT or PWV) while the
other one remains fixed. This variation is quantified by the relative difference (Rel.Dif), expressed as
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percentages, and calculated with respect to an atmosphere with AOT = 0 or PWV = 0. The expression
used to calculate the individual effect of AOT is [23]:

Rel.Dif.(AOT) = 100 % ∗ (I(AOT, PWV) − Iref(0, PWV))/Iref(0, PWV) (1)

where I is the simulated SW irradiance for each AOT value, and Iref is the simulated SW irradiance
for AOT equal to 0, while PWV value remains fixed. This calculation is done for every AOT value,
obtaining at look-up table of Rel. Dif. for the individual effect of AOT (Table 1).

Similarly, the expression for the PWV effect is:

Rel.Dif.(PWV) = 100 % ∗ (I(AOT, PWV) − Iref(AOT, 0))/Iref(AOT, 0) (2)

where I is the simulated SW irradiance for each PWV value, and Iref is the simulated SW irradiance for
PWV equal to 0, while now it is AOT which remains fixed. This calculation is done for every PWV
value, obtaining the look-up table of Rel. Dif. for the individual effect of PWV (Table 2).

The calculation of the combined effect of AOT and PWV follows the same methodology, but now
both variables (AOT and PWV) can vary:

Rel.Dif = 100 % ∗ (I(AOT, PWV) − Iref(0, 0))/Iref(0, 0) (3)

where I is the simulated SW irradiance for any combination of AOT and PWV, and Iref is the simulated
SW irradiance for AOT and PWV equal to 0. The look-up table of Rel. Dif. for the combined effect of
AOT and PWV calculated by Equation (3) is shown in Table 3.

Once the three look-up-tables have been computed, they are applied to AOT and PWV values
provided by CERES product in order to obtain the effect on the SW irradiance of AOT and PWV
individually, and combined. Thus, the daily relative differences (Rel.Dif(AOT), Rel.Dif(PWV) and
Rel.Dif(AOT-PWV)) for each pixel of the Mediterranean basin were calculated. The bilinear interpolation
method was used to obtain the intermediate value between the existing values in the look-up-tables.
Subsequently, the spatial and temporal variability of these effects has been analysed. Temporal
analysis was performed using a trend analysis to determine if AOT, PWV, AOT effects, PWV effects
or AOT-PWV effects over time are increasing, decreasing or remaining the same. For this purpose,
the Mann–Kendall Trend Test was used. This non-parametric test has the advantage of assuming no
specific statistical distribution of the data. The application of the Mann–Kendall Trend test allows
estimating the statistical significance of the trend. To determine the magnitude of the trend, Sen’s
method was used [40]. Before applying this test, the data has been deseasonalized in order to remove
the large influence of the annual cycle, obtaining time series of AOT, PWV, AOT effects, PWV effects or
AOT-PWV effects for each grid cell. The monthly anomaly is defined as the difference between the
value for a certain month and the mean over the whole period of study for that month.

Obregón et al., 2018 [23] validated the methodology based on irradiance measurements in nine
stations. The results obtained showed differences lower than 3% in 84% of the cases. The sensitivity of
the model to different input variables of the model, as the aerosol and atmospheric vertical profiles
and the surface albedo, was also calculated by Obregón et al. [23]. Rel.Dif values for different aerosol
vertical profiles defined by the season and the aerosol type were calculated, obtaining maximum
relative differences lower than 0.15%. When the aerosol type is considered, these relative differences are
higher, but they do not exceed the value of 4.5%. This maximum relative difference was obtained due
to the difference between urban and maritime aerosol types. A maximum relative difference of 0.24%
was obtained when the sensitivity of Rel.Dif to the atmospheric profile was calculated. A maximum
relative difference of 8.31% was obtained due to the variation of surface albedo between 0.05 and 0.8.
These values guarantee the possibility of keeping the values of these variables fixed since they have no
influence on the effect of aerosols and water vapour on radiation. These effects are modulated by the
solar zenith angle.
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Table 1. Relative difference values (%)describing the AOT effect on shortwave irradiance for each
combination of aerosol optical thickness (AOT) and precipitable water vapour (PWV) values.

PWV (mm)
AOT 0 6.66 13.33 20 26.66 33.33 40 46.66 53.33 60

0 0 0 0 0 0 0 0 0 0 0
0.16 −2.67 −2.93 −2.97 −2.99 −3.00 −2.95 −2.83 −2.72 −2.65 −2.64
0.33 −5.42 −5.91 −5.99 −6.02 −6.04 −5.91 −5.64 −5.38 −5.22 −5.18
0.50 −8.15 −8.84 −8.94 −8.99 −9.00 −8.78 −8.31 −7.89 −7.67 −7.65
0.66 −10.83 −11.70 −11.83 −11.89 −11.91 −11.59 −10.95 −10.38 −10.10 −10.09
0.83 −13.43 −14.48 −14.64 −14.71 −14.72 −14.33 −13.53 −12.83 −12.50 −12.50
1.00 −15.96 −17.17 −17.35 −17.43 −17.44 −16.98 −16.04 −15.22 −14.86 −14.86
1.16 −18.40 −19.76 −19.96 −20.05 −20.07 −19.54 −18.49 −17.56 −17.16 −17.17
1.33 −20.75 −22.25 −22.48 −22.58 −22.59 −22.01 −20.85 −19.83 −19.40 −19.42
1.5 −23.02 −24.65 −24.89 −25.00 −25.02 −24.40 −23.15 −22.05 −21.58 −21.60

Table 2. Relative difference values (%) describing the PWV effect on shortwave irradiance for each
combination of AOT and PWV values.

PWV (mm)
AOT 0 6.66 13.33 20 26.66 33.33 40 46.66 53.33 60

0 0 −10.25 −12.48 −13.96 −15.10 −16.04 −16.85 −17.56 −18.20 −18.78
0.16 0 −10.49 −12.75 −14.25 −15.40 −16.29 −16.99 −17.61 −18.18 −18.75
0.33 0 −10.71 −13.00 −14.51 −15.66 −16.48 −17.04 −17.53 −18.02 −18.58
0.50 0 −10.92 −13.24 −14.75 −15.89 −16.62 −17.00 −17.33 −17.77 −18.33
0.66 0 −11.12 −13.47 −14.99 −16.13 −16.76 −16.96 −17.15 −17.53 −18.11
0.83 0 −11.33 −13.70 −15.23 −16.37 −16.91 −16.94 −16.98 −17.32 −17.90
1.00 0 −11.53 −13.93 −15.47 −16.60 −17.06 −16.93 −16.83 −17.12 −17.71
1.16 0 −11.74 −14.16 −15.71 −16.84 −17.22 −16.94 −16.71 −16.95 −17.55
1.33 0 −11.94 −14.38 −15.94 −17.07 −17.38 −16.95 −16.60 −16.80 −17.41
1.5 0 −12.14 −14.61 −16.18 −17.31 −17.55 −16.98 −16.52 −16.66 −17.28

Table 3. Relative difference values (%) describing the AOT-PWV combined effect on shortwave
irradiance for each combination of AOT and PWV values.

0 6.66 13.33 20 26.66 33.33 40 46.66 53.33 60

0 0 −10.25 −12.48 −13.96 −15.10 −16.04 −16.85 −17.56 −18.20 −18.78
0.16 −2.67 −12.87 −15.08 −16.54 −17.66 −18.52 −19.21 −19.80 −20.36 −20.92
0.33 −5.42 −15.55 −17.72 −19.15 −20.23 −21.01 −21.54 −22.00 −22.46 −22.99
0.50 −8.15 −18.18 −20.31 −21.70 −22.75 −23.41 −23.76 −24.07 −24.47 −24.99
0.66 −10.83 −20.75 −22.84 −24.20 −25.21 −25.78 −25.96 −26.12 −26.46 −26.97
0.83 −13.43 −23.24 −25.29 −26.62 −27.60 −28.07 −28.10 −28.13 −28.43 −28.93
1.00 −15.96 −25.65 −27.67 −28.96 −29.91 −30.30 −30.19 −30.11 −30.35 −30.85
1.16 −18.40 −27.98 −29.95 −31.22 −32.14 −32.45 −32.22 −32.04 −32.23 −32.72
1.33 −20.75 −30.22 −32.15 −33.39 −34.28 −34.53 −34.19 −33.91 −34.07 −34.55
1.5 −23.02 −32.37 −34.27 −35.47 −36.35 −36.53 −36.10 −35.73 −35.85 −36.32

3. Results

3.1. Spatial Distribution

Figure 1a shows the spatial distribution of AOT averaged for the entire study period throughout
the Mediterranean basin. AOT ranges between 0 and 0.45, with the highest values in North Africa
and the lowest in the western part of the study region. In the rest of the study area, AOT does not
differ much and ranges between 0.22 and 0.28, approximately. Specifically, the lowest AOT values,
lower than 0.2, are located in the Iberian Peninsula and Southern France. The low value of aerosol load
in this area is due to the influence of the Atlantic Ocean, a source of clean air masses (e.g., [41–44]).
As mentioned, the highest AOT values are located in North Africa, due to the influence of one of the
largest sources of aerosols: the Sahara Desert. Other areas with high AOT must also be noted such as,
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for example, Bulgaria, specifically the area near Sofia, the capital of the country, where averaged AOT
values higher than 0.30 are obtained. These high values were also described by Evgenieva et al. [45],
who observed values in the range 0.22–0.41 for cloud-free skies. Another area with high AOT is the
southwest of the study area, specifically the west of Middle East, where there is an important source of
dust, Syria desert.
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Regarding the effect of AOT on solar radiation, Figure 1b shows the spatial distribution of
the relative difference as calculated by Equation (1). It shows the close similarity with the spatial
distribution of AOT; the higher AOT, the higher effect on radiation. The highest effects are found over
the deserts of North Africa and the west Middle East, and over the area around Bulgaria. Conversely,
lower values are found over the Mediterranean Sea, specifically over the Iberian Peninsula and
Southern France. These low AOT effects over the Iberian Peninsula and Southern France agree with
those obtained by Papadimas et al. [46]. Another aspect to be noted is that AOT effect values for the
entire study period are negative, indicating a reduction in the solar radiation reaching the surface due
to the presence of aerosols. In fact, there is an average reduction in solar radiation between 2% and 8%
for the entire study period.

When monthly-averaged values are analysed, the reduction in solar radiation reaches values
higher than 10% in spring, with values above 12% in June (Figure 2). This figure shows the variability
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existing during the year, with more negative values in April and June and less negative values from
November to January. The analysis of the spatial distribution of the monthly-averaged AOT effects
shows that the pattern during the cold months (November, December, January and February) is
different from the rest of the year. During these cold months, the area with low effects on solar radiation
expands from the Iberian Peninsula and Southern France into North Africa. This expansion is partly
due to a decrease in the emission of dust by the Sahara in winter compared to summer [47]. On the
other hand, it may be also connected to a greater abundance of absorbing aerosols emitted from
heating systems and other anthropogenic activities in the cold season [42,48], which counterbalances
the cooling effect of dispersive particles. During winter, Saharan dust is transported at low altitude [49]
since the Intertropical Convergence Zone (ITCZ) is situated in its most southerly position and dust
transport is controlled by high pressure systems located over North Africa [50].
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The spatial distribution of PWV is shown in Figure 3a. This figure shows that, as expected, the
highest PWV values, around 20 mm, are obtained on water-covered surfaces since these constitute
sources of moisture. Focusing on the Mediterranean Sea, it can be seen that the PWV over the western
area is higher than over the eastern. The high values of monthly PWV during the summer contribute
to this difference between the two regions (Figure 4). This behaviour has also been observed by
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Palau et al. [51], and it can be attributed to the annual oscillation of the PWV in the eastern area,
which does not follow the annual variation of solar irradiation and evaporation from the sea (with a
maximum in summer and a minimum during winter season). Low PWV values during summer in the
eastern region might occur because, during the summer months, advective conditions prevail in the
mid-upper troposphere due to the Asian Monsoon system. This means higher ventilation conditions
in the area with high rates of renewal of air masses aloft [52–54], while in the western area (under the
influence of the Azores anticyclone) mesoscale vertical recirculation (low net ventilation conditions) is
the most recurrent meteorological characteristic. However, as can be seen in Figure 4, during winter
the behaviour is reversed, PWV in the eastern area is higher than in the western, although in both
areas PWV is lower than in summer. This behaviour in PWV could be due to the fact that the western
area is much more ventilated than in summer whereas in the eastern side, the extension of the Siberian
Anticyclone system favours stagnation conditions in the troposphere [52,53]. High values of PWV and
PWV effect are also observed in autumn on the coast of Libya and Tunisia. This increase can be related
to the sensitivity of the hydrological system to land-use changes and, more recently, to air pollution
effects as well. The combination of these effects may exceed critical threshold levels, e.g., the height of
the cloud condensation levels with respect to the height of the coastal mountain ranges, resulting in
the loss of summer storms [55]. The non-precipitated water vapour returns and accumulates over the
sea. These changes and perturbations to the hydrological cycle involve an increase in Mediterranean
cyclogenesis in autumn-winter through greenhouse heating of the sea surface by the water vapour and
the pollutants accumulated over the sea.

As in the case of AOT, the spatial distribution of PWV is closely linked to the spatial distribution
of its effects on solar radiation at the surface (Figure 3b). The higher the value of PWV, the greater
its effect on radiation is. These effects are negative, indicating that water vapour reduces the solar
radiation that reaches the surface. This reduction ranges between 11.5% and 15%, and therefore, it can
be said that, in average, PWV effect is greater than AOT effect. As previously mentioned, the spatial
distribution of PWV varies throughout the seasons, and therefore, its effects as well. Figure 5 shows
the spatial distribution of PWV effect for different months of the year, obtaining more negative values
in warm months and less negative values in cold months. Regardless of the month, the highest values
of PWV effect occur over water surfaces. With regard to the lowest values of PWV effect, it should be
noted that they are located over the Sahara and Syrian deserts, arid areas with low humidity, and in
the Alps. The reason why PWV effect is so low over the Alps is that PWV generally decreases with
increasing terrain altitude due to the decrease in temperature with height.

The combined effect of both atmospheric variables, AOT and PWV, has also been calculated.
Figure 6c shows its average spatial distribution for the entire study period. As can be seen in this
figure, AOT-PWV effect values are also negative, such as individual AOT and PWV effects, but the
values are more negative, between −14% and −20%, while AOT is limited to range between −2%
and −8% (Figure 6a) and PWV effect between −11.5% and −15% (Figure 6b). The analysis of the
spatial distribution of AOT-PWV effect shows that the highest values occur over North Africa and
southern Mediterranean Sea, coinciding with the areas with the greatest influence of aerosols and
water vapour when considered individually. Conversely, the areas with the lowest effects are the
Iberian Peninsula, Southern France, Alps and deserts of Sahara and Syria, which also coincide with the
areas which showed the lowest influence of aerosol and water vapour when considered individually.
This comparison between individual and combined effects emphasizes the importance of water vapour
in reducing solar radiation at the surface that, however, has not been fully studied. Therefore, this
study contributes to a better understanding of water vapour and its effects on solar radiation over the
Mediterranean basin, one of the most climatically sensitive regions of the planet [56].
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3.2. Temporal Distribution

As already mentioned in the methodology section, the analysis of the temporal distribution of
AOT, PWV and their effects on solar radiation at the surface has focused on the detection of trends from
their anomalies. Figure 7 shows the monthly evolution of these anomalies. Figure 7a) shows that AOT
decreases over the years, with a slope equal to –0.002 per year. This decrease is more pronounced since
2008, coinciding with the year that marked the beginning of the economic crisis that affected different
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countries of the European community. This crisis caused a decline in the industrial production and in
activities related to construction works, transport, etc., and consequently, a reduction in the emission
of aerosols into the atmosphere (e.g., [48,57,58]). However, AOT values began to rise again in 2014,
being probably related to an increase in industrial and transportation activities due to an increase
in the country’s real gross domestic product (GDP) growth rate with values of 0.9 in 2014 and 1.5 in
2015 [59]. The evolution of AOT effect (Figure 7c) shows the same pattern as AOT but with a positive
slope of 0.038% per year. Since AOT effect values are negative, that positive trend indicates a decrease
over time in the absolute value of the AOT effect. Unlike AOT, PWV increases throughout the study
period with a positive slope equal to 0.055 mm per year (Figure 7b), and its effects decrease with a
slope equal to −0.011% per year (Figure 7c), thus increasing its absolute value. This increase is in
accordance with the forecast of Climate Change projections. According to Collins et al. [60]: “Annual
surface evaporation is projected to increase as global temperatures rise over most of the ocean and is
projected to change over land following a similar pattern as precipitation”. Regarding the combined
effect of AOT-PWV (Figure 7c), a trend equal to 0.019% per year is obtained for the entire study region.
Since values of AOT-PWV effect are negative, this positive slope indicates a decrease in the absolute
AOT-PWV effect throughout the study period.
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Once analysed the temporal evolution of each constituent and its effects, their trends were
calculated. For this, the Sen’s method to determine the magnitude of the trend and the Mann-Kendall
Trend test to estimate the statistical significance of the trend was used, as explained in the methodology.
In the case of AOT, the trend is equal to −0.021 per decade during nearly 19 years, resulting in an
absolute AOT decrease of 0.040. Statistically significant negative trends of AOT have also been obtained
by other authors for the Mediterranean region (e.g., [17,61,62]). However, the values of these trends
vary, depending on the study period considered. For example, the trend obtained by Zhang and
Reid [61] is equal to −0.016 per decade, being its absolute value lower than the one obtained in our
study. This may be due to the fact that their study period is 2000–2009, and the economic crisis
had not greatly affected AOT values yet. On the contrary, trends obtained by Floutsi et al. [17] and
Alfaro-Contreras et al. [62] show values of −0.030 and −0.023 per decade, respectively, being higher, in
absolute terms, than that the one obtained in our study. This difference may be due to the fact that
their study periods are 2002–2014 or 2002–2015, and therefore, the increase in AOT starting in 2014 has
not been completely included. Figure 8 shows the spatial distribution of the linear trend in (a) AOT
and (b) AOT effect, for 2000–2018 per decade. Pixels with levels of significance p < 0.05 are marked
with a black dot. As shown in Figure 8a, AOT trends are negative throughout the study region, except
in the west Middle East, where the intensity and frequency of dust storms has increased in recent
years [63–65]. However, this positive trend is not significant. Most of the areas with significant trends
are those with negative trends. As previously mentioned, AOT and AOT effect are closely related, so
their spatial distributions are similar (Figure 8b). In the case of AOT effect, the trend is equal to 0.386%
per decade during the period 2000–2019, resulting in an absolute AOT effect decrease of 0.728%.
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In the case of PWV, the trend is equal to 0.553 mm per decade during nearly 19 years, resulting in
an absolute PWV increase of 1.042 mm. Statistically significant positive trends of PWV have also been
obtained by other authors for the Mediterranean region for a similar period (e.g., [66,67]). However, if
periods prior to that considered in this study are used, the PWV trend results negative (e.g., [19,68,69]).
This fact highlights the importance of this study, because it remarks the importance of water vapour in
recent years and its effects on solar radiation at the surface over the Mediterranean basin. Figure 9
shows the spatial distribution of linear trend in (a) PWV and (b) PWV effect for 2000–2018 per decade.
Pixels with levels of significance p < 0.05 are marked with a black dot. As shown in Figure 9a, PWV
trends are positive throughout the entire study region, although this increase in PWV values is only
significant in regions of North Africa, specifically Algeria and Egypt. The highest trend values are
obtained in the region of Romania and the Black Sea, while the lowest values, close to zero, are obtained
in the south of the Iberian Peninsula. These low positive trend values are consistent with the results
obtained by Mattar et al. [20], which obtained a negative trend in the south of the Iberian Peninsula
and a positive one in the rest of Europe. In fact, southern Iberian Peninsula is the only region where
positive trend values are obtained when analysing the spatial distribution of linear trends of PWV
effect (Figure 9b). This figure shows that, in the rest of the study region, the trend values of PWV and
PWV effect are closely related. It should be mentioned that the trend of PWV effect is not significant in
any pixel. On average, the trend is equal to −0.115% per decade during the period 2000–2019 for the
entire study region, resulting in an absolute PWV effect increase of 0.217%.
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The trend of the combined effect of AOT and PWV has also been calculated, obtaining a value
equal to 0.195% per decade, which means that the effect decreases throughout the study period by
0.367%. These are the averaged values for the entire study region, but when their spatial distribution
is analysed (Figure 10), the range of values is wider, specifically between −0.5 and 0.7. This figure
shows that the west Middle East is the only region where the trend is negative, and therefore, the effect
increases throughout the study period due to the increase of the AOT effect, as shown in Figure 8. It is
also found that the Iberian Peninsula, Italy and the Mediterranean Sea are the only regions where the
trends are significant. In general, it is observed that the spatial distribution of the trend of AOT-PWV
effect is similar to the trend of AOT effect, although the values are approximately half lower due to the
influence of PWV effect, whose trend is opposite. Therefore, the combined analysis of aerosol and
water vapour is suggested for trend studies focused on the Mediterranean basin, since they are two
important atmospheric constituents in this region and have high effects on solar radiation at the surface.
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4. Conclusions

In this study, the spatial and temporal variation of AOT and PWV and their effects on solar
radiation at the surface in the Mediterranean basin have been calculated and analysed. This region
is one of the most climatically sensitive regions of the planet due, among other things, to being one
of the maritime areas with the largest aerosol load in the world and also to containing an important
source of water vapour, the Mediterranean Sea. To solve the problem of spatial coverage limitation,
satellite data, specifically CERES SYN1deg products, version Ed4A, have been used. The study period
extends from 2000 to 2018. AOT effect, PWV effect and the combined effect of AOT and PWV have
been calculated applying the novel and validated methodology proposed by Obregón et al. [23].

The results show that the spatial distributions of AOT and PWV are closely linked to the spatial
distributions of theirs effects on solar radiation at the surface. The highest AOT values are located
in North Africa, due to the influence of the Sahara Desert, while the lowest AOT values are located
in the Iberian Peninsula and Southern France. In the case of PWV, the highest values are obtained
over water-covered surfaces since these constitute sources of moisture. AOT effects and PWV effects
are negative, indicating a reduction of solar radiation reaching the surface due to aerosol and water
vapour effects. This reduction ranges between 2% and 8% for AOT and between 11.5% and 15% for
PWV. Therefore, in average, PWV effect is greater than AOT effect. The combined effect of AOT and
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PWV has also been calculated, obtaining also negative values, between 14% and 20%. The analysis of
the spatial distribution of AOT-PWV effects shows that the highest effects occur over North Africa
and southern Mediterranean Sea, coinciding with the areas with the greatest influence of aerosols and
water vapour when considered individually.

The analysis of the temporal distribution has focused on the detection of trends from their
anomalies. AOT trends are negative throughout the study region, except in the west Middle East.
However, this positive trend is not significant. On average, the trend in AOT is equal to −0.021 per
decade. This decrease in AOT values throughout the study period is also observed in AOT effect trend,
whose value is equal to 0.386% per decade, resulting in an absolute AOT effect decrease of 0.728%.
In the case of PWV, positive trend, equal to 0.553 mm per decade, is obtained. This increase in PWV
values is only significant in regions of North Africa, specifically Algeria and Egypt. In regards to PWV
effect, trend is not significant in any pixel. On average, PWV effect trend is equal to −0.115% per decade
during the period 2000–2019 for the entire study region, resulting in an absolute PWV effect increase of
0.217%. The trend of AOT-PWV effect is 0.195% per decade, similar to the trend of AOT effect, although
the values are approximately half lower due to the influence of PWV effect, whose trend is opposite.

This study has contributed to a better understanding of AOT and PWV effects on solar radiation
over the Mediterranean basin, since they are two important atmospheric constituents in this region
and have high effects on solar radiation at the surface. Therefore, the combined analysis of aerosol
and water vapour is suggested in studies focused on the Mediterranean basin. The observational
assessment of AOT and PWV effects on solar radiation in the Mediterranean basin is undoubtedly
important for fields such as climate and land surface modelling where process understanding and
model evaluation are crucial, as well as for energy meteorology, supporting for example the planning
of future locations of solar power plants.
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