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Abstract: Noise removal is a fundamental problem in remote sensing image processing. Most existing
methods, however, have not yet attained sufficient robustness in practice, due to more or less
neglecting the intrinsic structures of remote sensing images and/or underestimating the complexity of
realistic noise. In this paper, we propose a new remote sensing image denoising method by integrating
intrinsic image characterization and robust noise modeling. Specifically, we use low-Tucker-rank
tensor approximation to capture the global multi-factor correlation within the underlying image,
and adopt a non-identical and non-independent distributed mixture of Gaussians (non-i.i.d. MoG)
assumption to encode the statistical configurations of the embedded noise. Then, we incorporate
the proposed image and noise priors into a full Bayesian generative model and design an efficient
variational Bayesian algorithm to infer all involved variables by closed-form equations. Moreover,
adaptive strategies for the selection of hyperparameters are further developed to make our algorithm
free from burdensome hyperparameter-tuning. Extensive experiments on both simulated and real
multispectral/hyperspectral images demonstrate the superiority of the proposed method over the
compared state-of-the-art ones.

Keywords: remote sensing image denoising; low-rank tensor approximation; noise modeling;
variational inference

1. Introduction

Remote sensing images, such as multispectral images (MSIs) and hyperspectral images (HSIs),
provide abundant spatial and spectral information of real scenes and play a central role in many
real-world applications, such as urban planning, surveillance, and environmental monitoring.
Unfortunately, during the acquisition process, remote sensing images are often corrupted by various
kinds of noise, such as Gaussian noise, speckle noise, and stripe. Image denoising aims to recover an
underlying clean image from its noisy observation, which is a fundamental problem in remote sensing
image processing. To obtain effective signal-noise separations, denoising methods usually rely on
some prior assumptions imposed on the image and noise components.

One of the key issues in denoising methods is the rational design of an image prior,
which encourages some expected properties of the denoised image. As a significant property of remote
sensing images, low-rankness means that high-dimensional image data lie in a low-dimensional
subspace, which can also be considered to be sparsity over a learned basis. Methods based on
low-rankness along this line can be categorized into two classes: matrix-based and tensor-based ones.
Matrix-based methods perform low-rank matrix approximation on the unfolding (tensor matricization)
of the noisy image along the spectral mode. To obtain an efficient low-rank solution, low-rank
matrix factorization methods factorize the objective matrix into a product of two flat ones [1–9];
rank minimization methods penalize some surrogates of the rank function, such as the convex
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envelope nuclear norm [10–12] or tighter non-convex metrics, e.g., log-determinant penalty [13],
Schatten p-norm [14,15], γ-norm (Laplace function) [16], and truncated/weighted nuclear norm [17,18].
These matrix-based methods, however, can capture only the spectral correlation but ignore the
global multi-factor correlation in remote sensing images, which usually leads to suboptimal results
under severe noise corruption. On the other hand, tensor-based methods explicitly model the
underlying image as a low-rank tensor, by solving a tensor decomposition model or minimizing the
corresponding induced tensor rank [19]. Representative works include CANDECOMP/PARAFAC (CP)
decomposition with CP rank [20–22], Tucker decomposition with Tucker rank [23–27], tensor singular
value decomposition (t-SVD) with tubal rank [28,29], and tensor train (TT) decomposition with
TT rank [30–32]. Considering that each tensor decomposition represents a specific type of
high-dimensional data structure, recent works attempt to combine the merits of different low-rank
tensor models, such as the hybrid CP-Tucker model [33] and the Kronecker-basis-representation
(KBR)-based tensor sparsity measure [34,35]. By characterizing the correlations across both spatial
and spectral modes, the above tensor-based methods have the advantage of preserving the intrinsic
multilinear structure of remote sensing images, achieving state-of-the-art denoising performance.

Another critical issue in current denoising methods is the choice of a noise prior,
which characterizes the statistical properties of the data noise. This is generally realized by imposing
certain assumptions on the noise distribution, leading to specific loss functions between the noisy image
and the denoising result. Two traditional noise priors are the Gaussian prior [1,2,21,24] (L2-norm loss)
and the Laplacian prior [5,36,37] (L1-norm loss), which are widely used for suppressing dense noise
and sparse noise (outlier), respectively. A combination of Gaussian and Laplacian priors [12,27,29,38]
(L1 + L2 loss) is commonly considered in mixed noise removal. However, these priors are generally
not flexible enough to fit the noise in real applications, whose distributions are much more complicated
than Gaussian/Laplacian or a simple mixture of them. To handle such complex noise, several works
model the noise with a mixture of Gaussians (MoG) distribution [3,4,8] (weighted-L2 loss), due to its
universal approximation capability to any continuous probability density function [39]. Later, MoG has
been generalized to a mixture of exponential power (MoEP) distribution [6] (weighted-Lp loss) for
further flexibility and adaptivity. Despite the sophistication of the above priors, they all assume that the
noise is independent and identically distributed (i.i.d.), which is still limited in handling realistic noise
with non-i.i.d. statistical structures. In remote sensing images, the noise across different bands always
exhibits evident distinctions in configuration and magnitude. To encode such noise characteristics,
recent works impose non-i.i.d. assumptions on the noise distribution, such as non-i.i.d. MoG [7]
and Dirichlet process Gaussian mixture [9,40], resulting in better noise fitting capability and higher
denoising accuracy.

Some attempts have been presented to combine the advantages of recent developments in image
characterization and noise modeling. To the best of our knowledge, only several studies are constructed
as follows. Chen et al. [41] proposed a robust tensor factorization method based on CP decomposition
and MoG noise assumption. However, their model does not consider uncertainty information of latent
variables, such as the CP factor matrices and the MoG parameters, and thus is prone to overfitting due
to point estimations of these variables by optimization-based approaches. To overcome this defect,
Luo et al. [42] formulated the robust CP decomposition with MoG noise assumption as a full Bayesian
model, in which all latent variables are given prior distributions and inferred under a variational
Bayesian framework. Considering that CP decomposition cannot well capture the correlations along
different tensor modes, Chen et al. [43] further integrated Tucker decomposition and MoG noise
modeling into a generalized robust tensor factorization framework. However, this method also suffers
from the overfitting problem and requires some critical hyperparameters to be manually specified,
such as the tensor rank and the number of MoG components. Moreover, all the above methods impose
an i.i.d. assumption on the data noise, which still under-estimates the complexity of realistic noise and
thus leaves room for further improvement.
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To overcome the aforementioned issues, in this paper we propose a new remote sensing image
denoising method by taking into consideration the intrinsic properties of both remote sensing images
and realistic noise. The main contribution of this work is summarized below.

• We formulate the image denoising problem as a full Bayesian generative model, in which a
low-Tucker-rank image prior is exploited to characterize the intrinsic low-rank tensor structure of
the underlying image, and a non-i.i.d. MoG noise prior is adopted to encode the complex and
distinct statistical structures of the embedded noise.

• We design a variational Bayesian algorithm for an efficient solution to the proposed model,
where each variable can be updated in closed-form. Moreover, we develop adaptive strategies
for the selection of involved hyperparameters, to make our algorithm free from burdensome
hyperparameter-tuning.

• We conduct extensive denoising experiments on both simulated and real MSIs/HSIs, and the
results show the superiority of the proposed method over the compared state-of-the-art ones.

The rest of the paper is organized as follows. Section 2 introduces some notation used throughout
the paper. Section 3 describes the proposed model and the corresponding variational inference
algorithm. Section 4 presents experimental results and discussions. Section 5 concludes the paper.

2. Notation

We use boldface Euler script letters for tensors, e.g., A, boldface uppercase letters for matrices, e.g.,
A, boldface lowercase letters for vectors, e.g., a, and lowercase letters for scalars, e.g., a. In particular,
we use I, 0, and 1 for identity matrices, arrays of all zeros, and arrays of all ones, respectively. We use a
pair of lowercase and uppercase letters for an index and its upper bound, e.g., i = 1, . . . , I. We use
Matlab expressions to denote elements and subarrays, e.g., a(i), A(i, :), and A(i, :, :).

Given a tensor A ∈ RI1×···×ID (A reduces to a matrix when D = 2 or a vector when D = 1).
The Frobenius norm and the 1-norm of A are, respectively, defined as

‖A‖F :=
√

∑I1,...,ID
i1,...,iD=1 A(i1, . . . , iD)2 and ‖A‖1 := ∑I1,...,ID

i1,...,iD=1 |A(i1, . . . , iD)|.

For a given dimension d ∈ {1, . . . , D}, the mode-d unfolding of A is denoted as unfoldd(A)

or, more compactly, as A(d), whose size is Id × (I1 . . . Id−1 Id+1 . . . ID). The inverse process is denoted
as foldd(A(d)) := A. More precisely, the tensor element A(i1, . . . , iD) maps to the matrix element
A(d)(i′1, i′2) satisfying

i′1 = id and i′2 = 1 + ∑D
k=1,k 6=d(ik − 1)∏k−1

m=1,m 6=d Im,

see [19] for more details. The mapping between (i1, . . . , iD) and (i′1, i′2) is denoted as

AI1×···×ID (i1, . . . , iD) = AId×(I1 ...Id−1 Id+1 ...ID)
(d) (i′1, i′2).

The Tucker rank of A is defined as a vector consisting of the ranks of its unfoldings, i.e.,

rank(A) := (rank(A(1)), rank(A(2)), . . . , rank(A(D))).

Additional notation is defined where it occurs.

3. Tucker Rank Minimization with Non-i.i.d. MoG Noise Modeling

This section is divided into three parts. Section 3.1 formulates the denoising problem as a full
Bayesian model named Tucker rank minimization with non-i.i.d. MoG noise modeling (NMoG-Tucker).
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Section 3.2 presents a variational inference algorithm for solving the proposed model. Section 3.3
discusses the selection of hyperparameters involved in our model.

3.1. Bayesian Model Formulation

Let Y ,X ∈ RI×J×K denote the noisy image and the underlying clean image, respectively.
To characterize the low-Tucker-rank prior of remote sensing images, we consider the following
low-rank matrix factorization of the mode-d unfoldings of Y (d = 1, 2, 3):

Y(d) = UdVT
d + Nd, (1)

where Ud ∈ RId×Rd ({Id}3
d=1 = {I, J, K}) and Vd ∈ RJd×Rd ({Jd}3

d=1 = {JK, IK, I J}) are factor matrices
with column number Rd ≤ min(Id, Jd), and Nd denotes the noise embedded in Y(d). Below we
formulate (1) as a full Bayesian model by imposing prior distributions on the involved variables.

Prior of the noise Nd. We impose a non-i.i.d. MoG prior on Nd to characterize the complex
structure of realistic noise. For simplicity of presentation, let us consider the tensor (We remark that
N d := foldd(Nd) depends on the dimension d because our model (1) does not enforce the equality
between the low-rank components of Y along different modes, i.e., {foldd(UdVT

d )}
3
d=1, considering

that the low-rankness degrees along different modes are generally not the same) N d := foldd(Nd) ∈
RI×J×K. We assume that each element in the k-th band of N d follows a MoG distribution

N d(i, j, k) ∼∑Ld
l=1 Πd(k, l)N (N d(i, j, k)|0, τd(l)−1), (2)

where Ld is the number of Gaussian components, Πd(k, :) ∈ RLd is the mixing proportion satisfying
Πd(k, l) > 0 and ∑Ld

l=1 Πd(k, l) = 1, and τd ∈ RLd contains precisions of the Gaussian components.
By introducing an indicator variable Zd ∈ {0, 1}I×J×K×Ld , we rewrite (2) as the following two-level
generative process [44]:

N d(i, j, k) ∼∏Ld
l=1N (N d(i, j, k)|0, τd(l)−1)Zd(i,j,k,l),

Zd(i, j, k, :) ∼ Multinomial(Zd(i, j, k, :)|Πd(k, :)),
(3)

where Zd(i, j, k, :) ∈ {0, 1}Ld with ∑Ld
l=1 Zd(i, j, k, l) = 1 follows a multinomial distribution

parameterized by Πd(k, :). Then, we impose conjugate priors on τd and Πd to obtain a complete
Bayesian model,

τd(l) ∼ Gamma(τd(l)|a0, b0), (4)

Πd(k, :) ∼ Dirichlet(Πd(k, :)|α01), (5)

where Gamma(·|a0, b0) denotes the Gamma distribution with parameters a0 and b0,
and Dirichlet(·|α01) denotes the Dirichlet distribution parameterized by α01 ∈ RLd .

The proposed prior can characterize the following intrinsic properties of realistic noise.

• First, noise in each band exhibits complex statistical properties, which cannot be well captured by
simple distributions such as Gaussian or Laplacian. We model the noise in each band by an i.i.d.
MoG distribution, which is a universal approximator to any continuous distribution.

• Second, noise across different bands is non-identical in terms of structure and extent, due to
sensor malfunctions and atmospheric conditions. This band-noise-distinctness nature is encoded
by the band-dependent mixing proportion in MoG, leading to a non-i.i.d. noise distribution.

• Third, there is a strong correlation among the noise distributions in all bands, since real-life noise
corruption is generally attributed to only a few main factors. In the proposed prior, the noise
correlation is reflected by the fact that the MoG distributions of different bands share the same set
of Gaussian components.
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Prior of the factor matrices Ud and Vd. Inspired by the sparse Bayesian learning principle [45],
we assume that the columns of Ud and Vd are generated from the following Gaussian distributions:

Ud(:, r) ∼ N (Ud(:, r)|0, γd(r)
−1I), (6)

Vd(:, r) ∼ N (Vd(:, r)|0, γd(r)
−1I), (7)

where γd ∈ RRd denotes precisions following the conjugate prior

γd(r) ∼ Gamma(γd(r)|c0, d0). (8)

Prior of the solution X . Given the learned low-rank components along three modes, we assume
that each element in X is generated from the following weighted multiplication of Gaussian distributions:

p(X (i, j, k)) = c ∏3
d=1N (X (i, j, k)|Ud(id, :)Vd(jd, :)T , ξ−1)w(d), (9)

where (id, jd) maps to (i, j, k) such that AId×Jd
(d) (id, jd) = AI×J×K(i, j, k), ξ denotes the precision of

the Gaussian distributions, w ∈ R3 contains weights of the three modes satisfying w(d) > 0 and
∑3

d=1 w(d) = 1, and c is a normalization constant.
Full Bayesian model and posterior. We can construct a full Bayesian model by combining (1)–(9);

the corresponding graphical model is shown in Figure 1. Then, the goal is to infer the posterior of all
involved variables, which can be expressed as

p(X , {Ud, Vd, γd, τd,Zd, Πd}3
d=1|Y)

∝ p(X , {Ud, Vd, γd, τd,Zd, Πd}3
d=1,Y)

= p(X |{Ud, Vd}3
d=1)∏3

d=1

{
p(Y(d)|Ud, Vd, τd,Zd)p(Ud|γd)p(Vd|γd)p(γd)p(τd)p(Zd|Πd)p(Πd)

}
.

(10)

Ud Vd 

Y(d) 

 

γd 

d Πd 

τd 

ξ 

b0 

a0 

c0 d0 α0 

w 

d =1,2,3 

Figure 1. Graphical model of NMoG-Tucker. Hollow nodes, shadowed nodes, and small solid nodes
denote unobserved variables, observed data, and hyperparameters, respectively; a solid arrow from
node a to node b indicates the explicit conditional distribution p(b|a); a dashed arrow from node a to
node b implies that b is implicitly conditioned on a; the box is a compact representation indicating that
there are three sets of variables corresponding to the three tensor modes.

Optimization-based interpretation. From an optimization perspective, maximizing the
posterior (10) is equivalent to minimizing its negative logarithm, i.e.,
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− ln p(X , {Ud, Vd, γd, τd,Zd, Πd}3
d=1|Y)

= −∑3
d=1

{
w(d)∑i,j,k lnN (X (i, j, k)|Ud(id, :)Vd(jd, :)T , ξ−1) (11)

+ ∑i,j,k,l Zd(i, j, k, l) lnN (Y(i, j, k)|Ud(id, :)Vd(jd, :)T , τd(l)−1)

+ ∑r lnN (Ud(:, r)|0, γd(r)
−1I) + ∑r lnN (Vd(:, r)|0, γd(r)

−1I)

+ ∑r ln Gamma(γd(r)|c0, d0) + ∑l ln Gamma(τd(l)|a0, b0)

+∑i,j,k ln Multinomial(Zd(i, j, k, :)|Πd(k, :)) + ∑k ln Dirichlet(Πd(k, :)|α01)
}

= ∑3
d=1

{
w(d)ξ

2
‖X(d) −UdVT

d ‖
2
F +

1
2
‖unfoldd(Hd)� (Y(d) −UdVT

d )‖
2
F +

1
2
‖Uddiag(γd)‖2

F (12)

+
1
2
‖Vddiag(γd)‖2

F + ∑r

(
d0γd(r)−

(
Id + Jd

2
+ c0 − 1

)
ln γd(r)

)
+∑l

(
b0τd(l)−

(
1
2 ∑i,j,k Zd(i, j, k, l) + a0 − 1

)
ln τd(l)

)
+∑i,j,k,l

(
1
2

ln(2π)− ln Πd(k, l)
)
Zd(i, j, k, l) + ∑k,l(1− α0) ln Πd(k, l)

}
,

where Hd ∈ RI×J×K contains the noise level estimations with Hd(i, j, k) =
√

∑Ld
l=1 Zd(i, j, k, l)τd(l),

� denotes the element-wise multiplication, diag(γd) denotes the diagonal matrix with the elements of
γd on its main diagonal. Below we illustrate the origin and the effect of each term in (12).

• The first `2-norm term is derived from the weighted multiplication of Gaussians prior on the
solution X (9). It forms X by penalizing the Euclidean distances between the unfoldings
{X(d)}3

d=1 and the low-rank components {UdVT
d }

3
d=1.

• The second weighted-`2-norm term is derived from the non-i.i.d. MoG prior on the noise Nd (3).
It serves as a spatially varying loss function that suppresses the noise according to the local noise
level estimations embedded in the weight matrix unfoldd(Hd).

• The third and the fourth weighted-`2-norm terms are derived from the Gaussian priors on the
factor matrices Ud and Vd (6,7). They promote the joint group sparsity of {Ud, Vd} in the unit
of column pair {Ud(:, r), Vd(:, r)}, which implies the sparsity of UdVT

d under rank-one bases
{Ud(:, r)Vd(:, r)T}Rd

r=1, i.e., the low-rankness of UdVT
d .

• The remainder terms are derived from the priors on the variables {γd, τd,Zd, Πd} and provide
them with suitable regularization.

3.2. Approximate Variational Inference

We use the variational Bayesian (VB) method [44] to obtain an approximate inference of the
posterior (10), since the exact solution is computationally intractable. Below we briefly introduce the
general framework of VB, and then present the inference results for our model.

General framework of VB. Denoting by θ unobserved variables and by D observed data, VB aims
to seek a variational distribution q(θ) to approximate the true posterior p(θ|D), by minimizing the
Kullback–Leibler (KL) divergence between q and p, i.e.,

min
q∈C

KL(q‖p) := −
∫

q(θ) ln
{

p(θ|D)

q(θ)

}
dθ, (13)

where C imposes certain restrictions on q to make the minimization tractable. In general, q is restricted
to have the factorization q(θ) = ∏i qi(θi), where {θi} are disjoint groups of the variables in θ.
Under this assumption, one can approach the solution to (13) in an iterative way, by alternatively
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minimizing KL(q‖p) with respect to each qi(θi) while keeping the others fixed. More precisely, qi can
be calculated by the following closed-form solution:

qi(θi) =
exp(〈ln p(θ, D)〉θ\θi

)∫
exp(〈ln p(θ, D)〉θ\θi

)dθi
, (14)

where 〈·〉θ\θi
denotes the expectation with respect to q over all variables except θi.

Factorized form of the approximate posterior q. We assume that the approximation of the
posterior (10) has the following factorization (the subscripts of q are omitted without confusion):

q(X , {Ud, Vd, γd, τd,Zd, Πd}3
d=1)

= ∏I,J,K
i,j,k=1 q(X (i, j, k))∏3

d=1

{
∏Id

i=1 q(Ud(i, :)) ∏Jd
j=1 q(Vd(j, :))∏Rd

r=1 q(γd(r))

∏Ld
l=1 q(τd(l))∏I,J,K,Ld

i,j,k,l=1 q(Zd(i, j, k, l))∏K
k=1 q(Πd(k, :))

}
.

(15)

According to (14), we give the analytical inference of each component in (15) as below.
Estimation of the low-rank component. Variables involved in the low-rank component are the

factor matrices {Ud ∈ RId×Rd}3
d=1 and {Vd ∈ RJd×Rd}3

d=1 with column-wise precisions {γd ∈ RRd}3
d=1,

and the solution X ∈ RI×J×K. For each row of Ud, we have that

q(Ud(i, :)) = N (Ud(i, :)|µUd(i,:)
, ΣUd(i,:)), (16)

with covariance ΣUd(i,:) ∈ RRd×Rd and mean µUd(i,:)
∈ RRd given by

ΣUd(i,:) =
(
∑Jd

j=1

(
w(d)ξ + ∑Ld

l=1〈Zd(i′, j′, k′, l)〉〈τ(l)〉
)
〈Vd(j, :)TVd(j, :)〉+ diag(〈γd〉)

)−1
,

µUd(i,:)
= ∑Jd

j=1

(
w(d)ξ〈X (i′, j′, k′)〉+ ∑Ld

l=1〈Zd(i′, j′, k′, l)〉〈τ(l)〉Y(i′, j′, k′)
)
〈Vd(j, :)〉ΣUd(i,:),

where (i′, j′, k′) maps to (i, j) such that AI×J×K(i′, j′, k′) = AId×Jd
(d) (i, j). Similarly, for each row of Vd,

we have that
q(Vd(j, :)) = N (Vd(j, :)|µVd(j,:), ΣVd(j,:)), (17)

where

ΣVd(j,:) =
(
∑Id

i=1

(
w(d)ξ + ∑Ld

l=1〈Zd(i′, j′, k′, l)〉〈τ(l)〉
)
〈Ud(i, :)TUd(i, :)〉+ diag(〈γd〉)

)−1
,

µVd(j,:) = ∑Id
i=1

(
w(d)ξ〈X (i′, j′, k′)〉+ ∑Ld

l=1〈Zd(i′, j′, k′, l)〉〈τ(l)〉Y(i′, j′, k′)
)
〈Ud(i, :)〉ΣVd(j,:).

For each element in γd, we have that

q(γd(r)) = Gamma(γd(r)|cγd , dγd(r)), (18)

with parameters cγd ∈ R and dγd(r) ∈ R given by

cγd = c0 +
1
2
(Id + Jd),

dγd(r) = d0 +
1
2
(〈Ud(:, r)TUd(:, r)〉+ 〈Vd(:, r)TVd(:, r)〉).

For each element in X , we have that

q(X (i, j, k)) = N (X (i, j, k)|µX (i,j,k), ξ−1), (19)
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with mean µX (i,j,k) ∈ R given by

µX (i,j,k) = ∑3
d=1 w(d)〈Ud(id, :)〉〈Vd(jd, :)T〉,

where (id, jd) maps to (i, j, k) such that AId×Jd
(d) (id, jd) = AI×J×K(i, j, k).

Estimation of the noise component. Variables involved in the noise component are the
precisions {τd ∈ RLd}3

d=1, the mixing proportions {Πd ∈ RK×Ld}3
d=1, and the indicator variables

{Zd ∈ RI×J×K×Ld}3
d=1. For each element in τd, we have that

q(τd(l)) = Gamma(τd(l)|aτd(l), bτd(l)), (20)

with parameters aτd(l) ∈ R and bτd(l) ∈ R given by

aτd(l) = a0 +
1
2 ∑I,J,K

i,j,k=1〈Zd(i, j, k, l)〉,

bτd(l) = b0 +
1
2 ∑I,J,K

i,j,k=1〈Zd(i, j, k, l)〉〈(Y(i, j, k)−Ud(id, :)Vd(jd, :)T)2〉,

where (id, jd) maps to (i, j, k) such that AId×Jd
(d) (id, jd) = AI×J×K(i, j, k). For each row of Πd,

we have that
q(Πd(k, :)) = Dirichlet(Πd(k, :)|αΠd(k,:)), (21)

with a parameter αΠd(k,:) ∈ RLd given by

αΠd(k,:)(l) = α0 + ∑I,J
i,j=1〈Zd(i, j, k, l)〉.

For each mode-4 fiber of Zd, we have that

q(Zd(i, j, k, :)) = Multinomial(Zd(i, j, k, :)|ρZd(i,j,k,:)), (22)

with a parameter ρZd(i,j,k,:) ∈ RLd given by

ρZd(i,j,k,:)(l) = c exp
(
−1

2
ln(2π) +

1
2
〈ln τd(l)〉 −

1
2
〈ln τd(l)〉〈(Y(i, j, k)−Ud(id, :)Vd(jd, :)T)2〉

+ 〈ln Πd(k, l)〉
)

,

where (id, jd) maps to (i, j, k) such that AId×Jd
(d) (id, jd) = AI×J×K(i, j, k) and c is a normalization constant

to ensure that ∑Ld
l=1 ρZd(i,j,k,:)(l) = 1.

Pseudo-code and complexity analysis. The pseudo-code of the overall algorithm is summarized
in Algorithm 1. The total complexity per iteration is approximately

O
(
∑3

d=1(Id + Jd)R3
d + Id JdR2

dLd

)
, (23)

where the first term is due to calculating the covariance matrices of {Ud, Vd}3
d=1 (16,17), and the second

term is due to calculating the parameters of {Zd}3
d=1 (22). Since, in general, it holds Rd � min(Id, Jd),

the complexity of our algorithm depends linearly on the size of the input data.
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Algorithm 1. Variational Bayesian algorithm for NMoG-Tucker.

Input: Observed image Y .
Initialization:

1. Set the iteration index t := 0.

2. Initialize the low-rank component {U(t)
d , V(t)

d , γ
(t)
d }

3
d=1.

3. Initialize the noise component {τ(t)
d ,Z (t)

d }
3
d=1.

Iteration: while not converged do

4. Given {τ(t)
d ,Z (t)

d }
3
d=1, update the low-rank component {U(t+1)

d , V(t+1)
d , γ

(t+1)
d }3

d=1 and X (t+1) by (16)–(19).

5. Given {U(t+1)
d , V(t+1)

d , γ
(t+1)
d }3

d=1, update the noise component {τ(t+1)
d , Π

(t+1)
d ,Z (t+1)

d }3
d=1 by (20)–(22).

6. Set t := t + 1.
End while and output X = X (t).

3.3. Selection of Hyperparameters

This section is devoted to the selection of hyperparameters involved in our model. We develop
adaptive strategies to learn their values using the results of the current iteration, which makes our
algorithm free from burdensome hyperparameter-tuning.

Selection of {Rd}3
d=1. The hyperparameter {Rd}3

d=1 controls the column numbers of the factor
matrices {Ud, Vd}3

d=1, which is an estimation of the Tucker rank of the solution. Since the true rank is
often unknown in practice, we design an adaptive rank estimation strategy to improve the applicability
of our method. The main idea consists of initializing Rd with a large value and then decreasing it
gradually by dropping singular values smaller than an adaptive threshold. More precisely, denoting by
t the iteration index, we choose R(t)

d as

R(t)
d := max

{
r | σ(t)

d (r) ≥ s(t)d

}
, (24)

where σ
(t)
d ⊂ [0, 1] is a vector composed of the singular values of U(t)

d (V(t)
d )T/‖U(t)

d (V(t)
d )T‖2 in a

decreasing order (‖ · ‖2 denotes the spectral norm, i.e., the largest singular value), s(t)d ∈ [0, 1] is a
threshold given by

s(t)d := max

min
(

σ
(t)
d

(
min

{
i | ∑r>i σ

(t)
d (r) < eupper‖σ(t)

d ‖1

})
, s(t−1)

d

)
, elowerσ

(t)
d (end)

 , (25)

where eupper ∈ (0, 1) imposes an upper bound of the sum of the dropping singular values {σ(t)
d (r)}r>i,

elower ∈ (0, 1) imposes a lower bound of the threshold s(t)d , and σ
(t)
d (end) denotes the last element of

σ
(t)
d . Our experiments use the default settings eupper = 10−2 and elower = 2/3; the effects of these two

hyperparameters on the denoising performance will be discussed in Section 4.4.
We make some comments on the proposed rank estimation strategy. First, the dropping singular

values in each iteration carry at most 1% energy of U(t)
d (V(t)

d )T , leading to a robust rank decreasing

process. Second, the threshold tends to decrease if a rank reduction occurs, i.e., s(t)d > σ
(t)
d (end),

which avoids underestimating the true rank. Third, the threshold tends to increase if it is too small to
trigger a rank reduction, i.e., s(t)d < 2

3 σ
(t)
d (end), which avoids overestimating the true rank.

Selection of w. The hyperparameter w assigns relative weights of the three modes in the prior (9)
and the posterior (19) of X . We assume a positive correlation between w(d) and the low-rankness
degree of X(d), i.e., the more sparse the singular values of X(d) are, the larger w(d) is. To measure the
sparsity of singular values, we use the Gini index [46] (Here we take G := 1− G′, where G′ is the
definition of the Gini index in [46]) defined by



Remote Sens. 2020, 12, 1278 10 of 25

G(a) := ∑I
i=1

(
2i− 1

I

)
a(i)
‖a‖1

,

where a ∈ RI is a non-zero vector composed of nonnegative elements in a decreasing order. The Gini
index takes positive values, and smaller values indicate better sparsity. Then, at the t-th iteration,
we choose w(t)(d) as

w(t)(d) := c exp

− G(σ
(t)
X(d)

)

mind G(σ
(t)
X(d)

)

 , (26)

where σ
(t)
X(d)

contains the singular values of X(d) in a decreasing order and c is a normalization constant

to ensure that ∑3
d=1 w(t)(d) = 1. Here we divide by mind G(σ

(t)
X(d)

) to measure the relative, rather than

absolute, low-rankness degree.
Selection of ξ. The hyperparameter ξ is the precision of the Gaussian distributions in the prior (9)

and the posterior (19) of X , which controls the contribution of X to the inference results of {Ud}3
d=1 (16)

and {Vd}3
d=1 (17), or, equivalently, penalizes the distances between X and the low-rank components

{foldd(UdVT
d )}

3
d=1. For stability purpose, we initialize ξ with a small value and increase it gradually

until the convergence of X . More precisely, at the t-th iteration, we set ξ(t) as

ξ(t) := ξ
(t)
0

I JK

‖Y −X (t)‖2
F

, (27)

where ξ0 is an auxiliary hyperparameter updated as

ξ
(t)
0 :=

1.5ξ
(t−1)
0 , if ‖X (t)−X (t−1)‖2

F
‖X (t−1)‖2

F
<
‖X (t−1)−X (t−2)‖2

F
‖X (t−2)‖2

F
,

ξ
(t−1)
0 , otherwise.

Selection of {Ld}3
d=1. The hyperparameter Ld is the number of Gaussian components in the MoG

prior of the noise Nd (2). To adaptively fit the noise distribution, we initialize Ld with a relatively large
value and iteratively decrease Ld to Ld − 1 if there exist two analogous Gaussian components satisfying

|τd(l1)− τd(l2)|
|τd(l1) + τd(l2)|

≤ 0.05.

For an initialization of Ld, our experiments use the default setting (L(0)
1 , L(0)

2 , L(0)
3 ) = (8, 8, 8); its effects

on the denoising performance will be discussed in Section 4.4.
Selection of other hyperparameters. The rest hyperparameters are a0 and b0 in the Gamma

prior of {τd}3
d=1, c0 and d0 in the Gamma prior of {γd}3

d=1, and α0 in the Dirichlet prior of {Πd}3
d=1.

We simply fix them to 10−6 in a non-informative manner, to minimize their impacts on the inference
process [44]. Our method performs stably well in all experiments under these simple settings.

4. Numerical Experiments

We evaluate the denoising performance of the proposed NMoG-Tucker method on synthetic
data, MSIs, and HSIs. Table 1 lists six state-of-the-art competing methods on low-rank matrix/tensor
approximation: matrix-based methods LRMR [38], MoG-RPCA [4], and NMoG-LRMF [7]; tensor-based
methods LRTA [24], PARAFAC [21], and KBR-RPCA [35]. Parameters involved in all competing
methods are set to default values or manually tuned for the best possible denoising performance.
All experiments are conducted under Windows 10 and Matlab R2016a (Version 9.0.0.341360) running
on a desktop with an Intel(R) Core(TM) i7-8700K CPU at 3.70 GHz and 32 GB memory.
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Table 1. Summary of competing methods. Here ×d denotes the d-mode product [19], and ◦ denotes
the vector outer product.

Competing Method Data Prior Noise Prior

LRMR [38] Matrix rank constraint Gaussian + sparse
rank(X(3)) ≤ r

MoG-RPCA [4] Low-rank matrix factorization MoG
X(3) = UVT

NMoG-LRMF [7] Low-rank matrix factorization Non-i.i.d. MoG
X(3) = UVT

LRTA [24] Tucker decomposition Gaussian
X = C ×1 U1 ×2 U2 ×3 U3

PARAFAC [21] CP decomposition Gaussian
X = ∑r λrU1(:, r) ◦U2(:, r) ◦U3(:, r)

KBR-RPCA [35] Kronecker-basis-representation Gaussian + sparse
S(X ) = t‖C‖0 + (1− t)∏3

d=1 rank(X(d)),
where X = C ×1 U1 ×2 U2 ×3 U3

We conduct both simulated and real denoising experiments. In simulated experiments, the noisy
data are generated by adding synthetic noises to the original ones, and the denoising performance is
evaluated by both quantitative measures and visual quality. In real experiments, the goal is to recover
real-world data without knowing the ground-truths, and the denoising results are mainly judged by
visual quality.

In simulated experiments, we use the following four quantitative measures: relative error (ReErr),
erreur relative globale adimensionnelle de synthèse (ERGAS) [47], mean of peak signal-to-noise ratio
(MPSNR), and mean of structural similarity (MSSIM) [48]. Denoting by X res ∈ RI×J×K an estimation to
the original data X ori ∈ RI×J×K, the four measures of X res with respect to X ori are defined as follows:

ReErr(X res,X ori) :=
‖X res −X ori‖F
‖X ori‖F

,

ERGAS(X res,X ori) := 100

√√√√ 1
K ∑K

k=1
‖X res(:, :, k)−X ori(:, :, k)‖2

F

∑I,J
i,j=1 X ori(i, j, k)

,

MPSNR(X res,X ori) :=
1
K ∑K

k=1 10 log10

(
2552 I J

‖X res(:, :, k)−X ori(:, :, k)‖2
F

)
,

MSSIM(X res,X ori) :=
1
K ∑K

k=1 SSIM(X res(:, :, k),X ori(:, :, k)),

where the details of SSIM can be found in [48]. In general, better denoising results have smaller ReErr
and ERGAS values and larger MPSNR and MSSIM values.

4.1. Synthetic Data Denoising

This section presents simulated experiments on synthetic data denoising. The original data are
random low-rank tensors generated by the Tucker model with size 50× 50× 50 and rank (R1, R2, R3),
i.e., X ori := C ×1 U1 ×2 U2 ×3 U3, where the core tensor C ∈ RR1×R2×R3 and each factor matrix
Ud ∈ R50×Rd (d = 1, 2, 3) are drawn from standard Gaussian distribution. We consider two rank
settings (10, 10, 10) and (20, 15, 10). The original data are normalized to have unit mean absolute value,
i.e., ‖X ori‖1/503 = 1. We test the following three kinds of synthetic noises.

• Gaussian noise: all entries mixed with Gaussian noise N (0, 0.12).
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• Gaussian + sparse noise: 80% entries mixed with Gaussian noiseN (0, 0.12) and 20% with additive
uniform noise between [−5, 5].

• Mixture noise: 40% entries mixed with Gaussian noise N (0, 0.012), 20% with Gaussian noise
N (0, 0.22), 20% with additive uniform noise between [−5, 5], and 20% missing (the locations of
missing entries are not given as prior knowledge).

Table 2 reports the ReErr values and execution time of different methods on synthetic data
denoising, where every result is an average over ten trials with different realizations of both data
and noise. Regarding the denoising accuracy, our method consistently attains comparable or lower
ReErr values than the competing methods, and its superiority becomes more significant as the noise
complexity increases. Regarding the computational speed, LRTA is generally the fastest method,
while our method is the slowest in all cases. The relatively high cost of our algorithm is mainly due to
two facts: computing variables corresponding to all three modes requires three times more calculations
than those in matrix-based methods; updating the factor matrices row by row is much slower than
updating them as a whole in other tensor-based methods. An acceleration of our implementation will
be left to future research.

Table 2. Quantitative performance and execution time (in seconds) of different methods on synthetic
data denoising. Every result is an average over ten trials with different realizations of both data and
noise. The best results are highlighted in bold.

Gaussian noise Gaussian + sparse noise Mixture noise
Rank (10,10,10) ReErr Time ReErr Time ReErr Time

Noisy data 7.41e-02 - 6.92e-01 - 8.08e-01 -
LRMR 4.09e-02 0.11 1.22e-01 2.27 4.40e-01 2.30
MoG-RPCA 3.35e-02 1.22 4.54e-02 6.22 3.21e-01 19.16
NMoG-LRMF 3.35e-02 4.78 4.15e-02 4.54 3.30e-01 15.29
LRTA 1.06e-02 0.12 1.43e-01 0.18 3.43e-01 0.42
PARAFAC 1.97e-02 5.19 2.67e-01 4.26 4.53e-01 4.04
KBR-RPCA 9.91e-03 2.93 1.44e-02 2.86 5.00e-02 2.91
NMoG-Tucker 1.00e-02 14.84 1.17e-02 31.14 3.25e-03 45.84

Gaussian noise Gaussian + sparse noise Mixture noise
Rank (20,15,10) ReErr Time ReErr Time ReErr Time

Noisy data 7.56e-02 - 7.00e-01 - 8.12e-01 -
LRMR 4.27e-02 0.18 1.27e-01 2.09 4.58e-01 2.09
MoG-RPCA 3.42e-02 1.34 4.58e-02 5.01 2.84e-01 17.58
NMoG-LRMF 3.42e-02 3.72 4.22e-02 4.30 3.12e-01 15.17
LRTA 1.55e-02 0.14 2.04e-01 0.18 3.85e-01 0.36
PARAFAC 1.87e-01 5.10 3.17e-01 4.61 4.98e-01 4.18
KBR-RPCA 1.45e-02 2.45 2.16e-02 2.23 9.06e-02 3.12
NMoG-Tucker 1.47e-02 16.63 1.72e-02 34.62 1.97e-02 62.04

4.2. MSI Denoising

This section presents simulated experiments on MSI denoising. The original data are six MSIs
(Beads, Cloth, Hairs, Jelly Beans, Oil Painting, Watercolors) from the Columbia MSI Database (http:
//www1.cs.columbia.edu/CAVE/databases/multispectral) [49] containing scenes of a variety of
real-world objects. Each MSI is of size 512× 512× 31 with intensity range scaled to [0, 1]. We test the
following two kinds of synthetic noises.

• Gaussian noise: all entries mixed with Gaussian noiseN (0, 0.052). The signal-to-noise-ratio (SNR)
value averaged over all 31 bands and all six MSIs is 13.88 dB.

• Mixture noise: 60% entries mixed with Gaussian noise N (0, 0.012), 20% with Gaussian noise
N (0, 0.22), and 20% with additive uniform noise between [−5, 5]. The SNR value averaged over
all 31 bands and all six MSIs is −14.38 dB.

http://www1.cs.columbia.edu/CAVE/databases/multispectral
http://www1.cs.columbia.edu/CAVE/databases/multispectral
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Table 3 reports the quantitative performance of different methods on MSI denoising, where every
result is an average over six testing MSIs. For Gaussian noise, our method achieves comparable
denoising performance to LRMR, LRTA, and KBR-RPCA. For mixture noise, our method performs
better than the competing methods in terms of all three quantitative measures, and KBR-RPCA is the
second best.

Table 3. Quantitative performance of different methods on MSI denoising. Every result is an average
over six testing MSIs. The best results are highlighted in bold.

Gaussian Noise Mixture Noise
MPSNR MSSIM ERGAS MPSNR MSSIM ERGAS

Noisy image 26.02 0.8088 204.24 -2.24 0.0233 5287.19
LRMR 35.30 0.9631 72.70 20.38 0.6893 418.92
MoG-RPCA 31.31 0.8131 123.98 31.34 0.9475 125.40
NMoG-LRMF 32.88 0.9453 106.49 32.39 0.9531 146.44
LRTA 35.40 0.9575 71.53 20.61 0.4120 386.96
PARAFAC 26.82 0.7349 211.89 17.10 0.2496 569.36
KBR-RPCA 35.19 0.9637 73.95 33.43 0.9548 96.54
NMoG-Tucker 35.37 0.9703 71.49 36.02 0.9787 85.33

Figure 2 shows the average PSNR and SSIM values across all bands of the denoising results by
different methods. For easy observation of the details, we plot the differences between our results and
the competing ones at larger scales. It can be observed that our method achieves comparable or better
performance for most bands, while KBR-RPCA exhibits the best robustness over all bands.

LRMR MoG-RPCA NMoG-LRMF LRTA PARAFAC KBR-RPCA NMoG-Tucker
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Figure 2. PSNR and SSIM values of each band in MSI denoising, averaged over six testing MSIs.
Differences between our results and the competing ones are plotted at larger scales.

Figure 3 shows two examples on MSI denoising under Gaussian noise and mixture noise.
These figures suggest that the results by the competing methods generally maintain some noise or
alter image details, whereas our results exhibit higher visual quality in both noise removal and detail
preservation. For better visualization, we enlarge a certain patch and show the corresponding error
map, which highlights the difference between the denoised patch and the original one. A close
inspection reveals that our error maps contain less color information than the competing ones,
indicating that our method better recovers the spatial-spectral structures of the original MSIs.
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Original image Noisy image LRMR MoG-RPCA NMoG-LRMF

LRTA PARAFAC KBR-RPCA NMoG-Tucker

Original image Noisy image LRMR MoG-RPCA NMoG-LRMF

LRTA PARAFAC KBR-RPCA NMoG-Tucker
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Figure 3. MSI denoising examples. Top two rows: band 31 in Cloth under Gaussian noise. Bottom two
rows: band 31 in Beads under mixture noise. For better visualization, we show enlargements
of two demarcated patches and the corresponding error maps (difference between the currently
displayed patch and the original one). Error maps with less color information indicate better
denoising performance.

4.3. HSI Denoising

We conduct both simulated and real experiments on HSI denoising.
Simulated HSI denoising. We adopt two original HSIs considered in NMoG-LRMF [7],

i.e., a 200× 200× 160 sub-image of Washington DC Mall (http://engineering.purdue.edu/~biehl/
MultiSpec/hyperspectral.html ) (DCmall for short) and a 200 × 200 × 89 sub-image of Cuprite
(http://peterwonka.net/Publications/code/LRTC_Package_Ji.zip) [25]. The intensity range is scaled
to [0, 1]. To simulate the degradation scenarios in real-world HSIs, we test the following three kinds of
synthetic noises.

• Gaussian noise: all entries mixed with Gaussian noise N (0, 0.052). For DCmall, the SNR value of
each band varies from 6 to 20 dB, and the mean SNR value of all 160 bands is 13.79 dB. For Cuprite,
the SNR value of each band varies from 16 to 20 dB, and the mean SNR value of all 89 bands is
18.69 dB.

http://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
http://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
http://peterwonka.net/Publications/code/LRTC_Package_Ji.zip
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• Speckle noise: all bands are corrupted by non-i.i.d. speckle noise with signal-dependent intensity,
which is simulated by multiplicative uniform noise with mean 1 and variance randomly sampled
from [0.001, 0.5] for each band. For both DCmall and Cuprite, the SNR value of each band varies
from 3 to 30 dB. The mean SNR value of all 160 bands in DCmall is 19.52 dB, and that of all
89 bands in Cuprite is 20.03 dB.

• Mixture noise: all bands are corrupted by non-i.i.d. Gaussian noise with zero-mean and
band-dependent variances, and the SNR value of each band is uniformly sampled from 10 to
20 dB. Then, we randomly choose 90/50 bands in DCmall/Cuprite to add complex noises: the first
40/20 bands are corrupted by stripe noise with stripe number between [20, 40] and stripe intensity
between [−0.25, 0.25]; the middle 40/20 bands are corrupted by deadline with line number
between [5, 15]; 50% to 70% entries in the last 40/20 bands are corrupted by speckle noise with
mean 1 and variance 0.3. Thus, each band is randomly corrupted by one to three types of noises.
For both DCmall and Cuprite, the SNR value of each band varies from 4 to 20 dB. The mean SNR
value of all 160 bands in DCmall is 11.62 dB, and that of all 89 bands in Cuprite is 12.04 dB.

Table 4 presents the quantitative performance of different methods on simulated HSI denoising,
where every result is an average over five trials with different noise realizations. Compared with the
competing methods, our method consistently yields better performance in terms of MPSNR, MSSIM,
and ERGAS in all cases.

Table 4. Quantitative performance of different methods on simulated HSI denoising. Every result is an
average over five trials with different noise realizations. The best results are highlighted in bold.

Gaussian noise Speckle noise Mixture noise
DCmall MPSNR MSSIM ERGAS MPSNR MSSIM ERGAS MPSNR MSSIM ERGAS

Noisy data 26.02 0.7627 187.93 31.65 0.8697 226.53 23.94 0.6988 316.59
LRMR 38.54 0.9848 43.35 38.44 0.9789 58.46 37.10 0.9785 58.66
MoG-RPCA 38.97 0.9865 41.59 33.85 0.9520 144.52 34.81 0.9597 110.30
NMoG-LRMF 39.47 0.9876 38.91 39.66 0.9847 59.58 38.68 0.9838 56.39
LRTA 36.86 0.9731 52.07 31.66 0.8698 226.17 24.05 0.7021 314.09
PARAFAC 32.02 0.9360 90.77 32.75 0.9410 89.04 28.81 0.8722 164.61
KBR-RPCA 37.31 0.9819 49.94 38.20 0.9844 48.77 36.82 0.9797 54.89
NMoG-Tucker 39.52 0.9877 38.68 40.23 0.9876 42.66 39.23 0.9865 44.51

Gaussian noise Speckle noise Mixture noise
Cuprite MPSNR MSSIM ERGAS MPSNR MSSIM ERGAS MPSNR MSSIM ERGAS

Noisy data 26.02 0.6953 124.07 27.23 0.7052 225.22 19.42 0.4071 327.75
LRMR 36.69 0.9668 38.03 35.59 0.9511 59.71 32.93 0.9300 60.28
MoG-RPCA 35.51 0.9697 43.46 31.62 0.9415 133.78 28.67 0.9101 119.08
NMoG-LRMF 36.67 0.9696 39.08 36.74 0.9737 59.43 33.77 0.9446 58.81
LRTA 34.69 0.9324 48.11 27.29 0.7070 222.79 21.01 0.4687 272.44
PARAFAC 29.41 0.8223 86.12 29.82 0.8395 85.87 25.81 0.7150 158.41
KBR-RPCA 35.49 0.9564 44.01 34.54 0.9611 51.75 32.70 0.9208 59.98
NMoG-Tucker 37.41 0.9706 35.59 38.72 0.9805 32.43 34.04 0.9462 51.58

Figure 4 plots the average PSNR and SSIM values across all bands by different methods, as well
as the differences between our results and the competing ones at larger scales. These results suggest
that our method achieves leading quantitative performance for most bands. We also observe that the
matrix-based competing methods LRMR, MoG-RPCA, and NMoG-LRMF suffer from sharp PSNR
and SSIM drops at certain bands in the cases of speckle noise and mixture noise, e.g., bands 40–80 in
DCmall and bands 40–60 in Cuprite. In comparison, our method does not exhibit such phenomenon,
which demonstrates its robustness over entire HSI bands.
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Figure 4. PSNR and SSIM values of each band for simulated HSI denoising. Differences between our
results and the competing ones are plotted at larger scales.

Figure 5 shows two denoising examples on typical bands in DCmall and Cuprite. The noisy band in
DCmall is severely contaminated by a mixture of Gaussian noise, deadline, and speckle noise; the noisy
band in in Cuprite is overwhelmed by heavy speckle noise. We observe that the matrix-based methods
LRMR, MoG-RPCA, and NMoG-LRMF, although adopting flexible noise priors, cannot adequately
separate the original HSIs from such severe degradations, especially for Cuprite with fewer spectral
bands. As for tensor-based methods, LRTA can hardly reduce the noise, while PARAFAC leaves all
the deadlines. Their poor performance is due to the Gaussian noise assumption, which is not able to
fit complex noise. In comparison, adopting more intrinsic data and noise priors, KBR-RPCA and our
method yield satisfactory denoising results in both cases. Compared with KBR-RPCA, our method
preserves finer HSI structures with less residual noise, which can be seen from the demarcated patches
and the corresponding error maps. Our better performance is mainly attributed to the non-i.i.d. MoG
noise prior, which has a better fitting capability than the Gaussian + sparse assumption in the RPCA
framework.

Real HSI denoising. Our experiment uses two real HSI datasets: Indian Pines (https://
engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html ) of size 145× 145× 220 and Urban
(http://www.tec.army.mil/hypercube ) of size 307× 307× 210. In both datasets, some bands are
polluted by atmosphere and water absorption with little useful information. We do not remove them,
to test the robustness of different methods under severe degradation. The intensity range of the input
HSI is scaled to [0, 1].

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
http://www.tec.army.mil/hypercube
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Figure 5. Simulated HSI denoising examples. Top two rows: band 58 in DCmall under mixture
noise. Bottom two rows: band 43 in Cuprite under speckle noise. For better visualization, we show
enlargements of two demarcated patches and the corresponding error maps, similarly to Figure 3.

Figure 6 shows a denoising example on band 220 in Indian Pines. One can see that the original
band is overwhelmed by noise with almost no useful information. From the denoising results by
the competing methods, we observe that LRTA fails to handle such severe degradation; MoG-RPCA
still leaves much noise in the whole image; LRMR, PARAFAC, and KBR remove more noise but
simultaneously lose tiny image details; NMoG-LRMF yields a visually satisfactory result, but seems to
produce false edges in the demarcated patches. On the other hand, the proposed method outperforms
the competing methods in terms of both noise removal and detail preservation.

Figure 7 presents a classification example on Indian Pines. This test aims to provide a task-oriented
evaluation of the denoising performance of different methods, from the perspective of the influence on
the classification accuracy. In the ground-truth classification result, a total of 10249 samples are divided
into 16 classes, and the number of samples in each class ranges from 20 to 2455. To conduct a supervised
classification, we randomly choose ten samples for each class as training data, and use the remaining
samples in each class as testing data. Then, the support vector machine (SVM) classification [50] is
performed on the noisy image and its denoised versions by different methods, and the classification
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results are quantitatively evaluated by overall accuracy (OA). It can be seen that noise corruption
significantly limits the classification accuracy, and the classification results of the denoised HSIs are
more or less improved since the noise is suppressed. Among all denoising methods, our method leads
to the highest OA value, demonstrating its superiority in benefiting the SVM classification.

Noisy image LRMR MoG-RPCA NMoG-LRMF

LRTA PARAFAC KBR-RPCA NMoG-Tucker

Figure 6. Real HSI denoising example on band 220 in Indian Pines. For better visualization, we show
enlargements of two demarcated patches.

Ground-truth Noisy image
(OA=45.43%)

LRMR
(OA=64.75%)

MoG-RPCA
(OA=46.83%)

NMoG-LRMF
(OA=63.51%)

LRTA
(OA=45.64%)

PARAFAC
(OA=57.44%)

KBR-RPCA
(OA=61.83%)

NMoG-Tucker
(OA=67.15%)

Figure 7. Real HSI classification example on Indian Pines. The classification results are obtained by
performing SVM on the noisy and the denoised HSIs, and the corresponding OA values are reported
in parentheses.
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Figure 8 shows a denoising example on band 99 in Urban under slight noise. In this example,
the original band is mainly corrupted by several vertical stripes with intensity 0.01∼0.02. To visually
evaluate the denoising performance, we show color maps of the noise components estimated by
different methods, which should highlight the underlying noise with as few image structures as
possible. For better visualization, we also plot the corresponding vertical mean profiles. From these
results, we observe that LRTA fails to recognize the stripes, while the other competing methods
can detect the stripes but simultaneously remove structural information of the original image.
In comparison, our method extracts clearly the stripes with very few image features, indicating
a more accurate signal-noise separation.

Noisy image LRMR MoG-RPCA NMoG-LRMF

LRTA PARAFAC KBR-RPCA NMoG-Tucker
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Figure 8. Real HSI denoising example on band 99 in Urban under slight noise. Top two rows: the noisy
image and color maps of the noise components estimated by different methods (difference between the
noisy image and its denoised version). Results highlighting more noise and fewer image structures
indicate better denoising performance. Bottom two rows: the corresponding vertical mean profiles,
where we mark the locations of stripes by circles in the noisy data.

Figure 9 displays a denoising example on band 206 in Urban under severe noise, including the
noisy/denoised bands and the corresponding horizontal mean profiles. One can see that the original
band is contaminated by a mixture of stripes, deadlines, and other complex noise, leading to rapid
fluctuations in the horizontal mean profile. Regarding the denoising results by different methods,
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LRTA can hardly suppress the noise; LRMR, MoG-RPCA, PARAFAC, and KBR-RPCA still leave some
horizontal stripes, and the corresponding curves show evident fluctuations; NMoG-LRMF removes the
noise and produces a smooth curve, but it also introduces some spectral distortions in certain regions,
such as the red demarcated patch. Comparatively, our method effectively attenuates the noise and
simultaneously reveals the original spatial-spectral information, providing a better trade-off between
noise removal and detail preservation.

Noisy image LRMR MoG-RPCA NMoG-LRMF

LRTA PARAFAC KBR-RPCA NMoG-Tucker

Before denoising After denoising

50 100 150 200 250 300
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Figure 9. Real HSI denoising example on band 206 in Urban under severe noise. Top two rows: the noisy
image and the denoising results by different methods, where show enlargements of two demarcated
patches for better visualization. Bottom two rows: the corresponding horizontal mean profiles.
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4.4. Discussion

In Section 3.3, we have developed adaptive strategies for the selection of hyperparameters
involved in our model. These strategies themselves also introduce additional hyperparameters,
which are fixed as default settings in our experiments. This section discusses the selection of those
hyperparameters and tests their effects on the denoising performance.

The selection of eupper and elower. The hyperparameters eupper and elower are introduced in the
update formula of the threshold s(t)d (25), in order to determine the Tucker rank estimation {R(t)

d }
3
d=1.

In (25), eupper controls the upper bound of the sum of the dropping singular values in each iteration.
In general, a small eupper leads to a slow but stable rank decreasing process; a large eupper makes this
process fast but aggressive, increasing the risk of underestimating the true rank. On the other hand,
elower in (25) controls the lower bound of the threshold s(t)d , which provides a mechanism for avoiding
overestimating the true rank. Roughly speaking, larger values of elower make our algorithm easier to
reduce the rank. Please note that a too large elower tends to underestimate the true rank, e.g., if one sets
elower = 1, then the rank decreasing process cannot stop until the rank reduces to zero.

Table 5 investigates the effects of eupper and elower on the denoising performance of our method.
This test is based on synthetic data denoising, and the original data are with size 50× 50× 50 and
Tucker rank (20, 15, 10). We observe that our method yields rather stable ReErr values with exact
estimations of the true rank, under a wide range of settings of eupper and elower. One exception is the
mixture noise case with eupper = 10−1, where the true rank is underestimated, resulting in an evident
increase in ReErr. Since our method is robust with a reasonable range of eupper and elower, we choose
eupper = 10−2 and elower = 2/3 as their default settings in all experiments.

Table 5. ReErr values and estimated ranks of our method under different settings of eupper and elower.
This test is based on synthetic data denoising, and the original data are with size 50× 50× 50 and
Tucker rank (20, 15, 10). The best results are highlighted in bold.

Gaussian Noise Gaussian + Sparse Noise Mixture Noise
eupper elower ReErr {R(end)

d }3
d=1 ReErr {R(end)

d }3
d=1 ReErr {R(end)

d }3
d=1

1/2 1.45e-02 (20, 15, 10) 1.69e-02 (20, 15, 10) 2.35e-2 (20, 15, 10)
10−3 2/3 1.45e-02 (20, 15, 10) 1.69e-02 (20, 15, 10) 2.35e-2 (20, 15, 10)

3/4 1.45e-02 (20, 15, 10) 1.69e-02 (20, 15, 10) 2.35e-2 (20, 15, 10)

1/2 1.44e-02 (20, 15, 10) 1.68e-02 (20, 15, 10) 2.33e-2 (20, 15, 10)
10−2 2/3 1.44e-02 (20, 15, 10) 1.68e-02 (20, 15, 10) 2.33e-2 (20, 15, 10)

3/4 1.44e-02 (20, 15, 10) 1.68e-02 (20, 15, 10) 2.33e-2 (20, 15, 10)

1/2 1.44e-02 (20, 15, 10) 1.68e-02 (20, 15, 10) 8.06e-2 (19, 15, 10)
10−1 2/3 1.44e-02 (20, 15, 10) 1.68e-02 (20, 15, 10) 8.06e-2 (19, 15, 10)

3/4 1.44e-02 (20, 15, 10) 1.68e-02 (20, 15, 10) 8.06e-2 (19, 15, 10)

The initialization of {Ld}3
d=1. The hyperparameter Ld controls the number of Gaussian

components in the MoG noise prior (2). In Section 3.3, we have developed an adaptive strategy to
reduce Ld from a large starting point to the value matching the noise complexity. However, it remains
a problem to choose an appropriate initialization L(0)

d .

Table 6 studies the effects of {L(0)
d }

3
d=1 on the denoising performance of our method. This test

is based on synthetic data denoising, and the original data are with size 50× 50× 50 and Tucker
rank (10, 10, 10). From these results, we have the following two observations. First, as expected,
the developed selection strategy can find suitable values of {L(end)

d }3
d=1 fitting the noise distribution.

Second, our method performs poorly when {L(0)
d }

3
d=1 is too small to provide sufficient noise fitting

capability, while its performance tends to be stable after each L(0)
d is larger than a reasonable value,

e.g., 8. Therefore, we choose the default setting of {L(0)
d }

3
d=1 as (8, 8, 8) in all experiments, since it is

robust enough to most realistic noise.
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Table 6. ReErr values and estimated numbers of Gaussian components of our method using different
initializations of {Ld}3

d=1. This test is based on synthetic data denoising, and the original data are with
size 50× 50× 50 and Tucker rank (10, 10, 10). The best results are highlighted in bold.

Gaussian Noise Gaussian + Sparse Noise Mixture Noise
{L(0)

d }3
d=1 ReErr {L(end)

d }3
d=1 ReErr {L(end)

d }3
d=1 ReErr {L(end)

d }3
d=1

(1, 1, 1) 9.86e-03 (1, 1, 1) 3.54e-01 (1, 1, 1) 7.11e-01 (1, 1, 1)
(2, 2, 2) 9.86e-03 (1, 1, 1) 1.18e-02 (2, 2, 2) 9.03e-03 (2, 2, 2)
(3, 3, 3) 9.83e-03 (1, 1, 1) 1.19e-02 (2, 3, 2) 4.15e-03 (2, 3, 3)
(4, 4, 4) 9.83e-03 (1, 1, 1) 1.19e-02 (2, 2, 2) 4.94e-03 (3, 3, 3)
(5, 5, 5) 9.82e-03 (1, 1, 1) 1.19e-02 (2, 2, 2) 3.90e-03 (3, 4, 4)
(6, 6, 6) 9.83e-03 (1, 1, 1) 1.19e-02 (3, 2, 2) 3.30e-03 (3, 4, 4)
(8, 8, 8) 9.83e-03 (1, 1, 1) 1.19e-02 (2, 2, 2) 3.37e-03 (3, 5, 4)
(10, 10, 10) 9.82e-03 (1, 1, 1) 1.18e-02 (2, 2, 2) 3.50e-03 (5, 4, 6)
(15, 15, 15) 9.81e-03 (1, 1, 1) 1.18e-02 (3, 2, 2) 3.24e-03 (7, 8, 7)
(20, 20, 20) 9.80e-03 (1, 1, 1) 1.18e-02 (3, 2, 2) 2.97e-03 (7, 8, 8)

5. Conclusions

We have proposed a new remote sensing image denoising method under the Bayesian framework.
To achieve an effective and robust signal-noise separation, we have formulated the denoising problem
as a full Bayesian generative model integrated with a low-Tucker-rank image prior and a non-i.i.d.
MoG noise prior. The proposed model has the advantage of preserving the intrinsic low-rank tensor
structure of remote sensing images, while exhibiting flexible fitting capability to realistic noise. For an
efficient solution to the proposed model, we have designed a variational Bayesian algorithm to infer
all involved variables by closed-form equations, as well as adaptive strategies for the selection of
hyperparameters. Experimental results have shown that the proposed method is highly effective and
superior over the competing methods on synthetic data, MSI, and HSI denoising. Future works include
accelerating the numerical implementation and incorporating more advanced image priors to enhance
the denoising performance, such as nonlocal self-similarity and deep neural networks [51].
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