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Abstract: The hemlock woolly adelgid (HWA; Adelges tsugae) is an invasive insect infestation that is 
spreading into the forests of the northeastern United States, driven by the warmer winter 
temperatures associated with climate change. The initial stages of this disturbance are difficult to 
detect with passive optical remote sensing, since the insect often causes its host species, eastern 
hemlock trees (Tsuga canadensis), to defoliate in the midstory and understory before showing 
impacts in the overstory. New active remote sensing technologies—such as the recently launched 
NASA Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar—can address this 
limitation by penetrating canopy gaps and recording lower canopy structural changes. This study 
explores new opportunities for monitoring the HWA infestation with airborne lidar scanning (ALS) 
and GEDI spaceborne lidar data. GEDI waveforms were simulated using airborne lidar datasets 
from an HWA-infested forest plot at the Harvard Forest ForestGEO site in central Massachusetts. 
Two airborne lidar instruments, the NASA G-LiHT and the NEON AOP, overflew the site in 2012 
and 2016. GEDI waveforms were simulated from each airborne lidar dataset, and the change in 
waveform metrics from 2012 to 2016 was compared to field-derived hemlock mortality at the 
ForestGEO site. Hemlock plots were shown to be undergoing dynamic changes as a result of the 
HWA infestation, losing substantial plant area in the middle canopy, while still growing in the 
upper canopy. Changes in midstory plant area (PAI 11–12 m above ground) and overall canopy 
permeability (indicated by RH10) accounted for 60% of the variation in hemlock mortality in a 
logistic regression model. The robustness of these structure-condition relationships held even when 
simulated waveforms were treated as real GEDI data with added noise and sparse spatial coverage. 
These results show promise for future disturbance monitoring studies with ALS and GEDI lidar 
data. 
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1. Introduction 

Insect infestations cause unique changes in the structure of forests over time, opening up gaps 
in the canopy and triggering growth among understory species [1]. Active remote sensing 
instruments, such as spaceborne and airborne lidar scanning (ALS) instruments, can penetrate dense 
forest canopies to observe these subtle changes in vertical structure. Thus, lidar has potential to detect 
the spread and to monitor the severity of insect infestation impacts at the landscape scale. 

An invasive insect, the hemlock woolly adelgid (HWA; Adelges tsugae), is currently bringing 
about distinct and lasting impacts on the forest structure of the eastern United States [2,3]. HWA is 
spreading northward as climate change warms New England winters and reduces the frequency of 
cold snaps, which are the major limiting factor to adelgid populations in the US [4–11]. As multiple 
time series of lidar data over HWA infested sites have become publicly available, new opportunities 
have emerged to track the spread of this insect infestation and to characterize its impacts on forest 
structure. A new spaceborne lidar mission, the Global Ecosystem Dynamics Investigation (GEDI) 
[12], is now collecting measurements of vertical canopy structure over the New England region, 
providing the regional scale coverage that could capture HWA’s northern expansion. This study 
explores the use of waveform lidar for observing structural change and the future potential of GEDI 
data for monitoring the spread of the HWA into New England. 

1.1. Structural Signals of the Hemlock Woolly Adelgid Infestation 

HWA’s impacts are widespread upon eastern and Carolina hemlock trees (Tsuga canadensis and 
Tsuga caroliniana) in the eastern United States, extending across the Appalachian Mountains from 
Georgia to Maine. While HWA does not directly defoliate hemlock trees, colonies of HWA bring 
about progressive needle loss and branch death by draining hemlocks of their stored sugars [13]. 
Infested trees die within 5–15 years from the onset of infestation, and are replaced primarily by 
deciduous tree species and white pine trees (Pinus strobus) [2]. Studies project that HWA will spread 
into the full range of hemlock in New England and southern Canada [14,15] (Figure 1), potentially 
eliminating this ecological foundation species from the landscape in the coming decades. 
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Figure 1. Map of the study region showing the range of eastern hemlock (Tsuga canadensis) in the 
northeastern United States and southern Canada. Data on water bodies is acquired from Pekel et al. 
[16], and the range of T. canadensis is from Little [17,18].  

1.2. Lidar Remote Sensing for Monitoring Forest Health 

Repeat measurements from lidar instruments have been shown to be effective in detecting 
disturbances and recording subtle structural changes in forests [19–23]. Lidar sensors are active 
remote sensing instruments that emit pulses of light to characterize the structure of targets in three-
dimensional space [24]. Emitted light reflects off target objects and returns to the instrument, which 
records the distribution of returning energy over time, a waveform, to measure the range to targets. 
Most lidar instruments decompose these waveforms into a set of three-dimensional points that 
correspond to peaks in the distribution of returning energy, known as discrete lidar data or a point 
cloud. Small-footprint lidar instruments sample a small area with each beam, from the millimeter to 
decimeter scale. In contrast, a large-footprint lidar instrument might measure a stand of trees with a 
single beam, capturing vertical structure in a circular footprint of tens of meters in diameter. While 
waveform and discrete lidar instruments record structure with the same physical system, the specific 
parameters of the sensor, the sampling scheme, the post-processing techniques, and the data type can 
make a time series of lidar data from different sensors difficult to compare. 

The recent launch of GEDI, a spaceborne lidar instrument designed specifically to measure forest 
structure over large areas, presents new opportunities for monitoring forest disturbances with 
vertical profiles of forest structure [12]. GEDI is particularly well suited to monitor HWA infestation 
impacts because of its ability to penetrate gaps in the upper canopy and record lower canopy 
structural change. Large-footprint waveform lidar data similar to GEDI (~25 m in diameter) have 
proven useful for observing distinct canopy structures related to disturbances. For example, large-
footprint data have been used to infer past hurricane damage [25], to identify developmental stages 
of forest plots [26–28], to observe phenological cycles [23], and to estimate biomass change [29,30]. 

While GEDI’s spatial resolution will be useful for pursuing ecological research, its spatial 
coverage is limited by orbital constraints and the physics of an active optical system. GEDI relies on 
large-footprint  samples to maximize the coverage that it can achieve at the given pulse rate. 
Operating from the International Space Station (ISS), GEDI samples forests with three lasers that are 
split into four beams, which are optically dithered to create 8 parallel tracks, spaced ~600 m apart on 
the ground [12]. Each of GEDI’s tracks samples the Earth’s surface with a waveform every 60 m along 
its path. By gridding these discrete samples at the 1 km scale, the mission will produce global data 
products of vegetation structure for regions between ~51.6 degrees N and S latitude [31]. 

Due to the orbital constraints of the ISS, GEDI will only be able to sense forests in the temperate 
and tropical regions. The areas will be sampled multiple times during the 2-year mission, but it is 
rare that GEDI footprints will perfectly overlap, making it infeasible to calculate structural change at 
an individual footprint scale. While other lidar or field datasets could be compared with GEDI data 
to calculate change, the geolocation accuracy of GEDI waveform data presents an additional obstacle 
to comparison. After processing, the average geolocation error is expected to be ~8–11 m [12], which 
may be too high for accurate comparisons between GEDI footprints and field plots or other coincident 
datasets. 

Fortunately, the obstacles to change detection with GEDI can be overcome with the GEDI 
Simulator [32], an open-source software developed to calibrate GEDI’s data products before launch. 
The GEDI simulator uses discrete and waveform ALS lidar data to produce large-footprint lidar 
waveforms. By processing ALS data, the simulator corrects for the specific characteristics of the ALS 
datasets and the instruments that collected them [32]. In addition, the simulator software provides 
tools for geo-locating GEDI waveforms to within ~2–3 m on average using a waveform shape-
matching technique [33]. As long as a site has spatially overlapping ALS and GEDI data available, 
studies can use the simulator to (1) geolocate GEDI waveforms, (2) simulate comparable waveforms 
from ALS data at the same footprint locations, and (3) output measurements of vegetation structure 
that are comparable between a variety of ALS platforms and GEDI. Thus, the simulator enables the 
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calculation of structural change for a set of ALS and/or GEDI data at the scale of a ~25 m footprint. If 
this change detection method proves viable for real GEDI data, the ecological applications of GEDI 
could vastly increase, enabling future studies of forest disturbance and structural change for any site 
with ALS data within GEDI’s coverage. 

1.3. Study Design 

To investigate the utility of GEDI data for detecting forest disturbances, GEDI waveforms were 
simulated from ALS data collected in 2012 and 2016 over a mixed temperate forest infested by HWA, 
the 35-hectare Smithsonian Institute Forest Global Earth Observatory (ForestGEO) plot at the 
Harvard Forest experimental site in Petersham, MA, USA [34]. By comparing changes in simulated 
waveforms over an established field site with a well-studied infestation, this study outlines a viable 
method for change detection in temperate forests with GEDI waveforms. Only a limited set of GEDI 
data has been collected thus far, and therefore, this study turns to simulated data to evaluate a 
method for change analysis that can be applied to both multi-temporal ALS data and future real GEDI 
data as it is accumulated over the next 2 years of the mission. It aims to extract ecologically 
meaningful observations of the impacts of HWA upon New England forest structure, and to test the 
viability of GEDI waveforms for detecting disturbance. 

2. Materials and Methods 

2.1. Overview 

GEDI waveforms were simulated with the GEDI Simulator [32] using two ALS datasets, one 
collected by the NASA Goddard Lidar Hyperspectral and Thermal instrument (G-LiHT) in 2012 [35], 
and the other by the NSF funded National Ecological Observatory Network (NEON) Airborne 
Observation Platform in 2016 [36]. To compare waveforms between years, waveform metrics were 
derived with the GEDI Simulator and LibCLidar software packages [32,37]. The change in waveform 
metrics from 2012 to 2016 was calculated for each footprint (2016 – 2012 = Change). The importance 
of waveform metrics for observing the impacts of the HWA disturbance was assessed by relating 
metrics to the extensive Harvard Forest ForestGEO plot field data [34]. Metrics were assessed with 
two statistical methods: 1) one-way analysis of variance (ANOVA) grouped by the dominant tree 
species of each footprint; and 2) logistic regression of hemlock tree mortality as a function of 
waveform change metrics. 

The analysis has two coincident aims. The first aim is to assess the utility of a large-footprint 
lidar simulator [32] for comparing ALS acquisitions from different sensors over time. We recognize 
that the sensor and flight parameters of the ALS datasets can impact derived metrics, and thus can 
introduce biases into change analysis studies. However, the GEDI simulator has been demonstrated 
to minimize these biases [32], making ALS datasets from different sources comparable at the scale of 
a large-footprint lidar waveform. In pursuit of this aim, waveforms are first simulated without noise 
and at high spatial coverage to identify waveform metrics that correlate with the structural impacts 
of the HWA disturbance. 

The second aim is to test whether the method outlined in this study could be viable for future 
disturbance studies with real GEDI data. Waveforms are simulated with varying degrees of noise 
based on pre-launch signal-to-noise estimates. Then, the sparse spatial coverage of real GEDI 
acquisitions are applied to noisy waveforms. Lastly, statistical relationships between waveform 
metrics and forest condition are re-assessed to evaluate how the noise parameters and spatial 
coverage of real GEDI data might affect the observed relationship between waveform metrics and 
forest condition. 

2.2. Simulated GEDI Data 

Each lidar instrument and acquisition has a specific footprint and pulse shape that affect the 
derived metrics. To prevent any differences in these properties between GEDI and ALS data, the 
GEDI simulator aggregates small-footprint lidar data and convolves a large-footprint waveform of 
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return energy based on the vertical distribution of points within a specified footprint. Simulated 
GEDI data have been shown to be highly comparable with real large-footprint lidar data, having been 
validated with the NASA Land Vegetation and Ice Sensor (LVIS) [38] and other large-footprint lidar 
instruments [32]. The simulated waveforms used in this study are structured as a sum of smooth 
Gaussian components, and waveform features, such as ground elevation, are extracted following 
Hofton et al. [39]. 

In order to mimic the realistic processing of GEDI data, all metrics used in this study are derived 
directly from the Gaussian model of the GEDI waveform. Because GEDI’s ground elevation is derived 
directly from this smoothed waveform, there can be discrepancies between GEDI’s ground elevation 
and ALS ground elevation that may impact derived metrics. For instance, relative height (RH) metrics 
are calculated in relation to the lowest elevation of the waveform, defined as the bottom of the ground 
signal. Thus, ALS and GEDI data need to agree on a common ground height in order to produce RH 
metrics that originate from the same elevation. 

2.3. Airborne Lidar Scanner (ALS) Data 

The two ALS datasets were collected with different sensors (Table 1): the Riegl VQ-480 on the 
NASA G-LiHT and the Optech ALTM Gemini on the NSF-funded NEON AOP. Previous research 
has shown that simulated waveforms from Optech and Riegl sensors with similar flight parameters 
to the datasets in this study were both able to accurately match large-footprint LVIS waveforms, with 
LVIS data being similar to that of real GEDI data [32]. Differences in sensor wavelength (1064 nm and 
1550 nm) that can cause ALS instruments to vary in their sensitivity to vegetative targets also did not 
significantly impact simulation results [32]. These findings lay the foundation for comparing lidar 
datasets with different sensor and flight acquisition parameters at the scale of a GEDI waveform. 

To further check for potential sensor biases in simulated waveform data, including those caused 
by different ALS scan angle and point density distributions, a supplementary analysis was performed 
using waveforms with the most similar sets of input data between years (Appendix A). Other sensor 
differences, such as sensor wavelength, were not investigated further in this study, as they were 
shown to be negligible in a previous study of simulated data [32]. 

Table 1. Instrument and flight specifications of ALS data collected over the ForestGEO plot 

 G-LiHT NEON 
Instrument Riegl VQ-480 Optech ALTM Gemini 

Beam divergence (mrad) 0.3 0.8 
Altitude (m) ~300 ~1000 

Wavelength (nm) 1550 1064 
Pulse repetition frequency (PRF; kHz) 300 100 

Max number of returns per pulse 8 4 
Max scan angle used (degrees) 36 18 

Point density (points/m2) 29.6 6.8 
 Acquisition date June 2012 August 2016 

2.4. Metrics 

Vertical profiles of changes in effective plant area index (PAI) and relative height (RH) metrics 
were derived to compare waveforms between years, following the standard methods of GEDI data 
processing [12,40]. The effective PAI describes the horizontal projected area of plant elements (foliage, 
branches, and trunks) per unit of ground area (m2m-2) within a volume of canopy [41]. The PAI 
distribution is derived from the vertical distribution of gaps within the canopy (directional gap 
probability; Pgap) with a widely used method [40,42–45]. The PAI at any given height is calculated 
from waveform data with the equations: 
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𝑃𝑔𝑎𝑝(𝜃, 𝑧) = 1 −  
𝑅 (𝑧)

𝑅 (0) +
𝜌
𝜌

𝑅
 (1) 

 

(2) 

 

(1) 

𝑃𝐴𝐼(𝑧) =
−1[ ln 𝑃𝑔𝑎𝑝(𝜃, 𝑧 + ∆𝑧) − ln 𝑃𝑔𝑎𝑝(𝜃, 𝑧)  ]

𝐺(𝜃) 𝛺(𝜃)
  (2) 

RV(z) is the integral of reflected energy from canopy elements from the canopy top down to the 
given height (z). Rg is the integral of reflected energy from the ground. ∆z is the height increment at 
which PAI is calculated. Constants are set as: a nadir view angle (θ = 0), a spherical leaf angle 
distribution (G = 0.6), a random spatial distribution of canopy elements (Ω = 1), and a canopy-to-
ground reflectance ratio (ρv/ρg) of 1.425. 

RH metrics describe the percentiles of the vertical distribution of energy in a returned waveform. 
Heights are derived from the normalized, cumulative distribution of the waveform, summed from 
the ground to the canopy top [27,46]. For example, RH10 is the height relative to the fitted ground 
elevation below which 10% of the cumulative waveform energy has been returned. RH0 represents 
the bottom of the ground signal, and RH100 represents the top of the canopy signal. Note that RH 
metrics can be negative, particularly in sparse conditions where a significant portion of the waveform 
energy is reflected below the fitted ground elevation. 

Changes in RH metrics over time can be indicative of changes in canopy structure, including 
growth, gap formation, and disturbance [29]. The HWA infestation is hypothesized to shift RH values 
lower over time in hemlock forests, as foliage loss from HWA increases canopy permeability and 
allows more laser energy to reach the ground. 

2.5. Field Data 

The Center for Tropical Forest Science (CTFS) Forest Global Earth Observatory (ForestGEO) plot 
at Harvard Forest is part of an international network of forest sites [47]. It is a georeferenced 35-
hectare plot divided into a grid of 20 m square quadrats. The first census of the ForestGEO plot began 
in 2010 [34], and all quadrats containing hemlock trees in the plot were found to be infested by HWA 
in 2012. A subset of the plot was reassessed for hemlock tree mortality in 2016 [48]. This 2016 
assessment of hemlock mortality only revisited select quadrats (72 quadrats in total) in the mature 
hemlock area (western portion of the plot) to assess tree condition. Tree condition was recorded as a 
binary value (alive or dead) based on the presence or complete absence of foliage. 

Hemlock mortality from 2010 to 2016 was calculated for a set of simulated GEDI footprints that 
overlapped with the western area of the ForestGEO plot that had been reassessed in 2016 (highlighted 
in Figure 2). Mortality was defined as the number of live hemlock trees that died in the period from 
2010 to 2016 divided by the total number of live hemlock trees within the footprint in 2010. By 2016, 
most hemlock trees within the ForestGEO plot were infested with HWA, and thus, even plots with 
0% mortality may well be displaying the impacts of HWA. 
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Figure 2. Simulated GEDI footprint locations within the ForestGEO plot, rendered in WGS-84 UTM 
18N. They are overlaid on a 1 m canopy height map derived from the G-LiHT 2012 ALS data [35]. The 
35 hemlock dominated footprints that were assessed for mortality in 2016 and used in the lasso logistic 
regression (logit model) are highlighted. 

The times of observation of hemlock tree mortality (summer 2010 and summer 2016) are offset 
from the time of lidar observations (June 2012 and August 2016). This offset was unavoidable, since 
these data acquisitions were planned with different research goals in mind. 

To compare waveform metrics by tree species, the dominant species of each GEDI footprint was 
derived across the ForestGEO plot with field data. Dominant species were calculated by summing 
the total basal area (BA) of each species within a lidar footprint and assigning the dominant tree 
species as that with the majority BA. The top five dominant species used in this analysis were: eastern 
hemlock (Tsuga canadensis; 38% of the 560 total footprints), red oak (Quercus rubra; 32%), red maple 
(Acer rubrum; 16%), white pine (Pinus strobus; 8%), and red pine (Pinus resinosa; 5%). These species 
comprised the majority of footprints (~99%) in the ForestGEO plot. 

2.6. Comparing ALS with the GEDI Simulator 

First, ALS acquisitions from 2012 and 2016 were compared with the GEDI simulator to identify 
waveform metrics that correlated with the structural impacts of the HWA disturbance. Waveforms 
were simulated at the same footprint locations using both the 2012 and 2016 ALS data, and changes 
in the metrics of simulated waveforms were calculated at each location during the time period. A 
total of 560 GEDI waveforms were simulated within a rectangular grid using spatially-coincident 
discrete ALS data from G-LiHT in 2012 and NEON AOP in 2016. Simulated footprints were spaced 
along a 25 m rectangular grid (Figure 2) in order to maximize coverage within the 35 hectare 
ForestGEO plot (500 × 700 m). 

Waveform footprints were 22 m in diameter and did not overlap in space. This 22 m diameter 
footprint was defined as the area containing 96% of the Gaussian footprint of the return energy (2 × 
standard deviation). RH metrics at 10% energy intervals and PAI metrics at 1 m height intervals were 
calculated for all footprints. 
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2.7. Selecting and Evaluating Waveform Disturbance Metrics 

A lasso regression of hemlock tree mortality was employed to identify the important variables 
for predicting HWA disturbance impacts. Lasso regressions were fit with the subset of 35 hemlock 
dominant footprints (Figure 2) that were assessed for hemlock mortality in 2016 and that also had 
comparable ground heights (less than 1 m difference between G-LiHT and NEON waveforms). Lasso 
regression employs a penalty parameter, lambda, to reduce the magnitude of insignificant 
coefficients in a model to 0 [49,50]. RH and PAI change metrics at different canopy heights (42 
independent variables in total) were then selected with a 10-fold cross-validation method [49]. Cross-
validation results identified an optimal model by using the largest lambda value within 1 standard 
deviation of the minimum statistical deviance of all models. 

Field-measured hemlock mortality was regressed on the waveform change metrics with a 
logistic regression. The dependent variable, hemlock mortality, was modelled with a binomial 
distribution. The number of live hemlocks that died from 2010 to 2016 represented the number of 
observations, and the number of live hemlocks in each footprint in 2010 represented the number of 
trials. Independent variables were z-score normalized before input into the model in order to better 
compare coefficient magnitudes. 

In addition, the disturbance metrics identified by the lasso regression were assessed for their 
correspondence with infested hemlock footprints. Each metric was run through an ANOVA grouped 
by dominant species. Waveform change metrics within hemlock-dominated footprints were expected 
to be significantly different from those of other species, since HWA only affects hemlock trees and was 
ubiquitous in the field site at the time of study. 

2.8. Simulating the Impact of GEDI’s Noise 

The effect of noise on the relationship between waveform metrics and forest condition was 
investigated, because without noise, simulated waveforms represent unrealistically clean GEDI 
waveforms. Gaussian noise was incrementally added to the 560 simulated waveforms in the 
ForestGEO plot (Figure 2). Noise was incrementally added to waveforms by decreasing the beam 
sensitivity, a metric that describes the canopy cover at which a noisy waveform would have a 90% 
probability of detecting the ground and a 5% probability of causing a false positive (GEDI ground 
height > true ground) [32]. Noise was simulated from 90% to 99% beam sensitivity to cover the 
expected range of real GEDI data, estimated to be 92–99.6% beam sensitivity. 

Noise was added to both the G-LiHT 2012 and NEON 2016 waveforms. Then, change metrics 
were calculated by subtracting noisy waveforms from their noiseless counterparts (e.g., noisy NEON 
2016 – noiseless G-LiHT 2012, or noiseless NEON 2016 – noisy G-LiHT 2012). An ANOVA was used 
to test the effect of species on the PAI change of each dataset with degraded beam sensitivity. The F-
statistic and p-value of the ANOVA were used to measure how the progressive addition of noise 
altered the relationship between PAI change and forest condition. 

2.9. Simulating GEDI’s Noise and Spatial Coverage 

Lastly, waveforms were simulated over the site with both the sparse spatial coverage and 
average noise parameters of GEDI’s beams. Simulated GEDI tracks were acquired for the Harvard 
Forest region [12], and a set of 80 footprints (Figure 3) that intersected the study site were selected for 
further analysis. Footprint locations were spaced to mimic GEDI’s spatial coverage in the ForestGEO 
plot. Waveforms were simulated from the G-LiHT 2012 and NEON 2016 ALS data at these 
realistically spaced footprint locations. In addition, realistic noise was added to the waveforms using 
the estimated parameters of the link margin for GEDI’s power beam at night (link margin = 4.956 at 
95% canopy cover) and coverage beam during the day (link margin = -2.039 at 95% canopy cover). 

The real noise parameters of GEDI will vary depending on the power of the laser beam and the 
time of acquisition. Of GEDI’s three laser beams, two are used at higher power (power beams), while 
one is split into two beams with lower power (coverage beams) [12]. Waveform noise will be lowest 
when the power beams are operating during the nighttime, while noise will be the highest when the 
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weaker coverage lasers are operating during the day. Thus, noise was added to the simulated 
waveforms to realistically represent the best (night-power) and worst (day-coverage) signal-to-noise 
ratio scenarios of future GEDI acquisitions. 

 
Figure 3. GEDI’s Simulated Spatial Coverage within the ForestGEO plot. These 80 realistically spaced 
footprints were produced from the pre-launch simulated orbits of GEDI over New England. 

3. Results 

3.1. Simulation Results 

Waveforms were simulated for 2012 and 2016 in 560 footprint locations along a rectangular grid 
within the ForestGEO plot. Simulated waveforms that were assessed for hemlock mortality in 2016 
were plotted by aboveground height against normalized intensity (Figure 4). The highest peak is 
characteristic of the forest canopy shape, while the lowest peak identifies the ground. 

Footprints containing higher hemlock mortality showed increased amplitude of ground return 
peaks in 2016 (blue) as compared to the peaks of the ground returns in the 2012 waveforms (orange; 
Figure 4). This change in ground amplitude indicates that the canopy was more permeable in 2016 as 
compared to 2012, since more energy was able to penetrate the canopy and reach the ground, 
producing a larger ground return. The middle portion of the waveforms, from about ~5–20 m above 
ground, has also declined in amplitude between years, indicating a loss of canopy structure within 
those layers. In addition, the upper canopy tops of waveforms appear to have increased slightly from 
2012 to 2016, indicating some growth in the overstory during this time period. 
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Figure 4. Simulated GEDI waveforms from G-LiHT 2012 (orange) and NEON 2016 (blue) over the 
mature hemlock section of the ForestGEO plot plotted by height above ground. Plots are titled and 
sorted from left-right and top-bottom by the proportional hemlock mortality within the footprint of 
each waveform (ex: 0.1 = 10% of live hemlocks in 2012 died by 2016). 

A plot of the vertical profile of PAI change for both the eastern hemlock and the red oak 
footprints showed that the trend in PAI loss in the mid-canopy is ubiquitous within the infested 
hemlocks of the ForestGEO plot (Figure 5). PAI change at 1 m height intervals was binned to percent 
height relative to the maximum canopy height (RH100) recorded in 2012. While both tree species 
displayed a slight loss of PAI in the lower canopy (10–40% of max height) and a slight gain of PAI in 
the upper canopy (above 70% height), hemlock dominated footprints showed a distinct loss of PAI 
in the mid-canopy (40–70% height). 

 
 
 
 
 
 



Remote Sens. 2020, 12, 1304 11 of 27 

 

(a) 

(b) 

Figure 5. Profiles of hemlock (a) N = 212 footprints and red oak (b) N = 176 footprints PAI change 
plotted by % height to maximum height in 2012. Boxes show the quartiles and ranges of the 
distributions. Vertical profiles of PAI Change for footprints dominated by hemlock and red oak follow 
similar trends in the lower and upper canopy, but hemlock shows a distinct loss of PAI in the mid-
canopy (40–70% height). 

Plotting the vertical PAI profiles of healthy and infested hemlock footprints in comparison to 
those of red oak and red maple shows distinct mid-canopy foliage loss in the hemlock dominated 
footprints (Figure 6). An example of a healthier hemlock footprint (with 0% mortality) displays a 
similar increase in PAI compared to that of other species, which show gains of PAI in the upper 
canopy from 2012 to 2016. In contrast, an infested footprint with 36% hemlock mortality displayed 
distinct decreases in PAI in its middle and lower canopy. 
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(a) (b) 

  
(c) (d) 

Figure 6. Examples of hemlock (a, b), red maple (c), and red oak (d) PAI change by height. GEDI 
waveforms were simulated using G-LiHT ALS data in 2012 (orange) and NEON ALS data in 2016 
(blue), and vertical profiles of PAI were derived for each year in the same footprint locations. An 
infested hemlock stand with severe mortality (36%; b) has primarily lost PAI in the midstory and 
understory, and its overstory shows little change. In contrast, an infested hemlock stand with 0% 
mortality during the time period (a) displays a pattern of growth similar to that of stands of other tree 
species, including red maple (c) and red oak (d). 

3.2. Variable Selection 

A series of lasso logistic regressions were used to identify waveform metrics that could be 
important predictors of mortality. Out of 42 independent variables, the negative changes in PAI 11–
12 m, PAI 17–18 m, and RH10 were selected as optimal variables. Decreases in RH10 are indicative 
of increased permeability throughout the canopy, while decreases in PAI highlight foliage and branch 
loss at specific heights in the canopy. 

All three variables were further evaluated in a variety of combinations, and a final model was 
produced with PAI 11–12 m and RH10. This model had the lowest RMSE, the highest R2, and the 
lowest correlation between independent variables. In a final model, the change in PAI 11–12 m and 
RH10 both had coefficients with significant fits (p < 0.01) of relatively equal magnitude (Figure 7; 
Table 2). The independent variables were not highly correlated (R2 = 0.07). The variation in PAI 11–
12 m and RH10 explained 60% of the variation in hemlock mortality, with a predictive accuracy of 
8% mortality (RMSE = 0.08).  



Remote Sens. 2020, 12, 1304 13 of 27 

 

 

Figure 7. Predictions of a logistic regression of hemlock mortality using RH10 and PAI 11–12 m. 

Table 2. Coefficients and statistical properties of a logistic regression predicting hemlock mortality 

Variable Value p-value 
ΒRH10 −0.23 ± 0.08 0.002 

ΒPAI11-12m  −0.29 ± 0.08 <0.001 
Intercept −1.89 ± 0.08 <0.001 

R2 0.6 N/A 
RMSE 0.08 N/A 

 

3.3. Waveform Change Metrics 

Mid-canopy PAI 11–12 m change showed a loss (brown) in areas dominated by hemlocks, 
whereas it generally showed an increase (green) or no change (white) in footprints dominated by 
other tree species (Figure 8a and 8b). In addition, areas dominated by hemlock trees showed 
decreases in RH10 between years, while areas dominated by healthy tree species, particularly red 
oak, showed positive increases in RH10 between years (Figure 8c). Decreases in RH10 in hemlock 
areas are indicative of increased canopy permeability and foliage loss. In contrast, the increases in 
RH10 in areas of healthy deciduous trees signify growth and increased canopy cover. 
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(a) 

 
(b) 

 
(c) 

Figure 8. Dominant species (a), change in PAI 11–12 m (b), and change in RH10 (c) in ForestGEO plot 
footprints. Hemlock footprints are outlined in black. A negative RH10 change (shift down in 2016: 
brown) occurs within infested hemlock footprints (western portion of the plot), while a positive RH10 
change (shift up in 2016, green) appears to be associated with hardwood areas (center and SE of the 
plot). Losses of PAI 11–12 m (brown) also highlight hemlock areas, while deciduous tree species 
primarily display no change (white) or a gain in PAI (green). In contrast, a swamp containing red 
maple trees and shrubs (northeast of center) shows little change in either metric during the time 
period. 
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To test the effect of species on waveform variables, ANOVA tests were run on 470 footprints 
with comparable ground heights between years (within 1 m). There was a significant effect of species 
on PAI 11–12 m change (F(4,466) = 10.8, p < 0.001; Figure 9a and Table 3). A Tukey–Kramer post hoc 
test revealed a significant difference (p < 0.001) between hemlock and red oak, red maple, and red 
pine, but not with white pine (p = 0.12). There was also a significant effect of species on RH10 change 
(F(4,466) = 54.7, p < 0.001). A post hoc test revealed a significant difference (p < 0.001) between the 
RH10 change of hemlock and that of all other tree species (Figure 9b and Table 4). 

The ANOVA results identify that unique structural changes are occurring in infested hemlock 
stands, demonstrated by a loss of PAI at 11–12 m and a decrease in RH10. These distinct changes 
even separate infested hemlock stands from stands of evergreen trees of similar structure, such as 
white pine and red pine. 

 
(a) 

 
(b) 

Figure 9. Change in PAI 11–12 m (a) and RH10 (b) by Dominant Species. Boxplots are colored by their 
significant difference from hemlock (magenta; p<0.05), as determined by post-hoc tests. 
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Table 3. ANOVA and post-hoc test results of change in PAI 11–12 m by species 

Species Median Mean N p-value from Hemlock 
Hemlock −0.072 −0.064 ± 0.012 186 N/A 
Red Oak 0.001 0.020 ± 0.013 138 < 0.001 

Red Maple 0.003 0.041 ± 0.017 82 < 0.001 
White Pine −0.020 0.001 ± 0.025 40 0.15 
Red Pine 0.051 0.057 ± 0.031 25 < 0.001 

Table 4. ANOVA and post-hoc test results of change in RH10 by species 

Species Median Mean N p-value from Hemlock 
Hemlock −0.085 −1.563 ± 0.263 186 N/A 
Red Oak 3.610 4.200 ± 0.305 138 < 0.001 

Red Maple 0.995 2.166 ± 0.396 82 < 0.001 
White Pine 2.070 2.507 ± 0.567 40 < 0.001 
Red Pine 1.760 1.695 ± 0.717 25 < 0.001 

 

3.4. Simulating GEDI’s Noise 

An ANOVA test was performed upon a series of noisy data files to test the effect of species 
(hemlock and red oak) upon the PAI 11–12 m change with added noise. Noise was added to both the 
G-LiHT and NEON waveforms. Change was calculated by subtracting metrics from noisy files with 
their corresponding noiseless counterpart (i.e., Change = noisy NEON 2016 – noiseless G-LiHT 2012). 
This analysis only used waveforms that had comparable ground heights between 2012 and 2016 
(within 1 m), and that also agreed with the ground height derived from the ALS data (within 1 m). 
The mean canopy cover was 0.90 ± 0.18. 

Different quality thresholds were found for each dataset using a series of ANOVAs and the 
change in PAI 11–12 m. When noise was added to G-LiHT 2012 waveforms, there was a significant 
effect of species on PAI change (p < 0.05) for beam sensitivities 0.99–0.94 (Figure 10a). When noise 
was added to NEON 2016 waveforms, PAI change was significantly different (p < 0.05) by species for 
beam sensitivities 0.99–0.96 (Figure 10b). Species was not significant as a grouping factor for 
waveforms with beam sensitivities less than or equal to 0.93 (G-LiHT) and 0.95 (NEON). Thus, each 
dataset varied in its response to added noise. 
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(a) (b) 

Figure 10. ANOVA with varying beam sensitivities. A series of one-way ANOVA tests tested the 
effect of species (hemlock and red oak) upon PAI 11–12 m change with added noise. F-test results are 
plotted against depreciated beam sensitivity values (x-axis), with significant test results (alpha = 0.05) 
highlighted in orange. Higher beam sensitivities represent waveforms with less noise added, while 
lower beam sensitivities have more noise. At the 5% significance level, the effect of species as a 
grouping factor stops becoming significant below a beam sensitivity of 0.94 for G-LiHT data with 
noise (a) and 0.96 for NEON data with noise (b). 

Adding noise to waveforms reduced the number of waveforms with comparable ground heights 
between the years. This can be illustrated by plotting the proportion of false positive ground returns 
in noisy GEDI data by dominant species (Figure 11). A false positive was defined as the number of 
instances in which GEDI finds ground to be greater than 1 m above the ground determined by ALS 
data. The proportion of false positive ground returns represents the proportion of waveforms that 
could not correctly identify the ground due to added noise. 
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(a) 

 
(b) 

Figure 11. The proportion of false positive ground returns with added noise by dataset (a) and 
dominant species (b). Waveforms from different datasets and from different species have varied 
reactions to noise, with hemlocks accumulating ground errors at a higher rate than other species. 

The different lidar datasets (Figure 11a) accumulate errors at different rates with added noise. 
When the beam sensitivity was 0.90, more than 70% of waveforms had issues detecting the true 
ground height, while with a beam sensitivity of 0.99, only about 5% of waveforms could not identify 
the ground accurately (Figure 11a). NEON waveforms tended to accumulate ground errors at a 
higher rate than did G-LiHT waveforms with beam sensitivity values from 0.99 to 0.93, even though 
both datasets were sampling with the same spatial distribution of footprints. This finding indicates 
that waveforms from the same areas can respond differently to noise, even when there are only subtle 
variations in shape between them. 

Different species (Figure 11b) also accumulate ground errors at different rates, likely a result of 
the differences in canopy structural properties (canopy cover, complexity, etc.). With added noise, 
waveforms over hemlock stands tend to accumulate a higher proportion of false-positive ground 
returns than do other species, indicating a higher rate of failure to identify the true ground through 
a complex canopy. 
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Misidentifying the ground height can affect waveform metrics by causing simulated waveforms 
from different datasets to be vertically offset from each other. Spatially coincident waveforms with 
offset ground heights either need to be filtered out before analysis (as is done in this study) or 
reprocessed with common ground heights before comparison. 

3.5. Simulating GEDI’s Noise and Spatial Coverage 

Next, the realistic spatial coverage of GEDI (Figure 3) and the noise parameters of the best (night-
power) and the worst (day-coverage) signal-to-noise ratio scenarios of GEDI were applied. When G-
LiHT 2012 waveforms were degraded with GEDI’s noise parameters and spatial coverage, the PAI 
change of waveforms using the power beam at night were significantly different by species (night-
power: F(2,60) = 6.79, p = 0.002), while waveforms using the coverage beam during the day were not 
significantly different (day-coverage: F(2,32) = 0.43, p = 0.65; Figure 12a, 12b, and Table 5). In the 
night-power scenario, there was a significant difference between the PAI change of hemlock and red 
oak (p = 0.002) and between that of hemlock and red maple (p = 0.03). In the noisier day-coverage 
scenario, there was no significant difference between hemlock and red oak (p = 0.66), nor with red 
maple (p = 0.96). 

When NEON 2016 waveforms were degraded with GEDI’s noise parameters, waveforms using 
the power beam at night could be separated by species at the 5% significance level (night-power: 
F(2,58) = 5.39, p = 0.007), while waveforms using the coverage beam during the day could not (day-
coverage: F(2,24) = 1.47, p = 0.25; Figure 12c, 12d, and Table 5). In the night-power scenario, there was 
a significant difference between hemlock and red oak (p = 0.02), as well as hemlock and red maple (p 
= 0.02). However, again in the day-coverage scenario, there were no significant differences between 
hemlock and red oak (p = 0.62), nor with red maple (p = 0.27).  

With night-power GEDI waveforms, the effect of species explained 19% (NEON as GEDI) and 
16% (G-LiHT as GEDI) of the variation in PAI 11–12 m, compared to the 22% of variation explained 
by noiseless waveforms. In contrast, species did not account for a large proportion of the variance in 
day-cover waveforms (3% for G-LiHT as GEDI, and 11% for NEON as GEDI; Table 5). 
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(a) (b) 

  
(c) (d) 

Figure 12. ANOVA with simulated noise and spatial coverage of GEDI data. Boxplots of the quantiles 
of PAI change at 11–12 m are plotted by species for best (night-power; a and c) and worst (day-
coverage; b and d) case scenarios of GEDI’s noise parameters and laser power. Species boxplots are 
colored by a significant difference from hemlock (magenta; p < 0.05), as determined by Tukey–Kramer 
post-hoc tests. 

Table 5. ANOVA results of the effect of species on PAI 11–12 m with GEDI’s noise and spatial 
coverage applied 

 Day-Coverage Noise Night-Power Noise 
Noiseless 

 G-LiHT 2012 NEON 2016 G-LiHT 2012 NEON 2016 
F-statistic 0.43 1.47 6.79 5.39 15.22 
p-value 0.65 0.250 0.002 0.007 <0.001 

η2 0.03 0.11 0.16 0.19 0.22 

4. Discussion  

4.1. Overview 

This study evaluates the ability of above-canopy lidar sensors, including the newly launched 
GEDI spaceborne lidar, to detect distinct changes in canopy structure brought about by an invasive 
insect infestation in a temperate New England forest. ALS datasets acquired with different lidar 
instruments, with their varying pulse densities and scan angles, were successfully compared at the 
scale of a large-footprint lidar instrument (~25 m diameter) using the GEDI simulator [32]. Waveform 
metrics were correlated with the condition of hemlock trees, measured as mortality, in stands infested 
with the hemlock woolly adelgid. The structural changes identified by this study, particularly the 
PAI loss in the midstory and the increased permeability of the canopy indicated by RH10 change, 
reveal the utility of lidar data for detecting the unique lower canopy impacts of the HWA disturbance. 



Remote Sens. 2020, 12, 1304 21 of 27 

 

The relationship between lidar metrics and forest condition held true when ALS and simulated 
GEDI waveforms were compared, provided that the acquisitions were with the power beam at night 
and that the waveforms being compared had comparable ground heights (within 1 m). The results 
show that this study provides a viable method for change detection and disturbance monitoring with 
real GEDI data for temperate field sites with spatially coincident lidar datasets. 

4.2. Structural Impacts of Hemlock Woolly Adelgid  

Analysis with lidar waveforms confirmed that initial HWA impacts occur in the middle and 
lower canopies of hemlock-dominated forests. The loss of PAI at 11–12 m above ground and the drop 
in RH10 from 2012 to 2016 were both found to be significantly related to hemlock mortality.  

The change in PAI 11–12 m successfully distinguished infested hemlock stands from those of 
other non-host tree species, including both deciduous and evergreen tree species. Vertical profiles of 
PAI change showed that the upper and lower portions of infested hemlock canopies are growing in 
a similar manner to the canopy of red oak, a healthy deciduous species. In contrast, the middle 
portion of hemlock canopies (40–70% of maximum height) was losing PAI, a signal of structural 
change that was unique to infested hemlock stands. Long-term observations in other infested 
hemlock plots in southern New England corroborate these results, documenting a foliar loss that 
starts in the lower and central portions of tree crowns before it reaches the top of the crowns [51]. 

A decline in RH10 was also strongly correlated with hemlock mortality in HWA infested stands. 
The negative change in RH10 over time indicates that more laser energy was able to pass through the 
canopy, and therefore trigger a ground return of higher amplitude. This finding supports the 
hypothesis that the HWA infestation increases canopy permeability through defoliation. The 
importance of RH10 as a disturbance metric corresponds with the findings of other studies with large-
footprint lidar data [29] that have linked positive changes in RH metrics with canopy growth and 
negative changes in RH metrics with canopy loss. 

Waveform metrics were also able to model the condition of hemlock stands in the ForestGEO 
plot. The strong correlation (R2 = 0.60) between hemlock mortality and the change in PAI 11–12 m 
and RH10 further suggests that the HWA infestation produces unique structural impacts that could 
be further exploited to monitor the insect infestation at a regional scale. While the models of hemlock 
mortality derived here may not be accurate enough for large-scale prediction (RMSE = 0.08), they 
demonstrated that waveform variables can capture the progression of structural changes that 
correspond with the severity of a disturbance. 

While the most important indicators of the HWA disturbance in lidar waveforms were found in 
the midstory and near the ground, this study also showed that plots with infested hemlocks 
continued to display some growth in the overstory. Potentially, this growth may be led by less-
impacted trees that are taking advantage of the new resources made available by the HWA 
infestation. During the initial stages of the HWA infestation, the healthiest foliage remains at the top 
of hemlock trees, and conditions could still be adequate for canopy growth. Growth in the upper 
canopy could also be indicative of a ramping up of production in response to the stress of the insect, 
as has been observed in individual hemlock trees [13]. Another possible explanation is that the other 
tree species mixed in with infested hemlock stands, such as eastern white pine trees (Pinus strobus), 
are growing rapidly and taking a more dominant position in the canopy. Whatever the ecological 
driver may be, this finding makes an argument for monitoring studies to rely on measurements from 
the entire profile of forest canopies, rather than solely on top-of-canopy metrics. 

4.3. Comparing ALS Datasets with the GEDI Simulator 

This study compared ALS datasets that were collected with different sensors and flight 
acquisition parameters using the GEDI simulator. After testing for potential biases between datasets, 
we concluded that the observed changes in waveform metrics were of ecological origin, and not 
artifacts of the difference between sensors. This conclusion is supported by previous research on 
simulated lidar data [32], which found insignificant biases in simulated waveforms from different 
sources of ALS data. This study also tested for potential biases in these particular datasets that could 
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have caused the observed changes in simulated waveforms at Harvard Forest. When the input ALS 
datasets were subset to footprints with the most similar sets of scan angles and point densities, the 
PAI loss in hemlock dominated footprints was still found to be significantly different from that of 
any other species (Appendix A). This finding demonstrates that any biases that may have been caused 
by differences in scan angle and point density were not the cause of the observed changes in PAI and 
RH metrics. 

In addition to scan angle and point density, the two datasets also differed in other potentially 
important ways, such as sensor wavelength. The 1550 nm wavelength of the G-LiHT lidar sensor 
would be expected to be less sensitive to vegetation than would be the NEON sensor, with a 1064 nm 
wavelength. Based on wavelength alone and given that all other flight parameters are held equal, it 
could be expected that the G-LiHT sensor would obtain fewer canopy returns as compared to NEON, 
which would be more sensitive to vegetation and thus have a lower threshold for producing canopy 
returns. However, in direct opposition to these expectations, NEON data observed less foliage in 2016 
than did G-LiHT in 2012. Any bias introduced by the difference in sensor wavelength would have 
been expected to dampen, rather than amplify, the changes in mid-canopy foliage that were observed 
in this study. Following this logic, we conclude that we see the impacts of HWA in simulated GEDI 
data in spite of, not because of, the potential biases caused by differences in sensor wavelength. 

Furthermore, there is strong ecological evidence to support the conclusion that differences 
between simulated waveforms from 2012 to 2016 were the result of HWA impacts, and not sensor 
artifacts. The observed changes in waveform metrics were exclusive to infested hemlock stands, even 
when compared with stands of other evergreen trees, such as white pine and red pine. In addition, 
phenological differences between the datasets cannot explain the changes in waveform metrics, as 
both datasets were collected during the leaf-on season (June and August). Lastly, the mid-canopy 
changes captured by the simulated lidar waveforms are fully supported by field-based ecological 
studies, which found that HWA impacted the inner layers and lower canopy of hemlock trees before 
spreading to the top [51]. 

While this study is limited in its capacity to further evaluate potential sensor-based biases, a 
strong body of evidence supports the conclusion that simulated GEDI waveform metrics captured 
the impacts of HWA from 2012 to 2016 in the ForestGEO plot. A large-scale validation study, building 
off of the work of Hancock et al. [32], could provide more insight into any biases that might arise 
between datasets from different sensors and acquisition times. Future studies could also draw on a 
longer time series of ALS data from a single sensor over the ForestGEO plot, such as by using the 
continued data collections planned by NEON at Harvard Forest, to follow up these findings and 
lengthen the time series that is established by this initial study. 

4.4. Toward Change Detection and Disturbance Monitoring with GEDI 

While we focus on exploring the utility of GEDI and ALS for monitoring structural changes 
associated with HWA, the general method applied in this study could be expanded to other 
disturbances in temperate or tropical forests around the world. Wherever ALS data are available, 
GEDI waveforms can be geolocated and ALS waveforms can be simulated for comparison with real 
GEDI data. Structural change along the entire vertical profile of the canopy can be calculated for 
individual GEDI waveforms between time points: the instance of GEDI acquisition and that of the 
ALS data. Given additional field data on forest condition and canopy structure, a model can be 
trained to classify forest condition for a wide area.  

This simulation study had the advantage of control over the noise parameters, sampling 
coverage, and location of the GEDI waveforms. Real GEDI data is estimated to have beam sensitivities 
between 0.92 and 0.996. Results of noise analyses showed that GEDI waveforms with beam 
sensitivities of greater than 0.96 and data acquisitions made at night with the power laser were most 
suitable for monitoring HWA in forests with comparable structure (mean canopy cover of 0.90). 
However, night-power waveforms had different capabilities depending on which input ALS data 
was degraded with noise. For instance, noisy G-LiHT and noisy NEON datasets produced slightly 
different quality thresholds when analyzing the effect of species on PAI 11–12 m change with 
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ANOVA (0.94 and 0.96 beam sensitivity). This finding demonstrates that future disturbance studies 
will need to develop their own quality thresholds to fit the structural complexity of the target site and 
the species of interest. 

Forests with different structures and species compositions will vary in their sensitivity to noise, 
but hemlock forests seem to be particularly affected. Added noise caused hemlock stands to 
accumulate ground errors at a faster rate than those of other species. This difference is likely due to 
the unique structural properties of hemlock stands, including their dense canopy cover. Future 
studies could adjust for these errors by using the true ground elevation from coincident ALS datasets. 

A potential limitation of this study is its reliance on absolute PAI metrics processed at 1 m 
vertical resolution. In contrast, the GEDI PAI product (L2B) is being released to users at 5 m height 
intervals [40]. In light of this, future studies should consider how varying vertical resolutions of PAI 
differ in their ability to capture structural changes related to disturbances. In addition, monitoring 
studies should test the utility of normalized or proportional metrics for capturing disturbances across 
a wider region. When expanding to a wider region with a greater variation of canopy structure, it 
may be beneficial to convert absolute metrics, such as aboveground heights and PAI change, into 
normalized metrics, such as percentiles of maximum height and proportional PAI change. 

The sparse spatial coverage of GEDI also posed an issue for the regression model used in this 
study, since only eight footprints overlapped with the western portion of the ForestGEO plot that 
was sampled for mortality in 2016. Future studies will be able to use field data from the entire 35-
hectare ForestGEO plot as a result of the recent field surveys conducted in 2018 and 2019. In general, 
future studies with GEDI data would benefit from drawing on large field plots, such as the entire 35-
hectare ForestGEO plot and others in the CTFS network [47], and focusing on sites with the highest 
density of GEDI acquisitions, such as those locations currently identified for GEDI’s validation 
studies.  

5. Conclusions 

By linking the change in simulated GEDI waveforms with the deteriorating condition of hemlock 
stands in a temperate New England forest, this study demonstrates how a time series of lidar 
waveforms can capture structural change and classify disturbance. The GEDI Simulator [32] 
successfully enabled an analysis of structural change between two ALS datasets using simulated 
GEDI data. Lower canopy PAI and RH metrics from the simulated GEDI waveforms emerged as 
significant predictors of the severity of the HWA infestation. These structure–condition relationships 
held true even when the quality of GEDI waveforms was degraded with realistic noise and the sparse 
coverage of GEDI acquisitions was applied. In addition, the waveform metrics identified growth in 
the upper canopies of hemlock stands, revealing that infested plots are undergoing a complex shift 
in the vertical distribution of leaf matter, with loss in the lower canopy and continued growth in the 
upper canopy. 

Initial GEDI data is just becoming available, and data will continue to be collected and released 
over the course of the next 2 years. Following the methods of this study, a time series of ALS data 
and/or GEDI data can be compared for other forested sites and disturbances. The findings of this 
study open up new opportunities for ecological research and disturbance monitoring in temperate 
and tropical forests around the world. 
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Appendix A 

Evaluating Potential Sensor Bias 

Working with simulated data from two different airborne lidar instruments allowed for further 
analysis of sensor bias in this study. The effects of the scan angle and the pulse density distributions 
of the input ALS datasets upon simulated waveform metrics were examined. 

Scan angle and point density distributions differed greatly between both sets of input data. G-
LiHT ALS data had a greater range of scan angles per footprint (max scan angle of 36 degrees in G-
LiHT vs. 18 degrees in NEON), as well as a higher average point density per footprint (29.6 points 
per m2) compared to NEON data (6.8 points per m2; Table 1). 

To mitigate potential biases caused by the different scan angle and point density distributions 
in the input ALS datasets, the PAI 11–12 m change was compared by species (hemlock, red oak, red 
maple, and white pine) for a subset of footprints with the most similar distributions of input data. 
When the data were subset to 157 footprints (one-third of the dataset) with similar scan angle 
distributions, an ANOVA with Tukey–Kramer post-hoc tests still found significant differences 
between hemlock and red oak, red maple, and white pine (p < 0.05). When the data were subset to 
those with similar point density distributions, PAI 11–12 m changes in hemlock footprints were also 
significantly different from those of red oak, red maple, and white pine (p < 0.05). These results 
reinforce the findings of this study, showing that the changes observed in waveform variables are not 
the result of sensor differences, but rather, have ecological origins. 
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