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Abstract: The present study assesses the performance of state-of-the-art atmospheric correction
(AC) algorithms applied to Sentinel-2-MultiSpectral Instrument (S2-MSI) and Sentinel-3-Ocean and
Land Color Instrument (S3-OLCI) data recorded over moderately to highly turbid estuarine waters,
considering the Gironde Estuary (SW France) as a test site. Three spectral bands of water-leaving
reflectance (Rhow) are considered: green (560 nm), red (655 or 665 nm) and near infrared (NIR)
(865 nm), required to retrieve the suspended particulate matter (SPM) concentrations in clear to
highly turbid waters (SPM ranging from 1 to 2000 mg/L). A previous study satisfactorily validated
Acolite short wave infrared (SWIR) AC algorithm for Landsat-8-Operational Land Imager (L8-OLI)
in turbid estuarine waters. The latest version of Acolite Dark Spectrum Fitting (DSF) is tested here
and shows very good agreement with Acolite SWIR for OLI data. L8-OLI satellite data corrected for
atmospheric effects using Acolite DSF are then used as a reference to assess the validity of atmospheric
corrections applied to other satellite data recorded over the same test site with a minimum time
difference. Acolite DSF and iCOR (image correction for atmospheric effects) are identified as the
best performing AC algorithms among the tested AC algorithms (Acolite DSF, iCOR, Polymer and
C2RCC (case 2 regional coast color)) for S2-MSI. Then, the validity of six different AC algorithms
(OLCI Baseline Atmospheric Correction (BAC), iCOR, Polymer, Baseline residual (BLR), C2RCC-V1
and C2RCC-V2) applied to OLCI satellite data is assessed based on comparisons with OLI and/or
MSI Acolite DSF products recorded on a same day with a minimum time lag. Results show that all the
AC algorithms tend to underestimate Rhow in green, red and NIR bands except iCOR in green and red
bands. The iCOR provides minimum differences in green (slope = 1.0 ± 0.15, BIAS = 1.9 ± 4.5% and
mean absolute percentage error (MAPE) = 12 ± 5%) and red (slope = 1.0 ± 0.17, BIAS = −9.8 ± 9%
and MAPE = 28 ± 20%) bands with Acolite DSF products from OLI and MSI data. For the NIR band,
BAC provides minimum differences (slope = 0.7 ± 0.13, BIAS = −33 ± 17% and MAPE = 55 ± 20%)
with Acolite DSF products from OLI and MSI data. These results based on comparisons between
almost simultaneous satellite products are supported by match-ups between satellite-derived and
field-measured SPM concentrations provided by automated turbidity stations. Further validation of
satellite products based on rigorous match-ups with in-situ Rhow measurements is still required in
highly turbid waters.
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1. Introduction

Once corrected for atmospheric effects, ocean color satellite data can be used to retrieve and
map suspended particulate matter (SPM) concentrations ranging from 1 to 2000 mg/L in coastal
and estuarine waters [1]. Atmospheric correction (AC) is a crucial step in the processing of ocean
color remote sensing data to derive water biogeochemical parameters [2,3]. Over the open ocean,
around 90% of the radiance received by satellite sensors results from the atmospheric contribution.
In coastal waters, these contributions can be higher than 90% especially in the blue and green bands
but are usually much lower in the red and near infrared (NIR) bands in the case of highly turbid
waters associated with a higher reflectance signal [4]. In the ocean–atmosphere system, the radiance
detected at the top of the atmosphere (Lt(λ)) can be portioned linearly into various distinct physical
contributions [5,6]:

Lt(λ) = Lr(λ) + La(λ) + LaR(λ) + Lg(λ)× T(λ) + Lwc(λ)× t(λ) + Lw(λ)× t(λ) (1)

where Lt(λ) is the total radiance measured by the sensor (radiance is the spectral flux that reaches the
instrument per unit area per unit of solid angle and per unit wavelength with unit Wm−2sr−1nm−1),
λ is the wavelength, Lr(λ) is the radiance due to Rayleigh scattering by air molecules, La(λ) is
the radiance due to aerosols (includes light scattering/absorption by aerosols), LaR is the radiance
due to aerosols-molecules scattering, Lg is the Sun-glint radiance, Lwc is the surface white caps
radiance and Lw is the water-leaving radiance. T and t are the atmospheric direct and diffuse
transmittances. The normalized water-leaving radiance (LWN) is the Lw that would occur if the
Earth was at one astronomical unit (AU) from the Sun, the Sun was at the zenith and the atmosphere
was non attenuating [7]. LWN signal is computed by the following equation [8]:

LWN(θv, φ) ≡
(

R
Ro

)2 Lw(θs, θv, φ)

cos(θs)t(θs)
(2)

where R is the Earth–Sun distance at the time of measurement and Ro is the mean Earth–Sun distance,
θs is the Sun zenith angle, θv is the satellite viewing direction and φ is the azimuthal angle measured

relative to the Sun’s azimuthal direction. The factors
(

R
Ro

)2
, cos(θs) and t(θs) largely remove the effects

of Earth–Sun distance, solar zenith angle and atmospheric attenuation on measured Lw. LWN still
depends on particular viewing direction and the sky angular radiance distribution at the time of
observation. The non-dimensional water-leaving reflectance is derived by the following equation [9,10].

Rhow ≡
(

π

Fo

)
LWN(θv, φ) = π × Rrs (3)

where π has units of steradian, Fo is the extraterrestrial solar irradiance with unit Wm−2nm−1 measured
at mean Earth–Sun distance and Rrs is the remote sensing reflectance with unit sr−1.

Standard AC algorithms perform well in open ocean waters. These standard AC algorithms
estimate the aerosol radiance by assuming a negligible water-leaving radiance (black pixel assumption)
in NIR bands due to strong light absorption by pure water [9,11,12]. NIR bands are then used to
estimate the atmospheric contribution and then extrapolate it to the visible bands. When dealing with
coastal and inland turbid waters, these algorithms usually fail to retrieve Rhow due to enhanced light
backscattering by suspended particles, so that the water-leaving signal is no longer negligible in NIR
bands. It is therefore necessary to separate the aerosol and marine contributions from the top of the
atmosphere. As the NIR based black pixel assumption is no longer valid in turbid waters [11,13–15],
short wave infrared (SWIR) based AC algorithms can be a solution [12,16]. A NIR-SWIR combined
method has been proposed [17–19] for MODIS (MODerate resolution Imaging Spectroradiometer).
This approach derives the Rhow using the standard algorithm (NIR) for non-turbid waters and a SWIR
algorithm for turbid waters. Other AC methods have been developed for turbid waters: the bright
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pixel atmospheric correction (BPAC) [20], AC for turbid and inland waters [13], the semi empirical
radiative transfer (SERT) model [21], a neural network (NN) model (C2RCC) [22], spectral matching
method (Polymer) [23], the NIR-SWIR approach [18], the SWIR exponential [24,25] and SWIR Dark
Spectrum Fitting (DSF) [26,27].

Many studies did assess the performance of existing AC algorithms in moderately turbid
waters for different satellite sensors such as SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) [28],
MODIS-Aqua [29], GOCI (Geostationary Ocean Color Imager) [30], L8-OLI [31–36], S2-MSI [36–41]
and S3-OLCI [42,43]. None of these studies considered the case of highly turbid waters for S3-OLCI.
The objective of the present study is to identify the best performing AC algorithms for S2-MSI and
S3-OLCI in the scope of deriving SPM concentrations in highly turbid waters.

The paper is organized as follows: in the first section, we present the study area, data and
methods adopted for the intercomparison exercise between different ocean color sensors. The next
section primarily investigates the performance of various AC algorithms to retrieve Rhow from S2-MSI
data and identifies the best performing AC algorithm for S2-MSI. Next considers the performance
of available AC algorithms to retrieve Rhow from S3-OLCI and identifies the best performing AC
algorithm/s. Eventually, the comparison between Rhow derived from various AC processors for
OLCI satellite data and in-situ data is presented followed by the validation of satellite-derived SPM
(S2-MSI/L8OLI and S3-OLCI) using in-situ turbidity measurements from autonomous stations.

2. Materials and Methods

The validation of AC algorithms is usually based on match-ups between satellite and field
data [44,45]. Due to the unavailability of a large number of in-situ data in highly turbid waters, another
method is used in the present study based on match-ups between already validated satellite products
and satellite data corrected for atmospheric effects using different AC algorithms. Such match-ups
are expected to provide pixel-by-pixel comparisons over wide areas covering a wide range of water
turbidity. Here the already validated L8-OLI products derived using the Acolite SWIR AC algorithm
in the moderately to highly turbid Gironde estuarine waters [1] are used as reference to assess the
performance of different AC algorithms applied to S2-MSI and S3-OLCI satellite data. For that purpose,
a selection of cloud-free images of S3-OLCI recorded over the Gironde Estuary during the year 2018
are considered, including match-ups with S2-MSI and/or L8-OLI satellite data.

2.1. Study Area

The Gironde Estuary is a highly turbid semi-diurnal macro tidal estuary with a tidal amplitude of
2–5.5 m [46] located in the southwest coast of France and connected to the Atlantic Ocean (Figure 1).
The Garonne (watershed area 57,000 km2) and Dordogne (watershed area 24,000 km2) are the two rivers
confluence into the Gironde Estuary (surface area 635 km2). The high tidal range and prominent length
promote the formation of a turbidity maximum zone (TMZ) [47] with surface SPM concentrations
ranging from 100 to 10,000 mg/L [48]. The SPM is mainly suspended sediments [1,49–56] and SPM
concentrations are well correlated with the water turbidity independently of tidal and seasonal
conditions [1,53,55,57]. This study area is equipped with autonomous monitoring stations and has
been already used as a test site to calibrate and validate ocean color satellite products for SPM retrieval
and mapping [49,51–53], based on field data-sets including hyperspectral Rhow, SPM concentrations
and turbidity measurements [58].
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Figure 1. Example of quasi-true color satellite images of the Gironde Estuary on 19 April 2018.
Sentinel-3-OLCI sampled at 10:37 UTC (A), Landsat-8-OLI sampled at 10:47 UTC (B) and Sentinel-2-MSI
sampled at 11:01 UTC (C). Locations of the automated turbidity stations of Le Verdon (green circle)
and Pauillac (blue circle) (B).

2.2. Data

The data-set is composed of both field and satellite data. Field data include simultaneous
measurements of surface SPM concentrations with above-water hyperspectral radiometric measurements
(from field campaigns) and continuous automated measurements of water turbidity in two-optically
contrasted locations along the estuary. The satellite data used in this study are the cloud-free images of
L8-OLI, S2-MSI and S3-OLCI recorded over the Gironde Estuary during the year 2018.

2.2.1. In-Situ Data

In-situ data are the measurements carried out during a field campaign in 2018 and data recorded
by two automated turbidity stations. A total of 50 field stations were sampled in the Gironde Estuary
from 17 to 20 September 2018 with SPM, turbidity and radiometric measurements carried out for a wide
range of SPM concentrations (5 to 500 mg/L), representative of moderately to highly turbid waters.

Radiometric Measurements

Three TriOS RAMSES hyperspectral (350–950 nm with a sampling interval of 3.3 nm) radiometers
were used to measure the above-water downwelling irradiance (Ed(0+, λ)), upwelling radiance
(Lsea(λ) and the downwelling sky radiance (Lsky(λ)) in two optically-contrasted estuarine stations.
The irradiance sensor was mounted vertically upwards, the sky and seaward pointing sensors were
mounted at 40◦ and 140◦ from the zenith and the radiance sensors were pointed at a relative azimuth
angle of 135◦ away from the Sun [59,60]. The measurements for each station were performed for
10 min duration with a simultaneous sampling period of 10 s. Rhow was computed using the following
equation [59]:

Rhow(λ) = π ×
[Lsea(λ)− Lsky(λ)× ρsky]

Ed(0+, λ)
(4)

where ρsky, the air–water interface reflection coefficient for radiance, was fixed to 0.0256 [56].
The resulting Rhow spectra and the spectral bands (green, red and NIR) considered in the present
study are highlighted in Figure 2.
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Figure 2. In-situ water-leaving reflectance (Rhow) of 50 stations in the Gironde Estuary measured from
17 September 2018 to 20 September 2018.

Automated Turbidity Stations

The Gironde Estuary is monitored through an automated network called MArel Gironde ESTuary
(MAGEST) [61] including six stations. Two stations are located inside the estuary (Pauillac and Le
Verdon) and are considered here while the others are located along the Garonne and Dordogne rivers.
Pauillac is in the central part of the estuary, 52 km upstream from the mouth. Le Verdon is located at the
mouth of the estuary (Figure 1). Continuous measurements of water turbidity, salinity and temperature
are recorded every 20 min one meter below the surface. The turbidity sensor (Endress and Hauser,
CUS31-W2A) is able to record values between 0 and 10,000 Nephelometric Turbidity Unit (NTU) with
an accuracy of 10%. The sensor saturates when turbidity values are higher than 10,000 NTU, this limit
corresponds to SPM concentration of 6000 mg/L [62].

2.2.2. Satellite Data

The OLCI data (Level1 and Level2) were downloaded from Copernicus Online Data Access
(CODA) (https://coda.eumetsat.int) provided by EUMETSAT (European Organization for the
Exploitation of Meteorological Satellites); the OLI data (Level1) were accessed from earth explorer
(https://earthexplorer.usgs.gov/) provided by USGS (United States Geological Survey); MSI data
(Level-1C) were accessed from Copernicus Open Access Hub (https://scihub.copernicus.eu) provided
by ESA (European Space Agency) Copernicus. There are 24 totally cloud-free OLCI images recorded
over the Gironde Estuary in 2018. Six match-ups with MSI data and four match-ups with OLI satellite
data were identified out of these 24 OLCI images, which are representative of seasonal and tidal
conditions (tidal range 2.5–5.2 m) prevailing in the Gironde Estuary (Table 1). The spatial resolution of
each sensor is different: 30 m for OLI, 10, 20 and 60 m for MSI and 300 m for OLCI. For pixel-by-pixel
intercomparison between satellite products, a spatial binning of 300 m resolution using the nearest
neighbour method was implemented using the Level3-binning of Sentinel Application Platform
(SNAP). For the match-ups between satellite and in-situ data, the mean satellite-derived Rhow values
in the 5 × 5 pixels box centered at each in-situ station were considered.

https://coda.eumetsat.int
https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu
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Table 1. Date (dd/mm/yyyy) and time (UTC) of cloud-free satellite observations selected over the
year 2018 and corresponding hydro-dynamical conditions prevailing in the estuary at the time of
satellite overpass, LW, HW, TR, SZA, Pau-AOT865 and Ver-AOT865 respectively stand for low-water,
high-water, tidal range, sun zenith angle, aerosol optical thickness at 865 nm from Pauillac station and
aerosol optical thickness at 865 nm from Le Verdon station.

Date Tide Tide TR (m) SZA (◦) Pau-AOT865 Ver-AOT865 OLCI MSI OLI

25/02/2018 06:19 LW 12:48 HW 3.18 61.19 0.22 ± 0.19 0.23 ± 0.19 10:11
16/04/2018 04:55 HW 11:34 LW 5.02 42.09 NaN 0.30 ± 0.20 10:15
19/04/2018 06:47 HW 13:29 LW 4.78 38.65 0.61 ± 0.10 0.26 ± 0.10 10:37 11:01 10:47
20/04/2018 07:31 HW 14:08 LW 4.41 41.21 0.38 ± 0.15 0.26 ± 0.11 10:11
04/05/2018 07:14 HW 13:41 LW 3.90 32.96 0.43 ± 0.07 0.56 ± 0.13 10:48 11:02
05/05/2018 07:49 HW 14:13 LW 3.40 35.50 0.65 ± 0.18 0.38 ± 0.11 10:22 10:46
20/05/2018 08:24 HW 14:49 LW 3.99 30.95 0.39 ± 0.21 0.25 ± 0.14 10:33
20/06/2018 10:17 HW 16:35 LW 3.62 29.17 0.23 ± 0.17 0.21 ± 0.19 10:30
25/06/2018 09:15 LW 15:22 HW 3.97 33.61 0.31 ± 0.19 0.13 ± 0.12 10:00
28/06/2018 04:57 HW 11:18 LW 4.10 30.54 0.40 ± 0.22 0.17 ± 0.16 10:22 11:06
09/07/2018 07:26 LW 13:40 HW 3.58 29.59 0.32 ± 0.14 0.21 ± 0.06 10:37
10/07/2018 08:30 LW 14:35 HW 4.08 33.26 0.38 ± 0.17 0.23 ± 0.06 10:11
25/07/2018 09:37 LW 15:46 HW 3.80 33.96 0.53 ± 0.21 0.34 ± 0.14 10:22
02/08/2018 07:55 HW 14:23 LW 3.84 36.48 0.26 ± 0.18 0.10 ± 0.04 10:15 10:59
05/08/2018 04:25 LW 10:37 HW 3.08 34.32 0.18 ± 0.14 0.22 ± 0.13 10:37
06/08/2018 05:33 LW 12:01 HW 3.05 37.81 0.23 ± 0.15 0.25 ± 0.10 10:11
18/08/2018 09:54 HW 16:22 LW 3.23 42.03 0.29 ± 0.24 0.19 ± 0.19 10:00
22/08/2018 08:21 LW 14:45 HW 3.09 43.50 0.23 ± 0.17 0.26 ± 0.19 09:57 11:04
01/09/2018 08:06 HW 14:39 LW 3.89 41.52 0.08 ± 0.14 0.09 ± 0.08 10:37 10:59 10:53
02/09/2018 08:52 HW 15:24 LW 3.50 44.56 0.16 ± 0.20 0.44 ± 0.26 10:11
12/09/2018 06:25 HW 13:02 LW 5.17 43.82 0.27 ± 0.19 0.21 ± 0.19 10:52
17/09/2018 10:09 HW 16:42 LW 2.46 47.96 0.16 ± 0.13 0.23 ± 0.14 10:22 10:53
20/09/2018 07:49 LW 14:17 HW 2.74 47.08 0.23 ± 0.26 0.56 ± 0.29 10:45
24/09/2018 04:18 HW 10:43 LW 4.40 48.74 0.24 ± 0.19 0.27 ± 0.23 10:41

2.3. Methods

2.3.1. Bandwidth Correction

L8-OLI high spatial resolution (30 m) data are recorded at 9 spectral bands ranging from the
visible to the SWIR spectral regions. The S2-MSI also performs measurements in 13 spectral bands
ranging from visible to SWIR (443–2202 nm) at three spatial resolutions (10, 20 and 60 m). S3-OLCI
simultaneously performs measurements in 21 spectral bands ranging from the visible to the NIR
(400–1020 nm) spectral regions with a spatial resolution of 300 m. The bandwidths of the corresponding
green (560), red (665 or 655) and NIR (865) spectral bands are significantly different for these three
sensors. For OLI the bandwidths for green, red and NIR are 57, 37 and 28 nm, respectively. For MSI
the bandwidths for green, red and NIR are 46, 39 and 33 nm, respectively. These bandwidths are wide
compared to the corresponding OLCI bands (10, 10 and 20 nm, respectively) (Figure 3).

Taking into account the spectral response functions (SRF) of each sensor, correspondence functions
were established between the Rhow values of OLI, MSI and OLCI in the three spectral bands (green,
red and NIR) using the in-situ measured hyperspectral Rhow values. The resulting correspondence
functions closely follow 1:1 relationships (Figure 4), which means band-to-band Rhow comparisons
can be made between these different sensors even without considering the correspondence functions.
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Figure 3. The relative spectral response functions of S3-OLCI, S2-MSI and L8-OLI in green, red and
NIR bands.

Figure 4. Using the relative spectral response of each sensor, sensor equivalent Rhow values were
derived from 50 in-situ Rhow for OLI, MSI and OLCI. Rhow of MSI/OLI versus OLCI in green band (A),
Rhow of MSI/OLI versus OLCI in red band (B) and Rhow of MSI/OLI versus OLCI in NIR band (C).

2.3.2. Selected Atmospheric Correction Algorithms

The list of the AC algorithms considered for each sensor is shown in Table 2. Almost all
available AC algorithms specially designed for coastal and turbid waters were considered. Due
to the unavailability of codes, some AC algorithms were omitted from the present study [21,42,63,64].
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Table 2. List of atmospheric correction algorithms tested for each sensor.

L8-OLI S2-MSI S3-OLCI

Acolite DSF/SWIR Acolite DSF BAC
iCOR (NoSIMEC and SIMEC) iCOR (NoSIMEC and SIMEC) iCOR (NoSIMEC and SIMEC)

Polymer Polymer
C2RCC BLR

C2RCC-V1
C2RCC-V2

AC Algorithms Considered for S2-MSI

Acolite DSF: The Acolite processor is an AC algorithm developed by the Royal Belgian Institute
of Natural Sciences [25]. It applies by default the Dark Spectrum Fitting (DSF) approach [26,27].
This AC scheme is exclusively image-based and hence does not need external inputs such as aerosol
optical thickness (measured or estimated). This scheme assumes that the atmosphere is homogeneous
over a scene or sub-scene. This hypothesis allows the atmospheric path reflectance to be predicted
from multiple dark targets in the scene or sub-scene. These targets are selected accordingly to the
lowest observed top of atmosphere reflectance values in all the bands. The L8-OLI and S2-MSI sensors
have SWIR bands (at 1.6 and 2.2 µm), where Rhow can be assumed negligible even for extremely turbid
waters [16,24]. Acolite can also be configured into the SWIR approach [24,25] by changing the aerosol
correction to exponential in the settings file. This AC algorithm is designed for clear to turbid waters
and can be adapted to most satellite sensors, but it requires SWIR bands to work over turbid waters.

iCOR for MSI/OLI: Image correction for atmospheric effects (iCOR) is an image-based AC tool
which runs through multiple processing steps [65]. First, the workflow identifies the land and water
pixels based on a band threshold. Secondly, land pixels are used to estimate the aerosol optical thickness
(AOT). The raw top of the atmosphere (TOA) image is subdivided into tiles of about 15 × 15 km, small
enough to assume atmospheric homogeneity and large enough to include sufficient spectral variability.
A maximum AOT threshold is defined for each sub-tile using the dark dense vegetation (DDV)
approach. These maximum AOT values are further refined using the spectral variation within the
sub-tile, through a multi-parameter end-member inversion technique using selected end-members
(ranging from bare soil to highly vegetated pixels). The AOT values retrieved over land pixels are
extrapolated over water. In the next step, an adjacency correction can optionally be applied using the
SIMilarity Environmental Correction (SIMEC) approach [66]. Finally the radiative transfer equation
will be solved using MODerate resolution atmospheric TRANsmission (MODTRAN-5) Look-Up-Tables
(LUT). For water pixels, an additional correction for Fresnel reflectance is applied.

C2RCC: The “Case 2 Regional processor” is a Neural Network (NN) based AC algorithm
originally proposed by [67] with a large set of radiative transfer simulations inverted by NN.
This method has been revised with an additional set of NN computations specially trained to cover
wide ranges of water scattering and absorption coefficients, called as Case 2 Regional Coast Color
(C2RCC) [22]. As we did not observe a significant improvement from C2RCC apart from large numbers
of flagged pixels [40], the C2X alternate net was not incorporated in the present study. The C2RCC
processor used for MSI is called C2RCC hereafter.

Polymer: The Polynomial based algorithm applied to MERIS (Polymer) is an AC algorithm
specially designed for waters with and without sun-glint contamination [23]. Polymer works on the
principle of the spectral matching method. This method depends upon a polynomial function to model
the spectral reflectance of the atmosphere and Sun-glint with the help of a water reflectance model
available for visible and also extended to NIR (700 to 900 nm) bands using the similarity spectrum for
turbid waters [68].
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AC Algorithms Tested for S3-OLCI

OLCI Baseline AC (BAC): The OLCI Baseline AC algorithm (BAC) is a combination of NIR based
black pixel assumption accommodated with the multiple scattering of air molecules and aerosols [69,70]
together with the BPAC [20]. The BPAC corrects the contribution of sediments on Rhow. It consists
in decoupling the oceanic and atmospheric components in the NIR bands, in order to apply the
standard atmospheric correction scheme. Rhow in NIR bands is computed using an iterative approach.
The BPAC version used in the present OLCI data is that inherited from last MERIS reprocessing [71].
The BAC algorithm also considers the correction of the blue absorbing aerosols [72].

iCOR for OLCI: Two adaptations were added in the iCOR workflow for the processing of
OLCI images, compared to MSI/OLI. First, an additional limitation has been defined in the AOT
extrapolation step from land to water: the resulting Rhow (without adjacency correction) in band Oa11
(709 nm) or Oa18 (885 nm) is not allowed to be negative. When this happens, the AOT value will be
adapted accordingly. Secondly, an additional glint and haze correction has been included: the water
leaving reflectance at Oa21 (1020 nm) is subtracted from the retrieved Rhow. This additional correction
is only performed on unmixed (land/water) pixels and in absence of remaining adjacency effects.
When Rhow at Oa21 (1020 nm) exceeds Rhow at Oa17 (865 nm), e.g., due to calibration issues, this atter
band will be used for subtraction instead of Oa21.

Polymer: The description of the Polymer AC algorithm is available in the previous paragraph
AC algorithms tested for S2-MSI.

Baseline residual (BLR): Using the single SWIR band (1016 nm) of OLCI, a new AC algorithm
specially designed for highly turbid waters was proposed by [73]. The algorithm depends on a
spectral magnitude which is substantially independent of the atmospheric conditions called the
BLR (Baseline residual), which is the Rayleigh-corrected reflectance of the middle band of specially
selected triple bands after baseline subtraction. It uses three consecutive triplets of OLCI bands
(620–709–779 nm, 709–779–865 nm and 779–865–1016 nm) to calculate Rhow and hence the aerosol
reflectance at these wavelengths.

C2RCC-V1 and C2RCC-V2: The C2RCC processor has been developed for different satellite
sensors [22,67]. In this study, C2RCC processors for OLCI are named C2RCC-V1 (available in SNAP 6.0)
and C2RCC-V2 (available in SNAP 7.0). C2RCC-V1 is the basic AC algorithm with C2RCC net,
while C2RCC-V2 is a more advanced NN (alternative NN) trained for several water types based on
European Space Agency (ESA) case2extreme findings (personal communication with C. Lebreton).
C2RCC-V2 provides better coverage of highly backscattering waters (rivers, estuaries and lakes).
The combination of noise training data set and NN architecture optimized in the C2RCC-V2 reduce
the noise compared to C2RCC-V1.

2.3.3. SPM Extraction

The in-situ SPM is derived from the turbidity values (NTU) measured from the two automated
stations. The turbidity were converted into SPM concentrations (mg/L) using [1]:

SPM = 0.88 × Turbidity (5)

The two consecutive turbidity measurements just before and after each satellite overpass were
used to compute the time-averaged turbidity mean value matching the satellite-derived product.

Satellite-derived SPM concentrations are obtained by applying to satellite-derived Rhow values
the SPM model developed by [1]. This model retrieves SPM concentrations within the wide range
(1–2000 mg/L) encountered in moderately to extremely turbid estuarine waters by switching from
green to red then NIR bands. The switching criteria are based upon the Rhow values derived from the
saturation points of the most sensitive bands (green, red and NIR). The switching limits were selected
by band comparison between in-situ Rhow values: Rhow (green) versus Rhow (red) and Rhow (red)
versus Rhow (NIR) (see details in [1] ). In the present study, the switching SPM algorithm is applied to
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Rhow values derived from OLCI satellite data applying the BAC algorithm and from MSI/OLI data
applying the Acolite DSF AC algorithm.

2.3.4. Statistical Analyses

For this pixel-by-pixel multi-sensor intercomparison exercise between Rhow values derived using
different AC algorithms, a spatial binning was performed using the nearest neighbour method for
all the 3 sensors into regular grids with the same spatial resolution (300 m). At first step, the spatial
distributions of green, red and NIR Rhow values along the estuary were compared based on satellite
maps (qualitative comparisons). Then quantitative comparisons were performed based on scatter-plots
between S3-OLCI Rhow values (y-axis) and S2-MSI or L8-OLI Rhow values used as references (x-axis).
The quantitative comparisons were then based on five different statistical indicators: the slope of
the linear fit (slope) and corresponding coefficient of determination (r2), the normalized root mean
square error (NRMSE %), the Bias (BIAS %) and mean absolute percentage error (MAPE %). The AC
algorithm associated to the maximum number of favorable statistical indicators was considered as the
best performing AC algorithm. The equations of NRMSE, BIAS and MAPE are shown below:

RMSE =

√
∑n

i=1(RhowACi (λ)− RhowREFi (λ))
2

n
(6)

NRMSE(%) =

[
RMSE

Max(RhowREF(λ))− Min(RhowREF(λ))

]
× 100 (7)

BIAS(%) =
∑n

i=1
[
RhowACi (λ)− RhowREFi (λ)

]
∑n

i=1 RhowREFi (λ)
× 100 (8)

MAPE(%) =

[
1
n

n

∑
i=1

∣∣RhowACi (λ)− RhowREFi (λ)
∣∣

RhowREFi (λ)

]
× 100 (9)

where Max and Min are the maximum and minimum values, RhowREF is the water-leaving reflectance
retrieved by the reference AC algorithm, RhowAC is the water-leaving reflectance of a particular AC
algorithm and n is the number of valid pixels selected for the match-up.

2.3.5. Comparison between Acolite SWIR and Acolite DSF

The latest version of Acolite AC, called DSF [27], is first compared here with the previous Acolite
SWIR considering the four available OLI satellite images (Table 1). The results obtained are quite
satisfactory with very low NRMSE values in all bands. The results procured for one OLI image are
shown in Figure 5. The NRMSE values are 1.16%, 0.99% and 0.46%, respectively in the green, red and
NIR bands. The BIAS and MAPE values are also quite low, which demonstrates the performance
of Acolite SWIR and Acolite DSF are comparable for these 3 bands. Acolite DSF was then used as
the reference AC algorithm in the present study. While the DSF and SWIR AC algorithms in Acolite
provide similar results in the Gironde Estuary, the SWIR method systematically results in more flagged
pixels. This represents another reason for selecting Acolite DSF as the reference AC.
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Figure 5. Comparisons between Rhow derived by Acolite DSF and Acolite SWIR AC algorithms from
L8-OLI data recorded on 19 April 2018 over the Gironde Estuary: green band (A), red band (B) and
NIR band (C).

3. Results

3.1. Intercomparison of S2-MSI AC Algorithms

The six cloud-free S2-MSI satellite images (Table 1) were processed using different AC algorithms.
Comparisons between the resulting Rhow values in the green, red and NIR spectral bands are
presented. Typical spatial distributions of the obtained Rhow show similar patterns in all bands
but also significant differences (Figure 6). In the green band (560 nm), Rhow values retrieved inside the
estuary using C2RCC and Polymer are significantly lower than those retrieved using Acolite DSF and
iCOR. The Rhow values in the green band are slightly higher in the TMZ for iCOR compared to Acolite
DSF. Similar observations are made in the red band (665 nm) where C2RCC and Polymer-derived
Rhow values are lower than expected based on results obtained with Acolite DSF and iCOR, especially
in the TMZ.

These first observations are confirmed based on Rhow scatter-plots (Figure 7). In the green,
red and NIR bands, the Rhow values retrieved by iCOR (NoSIMEC and SIMEC) and Acolite are
comparable for all the six images. In the green and red bands, Rhow retrieved by iCOR are slightly
higher than values retrieved by Acolite DSF beyond Rhow values of 0.1. In the green band, Rhow
retrieved by both C2RCC and Polymer algorithms are lower than values retrieved using Acolite DSF.
C2RCC generated saturated Rhow values around 0.1 for the green band. For the red band, C2RCC and
Polymer have a very good agreement with Rhow values retrieved using DSF up to maximum values
(thresholds) where these algorithms provide saturated values. The Rhow values saturate around 0.8
for C2RCC and around 1.1 for Polymer. Finally in the NIR band, C2RCC completely fails to retrieve
high Rhow values in the estuary while Polymer clearly underestimate DSF-retrieved Rhow values.
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Figure 6. Spatial distributions of Rhow values in green, red and NIR bands obtained applying DSF
(first column), iCOR-NoSIMEC (second column), C2RCC (third column) and Polymer (last column)
AC algorithms to S2-MSI data recorded on 2 August 2018.

Figure 7. Rhow values derived by iCOR-NoSIMEC versus Rhow values derived by Acolite DSF
(left), Rhow values derived by Polymer versus Rhow values derived by Acolite DSF (middle) and
Rhow values derived by C2RCC versus Rhow values derived by Acolite DSF (right) in the 3 bands
(green, red and NIR) of S2-MSI.
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3.2. Evaluation of AC Algorithms for S2-MSI

Two cloud-free days with corresponding match-ups between S2-MSI and L8-OLI satellite data
were identified during the year 2018 (Table 1). As large variations were observed among Rhow values
derived from S2-MSI data applying different AC algorithms, it is essential to identify (and if possible
explain) the failures of each algorithm then identify the best performing AC algorithm(s). Match-ups
of images recorded on 19 April 2018 and 1 September 2018 with a time difference of 14 and 6 min,
respectively, between S2-MSI and L8-OLI data are considered using the Acolite DSF AC algorithm to
compute Rhow values (e.g., Figure 8). Linear fits are performed for the three spectral bands (green,
red and NIR) and the resulting slope values are 0.92, 0.99 and 1.0 respectively with corresponding r2

values 0.98, 0.99 and 0.95. The intercept values are quite low (<0.006). These statistics confirm the
very good agreement between green, red and NIR Rhow values retrieved from MSI and OLI satellite
data. The study carried out by [74] in TMZ of Gironde Estuary validated the Rhow values of Pléiades
satellite data derived using Acolite DSF in comparison with L8-OLI. OLI and MSI data corrected
for atmospheric effects using Acolite DSF can be used as references to assess the validity of other
satellite products.

Figure 8. MSI-derived versus OLI-derived Rhow values in green (A), red (B) and NIR (C) bands
from satellite data recorded on 19 April 2018 and 1 September 2018 with a time difference of 14 and
6 min respectively.

3.3. Intercomparison of S3-OLCI AC Algorithms

The performance of the six AC algorithms selected (Table 2) is compared in the green (560 nm),
red (665 nm) and NIR (865 nm) OLCI spectral bands. The spatial distributions of Rhow values in these
bands show significant differences depending on the AC algorithm applied (Figure 9). The BAC, iCOR
and BLR AC algorithms allow retrieving high Rhow values in the TMZ. The C2RCC-V1 algorithm
totally fails to derive high Rhow values in all bands. The C2RCC-V2 algorithm shows better Rhow
values than C2RCC-V1, but still unexpected low Rhow values are obtained in the NIR band. Polymer
generates low Rhow values in the red and NIR bands compared with BAC, iCOR and BLR.
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Scatter-plots are then produced for the three bands considering the BAC algorithm as reference
(Figure 10). Most of the algorithms fail to retrieve high Rhow values in red and NIR bands when
compared to the BAC algorithm except iCOR and BLR. The results obtained reveal that: (i) C2RCC-V1
fails to retrieve high values in all bands inside the estuary; (ii) iCOR generates values in a good
agreement but slightly higher than BAC, also in all three bands; (iii) C2RCC-V2 retrieves Rhow values
in quite good agreement with BAC, but provides saturated values in the NIR band beyond 0.06;
Polymer underestimates Rhow values retrieved using BAC, especially in the red and NIR bands.

Figure 9. Spatial distributions of Rhow values derived from S3-OLCI data recorded on 19 April 2018
applying different AC algorithms. From left to right BAC, iCOR-NoSIMEC, BLR, Polymer, C2RCC-V2
and C2RCC-V1.

Figure 10. Scatter-plots between Rhow values obtained applying different AC algorithms versus BAC
derived Rhow values. Each row corresponds to one band and each column corresponds to particular
AC algorithm for S3-OLCI recorded on 19 April 2018.
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3.4. Evaluation of AC Algorithms for S3-OLCI

The performance of the different AC algorithms has been observed for S3-OLCI based on mapped
spatial distributions. The next step is to quantify their performance based on comparisons with S2-MSI
and L8-OLI products generated using Acolite DSF, considering images recorded on the same day
with a minimum time lag. This is performed based on Rhow scatter-plots between similar OLCI and
MSI/OLI bands (Figure 11). Note that BLR does not retrieve Rhow values in the OLCI green band.
Statistical error estimators are extracted and analyzed from 10 match-ups between OLCI and MSI/OLI
Rhow products. In the green band, almost all the AC algorithms underestimate the expected Rhow
values (Table 3). The BAC, Polymer and C2RCC-V2 algorithms provide almost similar error values
(NRMSE, BIAS and MAPE). The iCOR (NoSIMEC and SIMEC) algorithm provides the best results in
the green band, i.e., minimum differences with MSI/OLI-DSF Rhow values.

Figure 11. OLCI versus MSI Rhow values (green band) from satellite data recorded on 1 September
2018 with a time difference of 22 min. OLCI-BAC versus MSI-DSF (A), OLCI-iCOR-NoSIMEC
versus MSI-DSF (B), OLCI-Polymer versus MSI-DSF (C), OLCI-C2RCC-V2 versus MSI-DSF (D) and
OLCI-C2RCC-V1 versus MSI-DSF (E).

Table 3. Linear fits and differences between OLCI Rhow values derived using different AC algorithms
and S2-MSI/L8-OLI DSF Rhow values in green band. A total of 10 match-ups between OLCI
(eight images) and MSI (six images) or OLI (four images) recorded on same day were used to generate
these statistics.

AC Algorithm Slope r2 NRMSE % BIAS % MAPE %

iCOR-NoSIMEC 1.0 ± 0.15 0.71 ± 0.1 9.64 ± 4.49 1.98 ± 4.54 11.78 ± 5.05
iCOR-SIMEC 1.06 ± 0.14 0.74 ± 0.1 9.42 ± 4.31 0.79 ± 5.10 11.70 ± 5.18

BAC 0.73 ± 0.20 0.41 ± 0.29 15.71 ± 6.05 −12.97 ± 4.08 16.72 ± 4.38
Polymer 0.68 ± 0.35 0.49 ± 0.31 15.41 ± 7.57 −14.70 ± 10.76 18.60 ± 6.32

C2RCC-V2 0.82 ± 0.19 0.39 ± 0.14 18.46 ± 4.37 −16.81 ± 5.95 19.66 ± 3.06
C2RCC-V1 0.19 ± 0.25 0.13 ± 0.19 31.53 ± 13.79 −27.20 ± 34.37 39.26 ± 14.29

The inter-comparison between OLCI and MSI/OLI Rhow values in the red bands is then presented
(Figure 12). As a first approximation, BAC, iCOR, Polymer and BLR provide Rhow values significantly
lower but in good agreement with the ones expected from MSI data processed using Acolite DSF.
C2RCC-V1 and V2 both clearly underestimate the expected Rhow values, especially over the most
turbid waters of the TMZ. In more details, statistics (Table 4) reveal that all algorithms (except
C2RCC-V1) perform reasonably well based on NRMSE (<20%) and MAPE (<30%) values. However
only the iCOR algorithm provides satisfactory results over the whole range of Rhow values along the
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estuary, with a slope very close to 1 (with or without applying the SIMEC correction). The BAC
algorithm typically underestimates by about 20% the expected Rhow values. BLR and C2RCC
algorithms both underestimate by about 50% the expected values. The six AC algorithms considered
behave differently depending on the error estimator (Table 4). For the red band, all the five error
estimators show better agreement favorable to the iCOR algorithm compared with all the other AC
algorithms, so that iCOR (NoSIMEC and SIMEC) is identified as the best performing AC algorithm in
the red spectral region (Table 4).

Figure 12. OLCI versus MSI Rhow values (red band) from satellite data recorded on 1 September
2018 with a time difference of 22 min. OLCI-BAC versus MSI-DSF (A), OLCI-iCOR-NoSIMEC versus
MSI-DSF (B), OLCI-Polymer versus MSI-DSF (C), OLCI-BLR versus MSI-DSF (D) OLCI-C2RCC-V2
versus MSI-DSF (E) and OLCI-C2RCC-V1 versus MSI-DSF (F).

Table 4. Linear fits and differences between OLCI Rhow values derived using different AC algorithms
and S2-MSI/L8-OLI DSF Rhow values in red band. A total of 10 match-ups between OLCI (eight images)
and MSI (six images) or OLI (four images) recorded on same day were used to generate these statistics.

AC Algorithm Slope r2 NRMSE % BIAS % MAPE %

iCOR-NoSIMEC 1.0 ± 0.17 0.75 ± 0.12 10.92 ± 3.10 −9.78 ± 8.70 27.85 ± 20.15
iCOR-SIMEC 1.02 ± 0.14 0.77 ± 0.11 10.69 ± 3.07 −7.65 ± 9.63 27.50 ± 20.32

BAC 0.82 ± 0.07 0.7 ± 0.14 11.95 ± 2.77 −17.21 ± 9.78 27.03 ± 16.55
Polymer 0.64 ± 0.20 0.68 ± 0.25 15.5 ± 6.80 −25.52 ± 8.15 30.36 ± 8.41

C2RCC-V2 0.74 ± 0.18 0.61 ± 0.16 18.02 ± 3.79 −29.40 ± 8.76 31.60 ± 7.84
BLR 0.66 ± 0.22 0.34 ± 0.11 21.19 ± 4.65 −26.61 ± 7.94 27.78 ± 7.10

C2RCC-V1 0.22 ± 0.2 0.36 ± 0.28 32.85 ± 15.56 −56.61 ± 8.22 54.75 ± 8.66

The Rhow values in the NIR band of OLCI are then compared with Rhow values of the
corresponding MSI/OLI NIR bands. Results show that the six AC algorithms perform differently
and high scatters are observed (r2 < 0.5) when compared to MSI-derived Rhow values (Figure 13).
By considering the all five error estimators, both the BAC and iCOR algorithms are identified as the
best performing algorithms for S3-OLCI; the first one provides the minimum differences (NRMSE
and MAPE values) with expected Rhow values, while the second provides the best agreement (slope
close to 0.9) over the whole range of Rhow values found in the estuary (Table 5). The high difference
in Rhow values of the NIR band between OLCI (iCOR) and MSI/OLI (DSF) is due to the additional
haze/glint correction applied to iCOR, which is most likely not applicable in highly turbid waters.
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Figure 13. OLCI versus MSI Rhow values (NIR band) from satellite data recorded on 1 September
2018 with a time difference of 22 min. OLCI-BAC versus MSI-DSF (A), OLCI-iCOR-NoSIMEC versus
MSI-DSF (B), OLCI-BLR versus MSI-DSF (C), OLCI-Polymer versus MSI-DSF (D), OLCI-C2RCC-V2
versus MSI-DSF (E) and OLCI-C2RCC-V1 versus MSI-DSF (F).

Table 5. Linear fits and differences between OLCI Rhow values derived using different AC algorithms
and S2-MSI/L8-OLI DSF Rhow values in NIR band. A total of 10 match-ups between OLCI
(eight images) and MSI (six images) or OLI (four images) recorded on same day were used to generate
these statistics.

AC Algorithm Slope r2 NRMSE % BIAS % MAPE %

BAC 0.70 ± 0.13 0.43 ± 0.17 12.71 ± 4.36 −32.56 ± 17.01 54.69 ± 19.92
iCOR-NoSIMEC 0.83 ± 0.22 0.38 ± 0.29 18.68 ± 7.75 11.23 ± 72.44 112.48 ± 96.60

iCOR-SIMEC 0.89 ± 0.20 0.38 ± 0.28 19.03 ± 6.68 −5.24 ± 68.03 125.07 ± 91.00
BLR 0.63 ± 0.13 0.43 ± 0.21 14.0 ± 4.56 −43.92 ± 13.79 60.94 ± 19.68

C2RCC-V2 0.35 ± 0.12 0.46 ± 0.15 13.89 ± 6.82 −51.07 ± 13.88 54.65 ± 15.38
Polymer 0.40 ± 0.09 0.48 ± 0.06 13.95 ± 8.91 −53.84 ± 9.81 58.35 ± 12.93

C2RCC-V1 0.04 ± 0.04 0.17 ± 0.11 22.69 ± 14.78 −83.37 ± 5.70 78.91 ± 6.37

3.5. Validation of Satellite-Derived Rhow and SPM Values Based on Match-Ups with Field Data

During the field campaign conducted in September 2018, two match-ups were obtained with
S3-OLCI satellite data: one in the Pauillac station on 17 September 2018 and one in Le Verdon on
20 September 2018. At the time of satellite overpasses, the in-situ SPM concentrations measured in Le
Verdon and in Pauillac were 7 and 278 mg/L respectively, thus representative of moderately (Le Verdon)
and highly turbid (Pauillac) waters. Unfortunately on both cases the satellite data were contaminated
by patchy-clouds and projected shadows. Also the quality of match-ups for Rhow validation could
not be guarantied and results were not incorporated here. Some of the in-situ measurements were
carried out under skies with patchy-clouds (which does not provide quality match-ups with satellite
data) while the in-situ SPM concentrations were derived from the automated turbidity measurements
(MAGEST stations).

Match-ups between satellite-derived and field-measured SPM concentrations are then used to
assess the validity of S2-MSI/L8-OLI and S3-OLCI satellite products. In the present study, the switching
SPM algorithm is applied to Rhow values derived from OLCI satellite data applying the BAC algorithm
and from MSI/OLI data applying the Acolite DSF AC algorithm. The BAC algorithm was selected to
retrieve SPM concentrations from OLCI images even though BAC was only second performer for the
green and red bands of S3-OLCI and first performer for NIR bands. The switching algorithm works
on three bands: when the SPM concentrations are greater than 42.5 mg/L, the NIR band is used to
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retrieve the SPM concentrations [1]. The in-situ data collected from Pauillac and Verdon automated
turbidity stations are used to estimate the validity of satellite-derived SPM concentrations. The plots
show satisfactory results for both MSI/OLI and OLCI satellite products (Figure 14). The horizontal
error-bar is the standard deviation of the SPM concentrations between the two time steps measured by
automated turbidity stations just before and after the satellite observation and the vertical error-bar is
the standard deviation of SPM concentrations measured over the 5 × 5 pixels centered at each station.
For MSI/OLI, the validation result shows a linear fit with a slope of 1.16 and r2 of 0.95 (panel A in
Figure 14). The MAPE value is 32.53%, a higher than expected value. The 16% of overestimation in
satellite SPM for MSI/OLI can be due to the adjacency effects of land pixels close to the automated
turbidity stations. The adjacency effects are the process caused by molecular and aerosol scattering
where the target pixels are affected by radiation reflected from neighboring surfaces [75]. The study
conducted by [37] reported overestimation of Rhow values for the Acolite processor in the red and
NIR bands due to this adjacency effect.

Figure 14. Satellite-derived versus in-situ SPM concentrations considering MSI/OLI (processed with
Acolite DSF) (A) and OLCI (processed with BAC) satellite data (B).

The scatter-plot between satellite-derived SPM for S3-OLCI and in-situ SPM shows a linear fit
of slope 0.86 and r2 value 0.79 (panel B in Figure 14). The data points are slightly dispersed (around
1:1 line) with a r2 value of 0.79. The 14% of underestimation in satellite-derived SPM versus in-situ
SPM is observed and the MAPE value obtained is 61.73%, which is higher in magnitude than for
MSI/OLI. The pixel by pixel intercomparison between OLCI (processed with BAC or iCOR) and
MSI/OLI (processed with Acolite DSF) Rhow values in green, red and NIR bands also shows that
OLCI values are underestimated compared to the ones expected.

4. Discussion

4.1. L8-OLI

The performance of different AC algorithms for L8-OLI data recorded over moderately turbid
to turbid waters have been reported by several studies [1,32–35]. The study conducted by [32] has
used Acolite AC algorithm to derive SPM concentrations over the coastal mud banks of French Guiana.
In accordance to the previous study conducted in the Gironde Estuary [1], this study also shows good
agreement between the satellite-derived and in-situ Rhow values in the green and red parts of the
spectra where the water reflectance is high. Even though the match-ups between satellite-derived and
in-situ Rhow are rarely close to perfect, this study satisfactorily validated Acolite SWIR AC algorithm
for L8-OLI in turbid coastal waters. However, another study on moderately turbid coastal waters [34]
shows the SeaDAS (SeaWiFS Data Analysis System) l2gen processor [9,76–78] performs better than
Acolite in deriving Rhow. This study also emphasizes the robustness of Acolite to derive Rhow in the
green and red bands of L8-OLI, which is almost comparable with the SeaDAS l2gen processor. Based
on match-ups with in-situ data, Acolite AC algorithm is classified as second performer (out of four AC
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algorithms considered) in the retrieval of Rhow in the green and red spectral bands. The assessment of
distinct AC algorithms has been also performed for the northern Gulf of Mexico by [33] and exhibited
satisfactory results for Acolite SWIR in deriving the SPM concentrations in moderately turbid coastal
waters. This study has identified Acolite SWIR AC algorithm as the most appropriate algorithm
to retrieve Rhow in the green and red bands. Similar results were obtained in the inland waters of
China, where Acolite SWIR and Acolite DSF provided better results compared with other tested AC
algorithms [35]. These assessment results showed the Acolite SWIR and Acolite DSF algorithms can
be effectively applied in turbid waters, while they perform poorly in clear waters. None of these
studies, except [35], considered the match-ups in NIR bands between satellite-derived and in-situ
Rhow. The majority of above mentioned studies totally support the potential use of Acolite to derive
valid Rhow values from L8-OLI data in moderately turbid and turbid waters. Overall, these findings
are in accordance with the findings of [1] obtained in highly turbid waters.

4.2. S2-MSI

Several studies report on the evaluation of different AC algorithms in optically complex waters for
S2-MSI [37–41]. The study carried out by [37] in Amazon floodplain lakes displays quite satisfactory
results for Acolite SWIR in the visible bands and demonstrates the limitations of Acolite SWIR in NIR
bands due to adjacency effects. This study shows Acolite SWIR AC algorithm retrieves high Rhow
values in NIR bands due to adjacency effects of surrounding land/forest pixels. This result supports
our validation results of SPM concentration. The present study shows slightly overestimation in the
satellite-derived SPM for MSI/OLI (panel A in Figure 14). The SPM model uses NIR band to derive
SPM concentration in highly turbid waters, that would be the possible reason for this overestimation
in SPM concentration. Another study by [38] in clear to moderately turbid waters shows Acolite and
Polymer provide similar results in deriving Rhow values in the red and NIR bands. In turbid waters,
Rhow values derived by Acolite are higher than Rhow values derived by Polymer. These results are
in accordance with our findings showing that Polymer typically fails to retrieve high Rhow values in
highly turbid waters. The assessment of different AC algorithms for coastal and inland waters for
S2-MSI showed that C2RCC performs better in moderately turbid inland waters and in the Western
English Channel compared with other tested AC algorithms including Acolite and Polymer [41].
The assessment of different AC algorithms for S2-MSI in the inland waters of Spain show C2RCC
and Polymer exhibit satisfactory results in deriving Rhow values [40]. Depending upon chlorophyll-a
(Chl-a) concentration and euphotic depth (Zed), they have classified three different water types
(ultraoligotrophic to oligotrophic, mesotrophic to eutrophic and hypertrophic). The performance of
Acolite SWIR is better in mesotrophic to hypertrophic waters than in ultraoligotrophic and oligotrophic
waters. Even though some studies are not favorable to Acolite AC processor, the majority of these
studies shows the potential use of Acolite to derive Rhow from S2-MSI data in moderately turbid and
turbid waters. These studies do support our results which identify Acolite DSF as the best performing
AC algorithm to retrieve Rhow values in the red and NIR bands in highly turbid waters.

4.3. S3-OLCI

A regional assessment of different OLCI products based on match-ups with the Aeronet-OC data
has contributed to validate the BAC AC algorithm [45]. However, this study did not consider the
OLCI NIR bands and did no attempt to validate the SPM product in the regions considered. Very few
studies report on the assessment of different AC algorithms for S3-OLCI in turbid waters. A peculiar
AC algorithm ACbTC (Atmospheric Correction based on Turbidity Classification) designed for inland
waters using S3-OLCI and S3-SLSTR [42] illustrates better results in deriving Rhow values compared
with C2RCC-V1, BAC and Polymer from inland waters of China. Due to the unavailability of codes,
this AC techniques was not considered in the present study. [43] reported C2RCC-V2 and Polymer
as best performing AC algorithms for S3-OLCI in moderately coastal waters of France (the English
Channel and French Guiana). Unfortunately, this study did not consider the NIR band. Another
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study [73] in highly turbid waters shows the limitation of the previous version of the BAC algorithm
(V2.23) to derive valid Rhow values in red and NIR bands of OLCI. Our intercomparison results
show that the BAC AC algorithms retrieves Rhow values in red and NIR bands more accurately
than the BLR AC algorithm (Tables 4 and 5). Our study identified both BAC and iCOR as the best
performing AC algorithms to retrieve Rhow from the green, red and NIR bands of S3-OLCI with slight
underestimation corresponding to the reference AC algorithm (Acolite DSF). The satellite-derived SPM
concentration also significantly underestimates in-situ measurements with a MAPE value of 61.73%
(panel B in Figure 14).

5. Conclusions

Evaluation of several AC algorithms have been performed for S2-MSI and S3-OLCI satellite data
recorded over turbid estuarine waters, considering the Gironde Estuary as test site. The method used in
our study was not a usual validation of AC algorithms due to the lack of match-ups with in-situ Rhow
measurements. Note that based on ongoing research projects which aim at developing autonomous
radiometric stations (e.g., https://www.hypernets.eu/), numerous match-ups between satellite data
and field measurements in turbid estuarine waters should be available in the near-future. Here,
an indirect validation method was adopted using already validated L8-OLI satellite data corrected
for atmospheric effects using Acolite [1] as a reference. Out of 24 cloud-free OLCI satellite images
selected for the study, 10 match-ups were available with concomitant (10–67 min) S2-MSI and/or
L8-OLI satellite data acquisitions. After regridding the images on a regular grid (300 m), pixel-by-pixel
intercomparisons of the Rhow values were performed in the green, red and NIR spectral bands,
the spectral bands required for the accurate retrieval of SPM concentrations within the wide range
encountered in macro-tidal coastal waters and estuaries (1–2000 mg/L) [1,53,56]. Acolite DSF and
iCOR were identified as the best performing AC algorithms for S2-MSI satellite data. As the DSF
AC approach is not yet available to process S3-OLCI satellite data, other algorithms were considered
for this sensor: BAC, iCOR, Polymer, BLR, C2RCC-V1 and C2RCC-V2 (BLR does not provide Rhow
values in the green spectral band). The intercomparison results show that all these algorithms tend to
underestimate Rhow in the green, red and NIR bands of OLCI. In the green band (560 nm), all three AC
algorithms (BAC, Polymer and C2RCC-V2) perform a similar way (Table 3), with the iCOR (NoSIMEC
and SIMEC) algorithm performing slightly better than others based on the five error estimators used.
The same indicators show that iCOR is clearly the best AC algorithm and provides a satisfactory
retrieval of Rhow in the red band (665 nm) (Table 4). The BAC, Polymer and C2RCC-V2 algorithms,
in this order, are classified as second, third and fourth performers in the retrieval of Rhow values in the
red spectral band. The BLR algorithm generates good Rhow values inside the estuary (highly turbid
waters), but fails in the coastal area (see Figure 9). Similar conclusions are reached for the NIR band
(865 nm). The BAC algorithm persists as a best performing algorithm (Table 5) followed by iCOR, BLR
and C2RCC-V2. As NIR band is used to derive SPM concentrations higher than 42.5 mg/L, BAC was
selected as the best AC algorithm for S3-OLCI. The satellite end product (SPM concentration) was
finally validated based on match-ups with in-situ SPM for OLI/MSI and OLCI from two optically
contrasted automated test stations. S3-OLCI slightly underestimate the satellite SPM for the best
performing AC (BAC) processor. This is consistent with what was found in previous intercomparison
results of OLCI with MSI/OLI (Section 3.4). Satellite-derived SPM of MSI/OLI overestimated with
respect to the in-situ SPM for Acolite DSF AC processor. The overestimation of satellite-derived SPM
of MSI/OLI can be due to the adjacency effect of nearshore pixels close to the automated station.

The best AC identified for OLCI for turbid waters is the BAC algorithm originally developed by
ESA for MERIS 4th reprocessing [71]. The good performance of iCOR for all sensors (OLI, MSI and
OLCI) applying the same method (use of DDV and spectral variability for retrieving the aerosol
contribution), which is proved to be a satisfactory approach in highly turbid waters based on
comparisons with Acolite DSF. A qualitative and meticulous validation of satellite-derived Rhow
values with in-situ Rhow measurements is still recommended as perspective. Another perspective of
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this study is thus to use of the ENVISAT MERIS data for long-term dynamics (seasonal to inter-annual)
of the turbidity maximum zone (TMZ) in sensitive turbid estuarine environments such as Río de la
Plata Estuary, Yangtze River, Gironde Estuary and Amazon River over almost two decades (from 2002
to present).
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Abbreviations

The following abbreviations are used in this manuscript:

AC Atmospheric Correction
Aeronet Aerosol Robotic Network
AOT Aerosol Optical Thickness
AU Astronomical Unit
BLR Baseline Residual
BAC OLCI Baseline Atmospheric Correction
BPAC Bright Pixel Atmospheric Correction
C2RCC Case 2 Regional Coast Color
CDOM Colored Dissolved Organic Matter
Chl-a Chlorophyll-a
CODA Copernicus Online Data Access
DCS4COP Data Cube Service for Copernicus
DDV Dark Dense Vegetation
DSF Dark Spectrum Fitting
ESA European Space Agency
EUMETSAT European Organization for the Exploitation of Meteorological Satellites
GOCI Geostationary Ocean Color Imager
HW High Water
HYPERMAQ Hyperspectral and multi-mission high resolution optical remote sensing of aquatic environments
iCOR Image Correction for atmospheric effects
IOP Inherent Optical Property
L8 Landsat-8
LW Low Water
LUT Look UP Tables
MAGEST MArel Gironde ESTuary
MAPE Mean Absolute Percentage Error
MODTRAN MODerate resolution atmospheric TRANsmission
MODIS MODerate resolution Imaging Spectroradiometer

https://odnature.naturalsciences.be/hypermaq
http://magest.oasu.u-bordeaux.fr


Remote Sens. 2020, 12, 1285 22 of 26

MSI MultiSpectral Instrument
NIR Near Infra-red
NN Neural Network
NRMSE Normalized Root Mean Square Error
NTU Nephelometric Turbidity Unit
OLCI Ocean and Land Colour Instrument
OLI Operational Land Image
Polymer Polynomial based algorithm applied to MERIS
Rhow Water-leaving Reflectance
S2 Sentinel-2
S3 Sentinel-3
SeaDAS SeaWiFS Data Analysis System
SeaWIFS Sea-Viewing Wide Field-of-View Sensor
SIMEC SIMilarity Environmental Correction
SERT Semi Empirical Radiative Transfer
SNAP Sentinel Application Platform
SPM Suspended Particulate Matter
SWIR Short Wave Infra-red
SRF Spectral Response Function
SZA Sun zenith angle
TMZ Turbidity Maximum Zone
USGS United States Geological Survey
UTC Universal Time Coordinated
Zed Secchi depth

References

1. Novoa, S.; Doxaran, D.; Ody, A.; Vanhellemont, Q.; Lafon, V.; Lubac, B.; Gernez, P. Atmospheric
corrections and multi-conditional algorithm for multi-sensor remote sensing of suspended particulate
matter in low-to-high turbidity levels coastal waters. Remote Sens. 2017, 9, 61. [CrossRef]

2. Gordon, H.R. Removal of atmospheric effects from satellite imagery of the oceans. Appl. Opt. 1978,
17, 1631–1636. [CrossRef] [PubMed]

3. Frouin, R.J.; Franz, B.A.; Ibrahim, A.; Knobelspiesse, K.; Ahmad, Z.; Cairns, B.; Chowdhary, J.; Dierssen, H.M.;
Tan, J.; Dubovik, O.; et al. Atmospheric correction of satellite ocean-color imagery during the PACE era.
Front. Earth Sci. 2019, 7, 145. [CrossRef]

4. Wang, M. (Ed.) Atmospheric Correction for Remotely-Sensed Ocean-Colour Products; International Ocean-Colour
Coordinating Group: Dartmouth, NS, Canada, 2010; Volume 10.

5. Wang, M.; Bailey, S.W. Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products.
Appl. Opt. 2001, 40, 4790–4798. [CrossRef] [PubMed]

6. Wang, M. The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean
surface roughness. Int. J. Remote Sens. 2002, 23, 2693–2702. [CrossRef]

7. Gordon, H.R.; Brown, O.B.; Evans, R.H.; Brown, J.W.; Smith, R.C.; Baker, K.S.; Clark, D.K. A semianalytic
radiance model of ocean color. J. Geophys. Res. Atmos. 1988, 93, 10909–10924. [CrossRef]

8. Mobley, C.; Werdell, J.; Franz, B.; Ahmad, Z.; Bailey, S. Atmospheric Correction for Satellite Ocean Color
Radiometry; Technical Report; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2016. [CrossRef]

9. Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans
with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [CrossRef]

10. Nechad, B.; Ruddick, K.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping
of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866. [CrossRef]

11. Siegel, D.A.; Wang, M.; Maritorena, S.; Robinson, W. Atmospheric correction of satellite ocean color imagery:
The black pixel assumption. Appl. Opt. 2000, 39, 3582–3591. [CrossRef]

12. Shi, W.; Wang, M. An assessment of the black ocean pixel assumption for MODIS SWIR bands.
Remote Sens. Environ. 2009, 113, 1587–1597. [CrossRef]

http://dx.doi.org/10.3390/rs9010061
http://dx.doi.org/10.1364/AO.17.001631
http://www.ncbi.nlm.nih.gov/pubmed/20198035
http://dx.doi.org/10.3389/feart.2019.00145
http://dx.doi.org/10.1364/AO.40.004790
http://www.ncbi.nlm.nih.gov/pubmed/18360519
http://dx.doi.org/10.1080/01431160110115591
http://dx.doi.org/10.1029/JD093iD09p10909
http://dx.doi.org/10.13140/RG.2.2.23016.78081
http://dx.doi.org/10.1364/AO.33.000443
http://dx.doi.org/10.1016/j.rse.2009.11.022
http://dx.doi.org/10.1364/AO.39.003582
http://dx.doi.org/10.1016/j.rse.2009.03.011


Remote Sens. 2020, 12, 1285 23 of 26

13. Ruddick, K.G.; Ovidio, F.; Rijkeboer, M. Atmospheric correction of SeaWiFS imagery for turbid coastal and
inland waters. Appl. Opt. 2000, 39, 897–912. [CrossRef] [PubMed]

14. Stumpf, R.; Arnone, R.; Gould, R.; Martinolich, P.; Ransibrahmanakul, V. A partially coupled
ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters.
NASA Tech. Memo 2003, 206892, 51–59.

15. Lavender, S.; Pinkerton, M.; Moore, G.; Aiken, J.; Blondeau-Patissier, D. Modification to the atmospheric
correction of SeaWiFS ocean colour images over turbid waters. Cont. Shelf Res. 2005, 25, 539–555. [CrossRef]

16. Wang, M. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave
infrared bands: Simulations. Appl. Opt. 2007, 46, 1535–1547. [CrossRef] [PubMed]

17. Shi, W.; Wang, M. Detection of turbid waters and absorbing aerosols for the MODIS ocean color data
processing. Remote Sens. Environ. 2007, 110, 149–161. [CrossRef]

18. Wang, M.; Shi, W. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data
processing. Opt. Express 2007, 15, 15722–15733. [CrossRef]

19. Wang, M.; Son, S.; Shi, W. Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms
using SeaBASS data. Remote Sens. Environ. 2009, 113, 635–644. [CrossRef]

20. Moore, G.; Aiken, J.; Lavender, S. The atmospheric correction of water colour and the quantitative retrieval of
suspended particulate matter in Case II waters: Application to MERIS. Int. J. Remote Sens. 1999, 20, 1713–1733.
[CrossRef]

21. Shen, F.; Verhoef, W.; Zhou, Y.; Salama, M.S.; Liu, X. Satellite estimates of wide-range suspended sediment
concentrations in Changjiang (Yangtze) estuary using MERIS data. Estuar. Coast 2010, 33, 1420–1429.
[CrossRef]

22. Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural
network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically
complex waters. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016;
Volume 740, p. 54.

23. Steinmetz, F.; Deschamps, P.Y.; Ramon, D. Atmospheric correction in presence of sun glint: Application to
MERIS. Opt. Express 2011, 19, 9783–9800. [CrossRef]

24. Vanhellemont, Q.; Ruddick, K. Advantages of high quality SWIR bands for ocean colour processing:
Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [CrossRef]

25. Vanhellemont, Q.; Ruddick, K. Acolite for Sentinel-2: Aquatic applications of MSI imagery. In Proceedings
of the 2016 ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; pp. 9–13.

26. Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and
coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [CrossRef]

27. Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of
the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [CrossRef]

28. Jamet, C.; Loisel, H.; Kuchinke, C.P.; Ruddick, K.; Zibordi, G.; Feng, H. Comparison of three
SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements.
Remote Sens. Environ. 2011, 115, 1955–1965. [CrossRef]

29. Goyens, C.; Jamet, C.; Schroeder, T. Evaluation of four atmospheric correction algorithms for MODIS-Aqua
images over contrasted coastal waters. Remote Sens. Environ. 2013, 131, 63–75. [CrossRef]

30. Huang, X.; Zhu, J.; Han, B.; Jamet, C.; Tian, Z.; Zhao, Y.; Li, J.; Li, T. Evaluation of Four Atmospheric
Correction Algorithms for GOCI Images over the Yellow Sea. Remote Sens. 2019, 11, 1631. [CrossRef]

31. Pahlevan, N.; Schott, J.R.; Franz, B.A.; Zibordi, G.; Markham, B.; Bailey, S.; Schaaf, C.B.; Ondrusek, M.;
Greb, S.; Strait, C.M. Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons,
and enhancements. Remote Sens. Environ. 2017, 190, 289–301. [CrossRef]

32. Abascal Zorrilla, N.; Vantrepotte, V.; Gensac, E.; Huybrechts, N.; Gardel, A. The Advantages of Landsat
8-OLI-Derived Suspended Particulate Matter Maps for Monitoring the Subtidal Extension of Amazonian
Coastal Mud Banks (French Guiana). Remote Sens. 2018, 10, 1733. [CrossRef]

33. Chaichitehrani, N.; Hestir, E.L.; Li, C. Evaluation of Atmospheric Correction Algorithms for Landsat-8 OLI
and MODIS-Aqua to Study Sediment Dynamics in the Northern Gulf of Mexico. Adv. Remote Sens. 2018,
7, 101. [CrossRef]

34. Ilori, C.O.; Pahlevan, N.; Knudby, A. Analyzing Performances of Different Atmospheric Correction
Techniques for Landsat 8: Application for Coastal Remote Sensing. Remote Sens. 2019, 11, 469. [CrossRef]

http://dx.doi.org/10.1364/AO.39.000897
http://www.ncbi.nlm.nih.gov/pubmed/18337965
http://dx.doi.org/10.1016/j.csr.2004.10.007
http://dx.doi.org/10.1364/AO.46.001535
http://www.ncbi.nlm.nih.gov/pubmed/17334446
http://dx.doi.org/10.1016/j.rse.2007.02.013
http://dx.doi.org/10.1364/OE.15.015722
http://dx.doi.org/10.1016/j.rse.2008.11.005
http://dx.doi.org/10.1080/014311699212434
http://dx.doi.org/10.1007/s12237-010-9313-2
http://dx.doi.org/10.1364/OE.19.009783
http://dx.doi.org/10.1016/j.rse.2015.02.007
http://dx.doi.org/10.1016/j.rse.2018.07.015
http://dx.doi.org/10.1016/j.rse.2019.03.010
http://dx.doi.org/10.1016/j.rse.2011.03.018
http://dx.doi.org/10.1016/j.rse.2012.12.006
http://dx.doi.org/10.3390/rs11141631
http://dx.doi.org/10.1016/j.rse.2016.12.030
http://dx.doi.org/10.3390/rs10111733
http://dx.doi.org/10.4236/ars.2018.72008
http://dx.doi.org/10.3390/rs11040469


Remote Sens. 2020, 12, 1285 24 of 26

35. Wang, D.; Ma, R.; Xue, K.; Loiselle, S.A. The Assessment of Landsat-8 OLI Atmospheric Correction
Algorithms for Inland Waters. Remote Sens. 2019, 11, 169. [CrossRef]

36. Doxani, G.; Vermote, E.; Roger, J.C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.;
Kirches, G.; Li, F.; et al. Atmospheric correction inter-comparison exercise. Remote Sens. 2018, 10, 352.
[CrossRef]

37. Martins, V.; Barbosa, C.; de Carvalho, L.; Jorge, D.; Lobo, F.; Novo, E. Assessment of atmospheric correction
methods for Sentinel-2 MSI images applied to Amazon floodplain lakes. Remote Sens. 2017, 9, 322. [CrossRef]

38. Caballero, I.; Steinmetz, F.; Navarro, G. Evaluation of the first year of operational Sentinel-2A data for
retrieval of suspended solids in medium-to high-turbidity waters. Remote Sens. 2018, 10, 982. [CrossRef]

39. König, M.; Oppelt, N.M.; Hieronymi, M. Application of Sentinel-2 MSI in Arctic research: Evaluating the
performance of atmospheric correction approaches over Arctic sea ice. Front. Earth Sci. 2019, 7, 22. [CrossRef]

40. Pereira-Sandoval, M.; Ruescas, A.; Urrego, P.; Ruiz-Verdú, A.; Delegido, J.; Tenjo, C.; Soria-Perpinyà, X.;
Vicente, E.; Soria, J.; Moreno, J. Evaluation of Atmospheric Correction Algorithms over Spanish Inland
Waters for Sentinel-2 Multi Spectral Imagery Data. Remote Sens. 2019, 11, 1469. [CrossRef]

41. Warren, M.A.; Simis, S.G.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.;
Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over
coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [CrossRef]

42. Bi, S.; Li, Y.; Wang, Q.; Lyu, H.; Liu, G.; Zheng, Z.; Du, C.; Mu, M.; Xu, J.; Lei, S.; et al. Inland water
Atmospheric Correction based on Turbidity Classification using OLCI and SLSTR synergistic observations.
Remote Sens. 2018, 10, 1002. [CrossRef]

43. Mograne, M.A.; Jamet, C.; Loisel, H.; Vantrepotte, V.; Mériaux, X.; Cauvin, A. Evaluation of Five Atmospheric
Correction Algorithms over French Optically-Complex Waters for the Sentinel-3A OLCI Ocean Color Sensor.
Remote Sens. 2019, 11, 668. [CrossRef]

44. Zibordi, G.; Mélin, F.; Berthon, J.F.; Talone, M. In situ autonomous optical radiometry measurements for
satellite ocean color validation in the Western Black Sea. Ocean Sci. 2015, 11. [CrossRef]

45. Zibordi, G.; Mélin, F.; Berthon, J.F. A regional assessment of OLCI data products. IEEE Geosci. Remote
Sens. Lett. 2018, 15, 1490–1494. [CrossRef]

46. Bonneton, P.; Bonneton, N.; Parisot, J.P.; Castelle, B. Tidal bore dynamics in funnel-shaped estuaries.
J. Geophys. Res. Oceans 2015, 120, 923–941. [CrossRef]

47. Uncles, R.; Stephens, J.; Smith, R. The dependence of estuarine turbidity on tidal intrusion length, tidal
range and residence time. Cont. Shelf Res. 2002, 22, 1835–1856. [CrossRef]

48. Sottolichio, A.; Castaing, P. A synthesis on seasonal dynamics of highly-concentrated structures in the
Gironde estuary. Comptes Rendus de l’Académie des Sci.-Ser. IIA-Earth Planet. Sci. 1999, 329, 795–800. [CrossRef]

49. Doxaran, D.; Froidefond, J.M.; Lavender, S.; Castaing, P. Spectral signature of highly turbid waters:
Application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens. Environ.
2002, 81, 149–161. [CrossRef]

50. Doxaran, D.; Froidefond, J.M.; Castaing, P. A reflectance band ratio used to estimate suspended matter
concentrations in sediment-dominated coastal waters. Int. J. Remote Sens. 2002, 23, 5079–5085. [CrossRef]

51. Doxaran, D.; Froidefond, J.M.; Castaing, P. Remote-sensing reflectance of turbid sediment-dominated waters.
Reduction of sediment type variations and changing illumination conditions effects by use of reflectance
ratios. Appl. Opt. 2003, 42, 2623–2634. [CrossRef]

52. Doxaran, D.; Castaing, P.; Lavender, S. Monitoring the maximum turbidity zone and detecting fine-scale
turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat
ETM+) data. Int. J. Remote Sens. 2006, 27, 2303–2321. [CrossRef]

53. Doxaran, D.; Froidefond, J.M.; Castaing, P.; Babin, M. Dynamics of the turbidity maximum zone in a
macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data. Estuar. Coast.
Shelf Sci. 2009, 81, 321–332. [CrossRef]

54. Savoye, N.; David, V.; Morisseau, F.; Etcheber, H.; Abril, G.; Billy, I.; Charlier, K.; Oggian, G.; Derriennic, H.;
Sautour, B. Origin and composition of particulate organic matter in a macrotidal turbid estuary: The Gironde
Estuary, France. Estuar. Coast. Shelf Sci. 2012, 108, 16–28. [CrossRef]

55. Gernez, P.; Lafon, V.; Lerouxel, A.; Curti, C.; Lubac, B.; Cerisier, S.; Barillé, L. Toward Sentinel-2 high
resolution remote sensing of suspended particulate matter in very turbid waters: SPOT4 (Take5) Experiment
in the Loire and Gironde Estuaries. Remote Sens. 2015, 7, 9507–9528. [CrossRef]

http://dx.doi.org/10.3390/rs11020169
http://dx.doi.org/10.3390/rs10020352
http://dx.doi.org/10.3390/rs9040322
http://dx.doi.org/10.3390/rs10070982
http://dx.doi.org/10.3389/feart.2019.00022
http://dx.doi.org/10.3390/rs11121469
http://dx.doi.org/10.1016/j.rse.2019.03.018
http://dx.doi.org/10.3390/rs10071002
http://dx.doi.org/10.3390/rs11060668
http://dx.doi.org/10.5194/os-11-275-2015
http://dx.doi.org/10.1109/LGRS.2018.2849329
http://dx.doi.org/10.1002/2014JC010267
http://dx.doi.org/10.1016/S0278-4343(02)00041-9
http://dx.doi.org/10.1016/S1251-8050(00)88634-6
http://dx.doi.org/10.1016/S0034-4257(01)00341-8
http://dx.doi.org/10.1080/0143116021000009912
http://dx.doi.org/10.1364/AO.42.002623
http://dx.doi.org/10.1080/01431160500396865
http://dx.doi.org/10.1016/j.ecss.2008.11.013
http://dx.doi.org/10.1016/j.ecss.2011.12.005
http://dx.doi.org/10.3390/rs70809507


Remote Sens. 2020, 12, 1285 25 of 26

56. Knaeps, E.; Ruddick, K.; Doxaran, D.; Dogliotti, A.I.; Nechad, B.; Raymaekers, D.; Sterckx, S. A SWIR
based algorithm to retrieve total suspended matter in extremely turbid waters. Remote Sens. Environ. 2015,
168, 66–79. [CrossRef]

57. Jalón-Rojas, I.; Schmidt, S.; Sottolichio, A. Turbidity in the fluvial Gironde Estuary (southwest France) based
on 10-year continuous monitoring: Sensitivity to hydrological conditions. Hydrol Earth Syst. Sci. 2015,
19, 2805–2819. [CrossRef]

58. Knaeps, E.; Doxaran, D.; Dogliotti, A.; Nechad, B.; Ruddick, K.; Raymaekers, D.; Sterckx, S. The SeaSWIR
dataset. Earth Syst. Sci. Data 2018, 10, 1439–1449. [CrossRef]

59. Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt.
1999, 38, 7442–7455. [CrossRef]

60. Mueller, L.J.; Morel, A.; Frouin, R.; Davis, C.; Arnone, R.; Carder, K.; Li, Z.; Steward, R.; Hooker, S.;
Mobley, C.; et al. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume III:
Radiometric Measurements and Data Analysis Protocols; Technical Report NASA/TM-2003-21621/Rev-Vol III;
NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2003.

61. Etcheber, H.; Schmidt, S.; Sottolichio, A.; Maneux, E.; Chabaux, G.; Escalier, J.M.; Wennekes, H.;
Derriennic, H.; Schmeltz, M.; Quéméner, L.; et al. Monitoring water quality in estuarine environments:
Lessons from the MAGEST monitoring program in the Gironde fluvial-estuarine system. Hydrol Earth
Syst. Sci. 2011. [CrossRef]

62. Schmidt, S.; Ouamar, L.; Cosson, B.; Lebleu, P.; Derriennic, H. Monitoring turbidity as a surrogate of
suspended particulate load in the Gironde Estuary: The impact of particle size on concentration estimates.
In Proceedings of the ISOBAY XIV International Symposium on Oceanography of the Bay of Biscay, Bordeaux,
France, 11–13 June 2014; p. 17.

63. Saulquin, B.; Fablet, R.; Bourg, L.; Mercier, G.; d’Andon, O.F. MEETC2: Ocean color atmospheric corrections
in coastal complex waters using a Bayesian latent class model and potential for the incoming sentinel
3—OLCI mission. Remote Sens. Environ. 2016, 172, 39–49. [CrossRef]

64. Fan, Y.; Li, W.; Gatebe, C.K.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. Atmospheric correction over
coastal waters using multilayer neural networks. Remote Sens. Environ. 2017, 199, 218–240. [CrossRef]

65. De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.;
Neil, C.; Van der Zande, D.; et al. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using
iCOR algorithm: Validation for coastal and inland waters. Eur. J. Remote Sens. 2018, 51, 525–542. [CrossRef]

66. Sterckx, S.; Knaeps, S.; Kratzer, S.; Ruddick, K. SIMilarity Environment Correction (SIMEC) applied to
MERIS data over inland and coastal waters. Remote Sens. Environ. 2015, 157, 96–110. [CrossRef]

67. Doerffer, R.; Schiller, H. The MERIS Case 2 water algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [CrossRef]
68. Ruddick, K.G.; De Cauwer, V.; Park, Y.J.; Moore, G. Seaborne measurements of near infrared water-leaving

reflectance: The similarity spectrum for turbid waters. Limnol. Oceanogr. 2006, 51, 1167–1179. [CrossRef]
69. Antoine, D.; Morel, A. Relative importance of multiple scattering by air molecules and aerosols in forming

the atmospheric path radiance in the visible and near-infrared parts of the spectrum. Appl. Opt. 1998,
37, 2245–2259. [CrossRef] [PubMed]

70. Antoine, D.; Morel, A. A multiple scattering algorithm for atmospheric correction of remotely sensed
ocean colour (MERIS instrument): Principle and implementation for atmospheres carrying various aerosols
including absorbing ones. Int. J. Remote Sens. 1999, 20, 1875–1916. [CrossRef]

71. Moore, G.; Mazeran, C.; Huot, J.P. MERIS ATBD 2.6 Case II Bright Pixel Atmospheric Correction (BPAC).
Eur. Space Agency 2017, 5, 3.

72. Nobileau, D.; Antoine, D. Detection of blue-absorbing aerosols using near infrared and visible (ocean color)
remote sensing observations. Remote Sens. Environ. 2005, 95, 368–387. [CrossRef]

73. Gossn, J.I.; Ruddick, K.G.; Dogliotti, A.I. Atmospheric Correction of OLCI Imagery over Extremely Turbid
Waters Based on the Red, NIR and 1016 nm Bands and a New Baseline Residual Technique. Remote Sens.
2019, 11, 220. [CrossRef]

74. Luo, Y.; Doxaran, D.; Vanhellemont, Q. Retrieval and Validation of Water Turbidity at Metre-Scale Using
Pléiades Satellite Data: A Case Study in the Gironde Estuary. Remote Sens. 2020, 12, 946. [CrossRef]

75. Tanre, D.; Herman, M.; Deschamps, P. Influence of the background contribution upon space measurements
of ground reflectance. Appl. Opt. 1981, 20, 3676–3684. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2015.06.022
http://dx.doi.org/10.5194/hess-19-2805-2015
http://dx.doi.org/10.5194/essd-10-1439-2018
http://dx.doi.org/10.1364/AO.38.007442
http://dx.doi.org/10.5194/hess-15-831-2011
http://dx.doi.org/10.1016/j.rse.2015.10.035
http://dx.doi.org/10.1016/j.rse.2017.07.016
http://dx.doi.org/10.1080/22797254.2018.1457937
http://dx.doi.org/10.1016/j.rse.2014.06.017
http://dx.doi.org/10.1080/01431160600821127
http://dx.doi.org/10.4319/lo.2006.51.2.1167
http://dx.doi.org/10.1364/AO.37.002245
http://www.ncbi.nlm.nih.gov/pubmed/18273149
http://dx.doi.org/10.1080/014311699212533
http://dx.doi.org/10.1016/j.rse.2004.12.020
http://dx.doi.org/10.3390/rs11030220
http://dx.doi.org/10.3390/rs12060946
http://dx.doi.org/10.1364/AO.20.003676


Remote Sens. 2020, 12, 1285 26 of 26

76. Gordon, H.R.; Wang, M. Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors.
Appl. Opt. 1994, 33, 7754–7763. [CrossRef]

77. Ahmad, Z.; Franz, B.A.; McClain, C.R.; Kwiatkowska, E.J.; Werdell, J.; Shettle, E.P.; Holben, B.N. New aerosol
models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the
SeaWiFS and MODIS sensors over coastal regions and open oceans. Appl. Opt. 2010, 49, 5545–5560.
[CrossRef] [PubMed]

78. Bailey, S.W.; Franz, B.A.; Werdell, P.J. Estimation of near-infrared water-leaving reflectance for satellite ocean
color data processing. Opt. Express 2010, 18, 7521–7527. [CrossRef] [PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1364/AO.33.007754
http://dx.doi.org/10.1364/AO.49.005545
http://www.ncbi.nlm.nih.gov/pubmed/20935700
http://dx.doi.org/10.1364/OE.18.007521
http://www.ncbi.nlm.nih.gov/pubmed/20389774
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Study Area
	Data
	In-Situ Data
	Satellite Data

	Methods
	Bandwidth Correction
	Selected Atmospheric Correction Algorithms
	SPM Extraction
	Statistical Analyses
	Comparison between Acolite SWIR and Acolite DSF


	Results
	Intercomparison of S2-MSI AC Algorithms
	Evaluation of AC Algorithms for S2-MSI
	Intercomparison of S3-OLCI AC Algorithms
	Evaluation of AC Algorithms for S3-OLCI
	Validation of Satellite-Derived Rhow and SPM Values Based on Match-Ups with Field Data

	Discussion
	L8-OLI
	S2-MSI
	S3-OLCI

	Conclusions
	References

