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Abstract: Discriminating marsh vegetation is critical for the rapid assessment and management
of wetlands. The study area, Honghe National Nature Reserve (HNNR), a typical freshwater
wetland, is located in Northeast China. This study optimized the parameters (mtry and ntrees) of
an object-based random forest (RF) algorithm to improve the applicability of marsh vegetation
classification. Multidimensional datasets were used as the input variables for model training,
then variable selection was performed on the variables to eliminate redundancy, which improved
classification efficiency and overall accuracy. Finally, the performance of a new generation of
Chinese high-spatial-resolution Gaofen-1 (GF-1) and Ziyuan-3 (ZY-3) satellite images for marsh
vegetation classification was evaluated using the improved object-based RF algorithm with accuracy
assessment. The specific conclusions of this study are as follows: (1) Optimized object-based RF
classifications consistently produced more than 70.26% overall accuracy for all scenarios of GF-1 and
ZY-3 at the 95% confidence interval. The performance of ZY-3 imagery applied to marsh vegetation
mapping is lower than that of GF-1 imagery due to the coarse spatial resolution. (2) Parameter
optimization of the object-based RF algorithm effectively improved the stability and classification
accuracy of the algorithm. After parameter adjustment, scenario 3 for GF-1 data had the highest
classification accuracy of 84% (ZY-3 is 74.72%) at the 95% confidence interval. (3) The introduction of
multidimensional datasets improved the overall accuracy of marsh vegetation mapping, but with
many redundant variables. Using three variable selection algorithms to remove redundant variables
from the multidimensional datasets effectively improved the classification efficiency and overall
accuracy. The recursive feature elimination (RFE)-based variable selection algorithm had the best
performance. (4) Optical spectral bands, spectral indices, mean value of green and NIR bands in
textural information, DEM, TWI, compactness, max difference, and shape index are valuable variables
for marsh vegetation mapping. (5) GF-1 and ZY-3 images had higher classification accuracy for forest,
cropland, shrubs, and open water.

Keywords: marsh vegetation mapping; random forest algorithm; parameter optimization;
multidimensional datasets; variable selection; GF-1; ZY-3; Northeast China

1. Introduction

Freshwater wetlands are defined as transitional zones between terrestrial and aquatic systems
that provide multiple service functions such as water storage, flood control, carbon sink, and wildlife
habitats [1,2]. Over the past century, freshwater wetlands have been threatened by severe environmental
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stresses induced by urban expansion, land-use conversion, human population growth, and climate
change [3–5]. Various restoration and protection plans for freshwater wetlands have been authorized
around the world [6]. Accurately delineating the boundaries, distribution, and quantity of marsh
vegetation is an essential first step for wetland management and restoration. In addition, marsh
vegetation is an important component of wetland ecosystems, playing a key role in proliferating in
hydric soil, monitoring wetland water levels, and discriminating wetland areas from other land-cover
types or open water [7].

Marsh vegetation mapping had been mainly conducted by visual interpretation or classification
of optical images based on pixel-based or object-based machine learning algorithms [8–12]. Machine
learning algorithms, such as K-nearest neighbor (KNN), support vector machine (SVM), classification
and regression tree (CART), and random forest (RF), have been utilized to classify wetland vegetation
in recent years because of their flexibility in interpreting complex nonlinear relationships without
considering any statistical assumptions [13–16]. RF has demonstrated robust and accurate performance
for the analysis of remote sensing data in identifying wetland vegetation [17,18]. In addition, studies
have demonstrated that object-based image analysis holds promise as a method for classifying marsh
vegetation with high-spatial-resolution satellite imagery [19–24]. Based on a new generation of
high-resolution Gaofen-1 (GF-1) and Ziyuan-3 (ZY-3) satellite images, an object-based RF algorithm
was constructed in this study. However, due to the complex spatial distribution pattern and spatial
heterogeneity of marsh vegetation associations, it is essential to customize an object-based RF
classification model with tuning parameters for marsh vegetation mapping.

Wetland vegetation classification is one of the most challenging issues in remote sensing science
due to the spectral similarities between vegetation canopies [25,26]. Textural and geometric information
calculated from spectral bands have been reported to improve spectral discrimination and produce
high-precision classification results [27,28]. In this study, the performance of multidimensional datasets
derived from different combinations of spectral bands, spectral indices, textural information, geometric
information, and topographic wetness index (TWI) values in marsh vegetation mapping was assessed
and investigated. However, multidimensional datasets that combine multiple data derived from
spectral bands always contain a lot of irrelevant, redundant, and noisy variables, and variable selection
is considered as an important step in classifying marsh vegetation, which improves the performance
of RF classifiers and decreases complexity by removing redundant information [29,30]. RF-based
recursive feature elimination (RFE) [31], Boruta [32], and Variable Selection Using Random Forests
(VSURF) [33] algorithms were considered to be effective for variable selection. These algorithms can
estimate the importance of the variables and determine a small subset of variables to construct a
well-performing prediction model. However, there has been no comparative analysis of the effects of
the optimal input variables determined by the RFE, Boruta, and VSURF algorithms on the classification
accuracy of marsh vegetation. This paper attempts to customize an object-based RF model suitable
for marsh vegetation classification using multiscale image segmentation, parameter optimization,
and variable selection and explores the differences in classification accuracy of marsh vegetation among
different parameters and input variables.

In this study, the object-based RF algorithm was used to evaluate the performance of GF-1
and ZY-3 data for marsh vegetation mapping in the Honghe National Nature Reserve (HNNR) of
Northeast China. The objectives of this paper were to classify marsh vegetation with a special focus on:
(1) parameter optimization and iterative modeling of the object-based RF algorithm to find the optimal
combination of mtry and ntrees in four classification scenarios, and customization of the most accurate
classifier to realize marsh vegetation mapping; (2) comparison of the performance of objected-based
RF algorithms for mapping marsh vegetation in four classification scenarios of GF-1 and ZY-3 data,
further explore the performance differences between GF-1 and ZY-3 data in the application of marsh
vegetation mapping; and (3) evaluation of the differences in classification accuracy of the optimal
variable combinations selected by the RFE, Boruta, and VSURF algorithms.
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2. Study Area and Data Source

2.1. Study Area

The Sanjiang Plain is an alluvial plain within the Amur River basin, which is located in the
northeastern part of Heilongjiang Province, China. The region has a generally flat topography with
a slope gradient of about 1:5,000–1:10,000, which contains the largest marsh areas. The extensive
wetland of Sanjiang Plain was reclaimed as paddy fields and cropland in the past 50 years. Under this
situation, the HNNR, 218.36 km2 in size and ranging from 133◦37′–133◦45′E, 47◦43′–47◦52′N, was
established to preserve and manage marsh resources (Figure 1). In particular, HNNR is a wetland of
international importance because it is a typical inland freshwater wetland ecosystem in the northern
temperate zone (https://rsis.ramsar.org/ris/1149). Two rivers enter the reserve—the Nongjiang River
at its northern boundary and the Woyalan River through the core zone. The area’s climate is humid
temperate with four distinct seasons, including six months of freezing conditions. The mean annual
temperature is 1.9 ◦C, and annual precipitation is 585 mm. HNNR is a microcosm of wetlands in the
Sanjiang Plain with three common vegetation communities: forest, shrub, and herbaceous vegetation
(Figure 1). The dominant vegetation species of each community are described in Table 1.

Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 27 

 

2. Study Area and Data Source 

2.1. Study Area 

The Sanjiang Plain is an alluvial plain within the Amur River basin, which is located in the 
northeastern part of Heilongjiang Province, China. The region has a generally flat topography with a 
slope gradient of about 1:5,000–1:10,000, which contains the largest marsh areas. The extensive 
wetland of Sanjiang Plain was reclaimed as paddy fields and cropland in the past 50 years. Under 
this situation, the HNNR, 218.36 km2 in size and ranging from 133°37′–133°45′E, 47°43′–47°52′N, was 
established to preserve and manage marsh resources (Figure 1). In particular, HNNR is a wetland of 
international importance because it is a typical inland freshwater wetland ecosystem in the northern 
temperate zone (https://rsis.ramsar.org/ris/1149). Two rivers enter the reserve—the Nongjiang River 
at its northern boundary and the Woyalan River through the core zone. The area’s climate is humid 
temperate with four distinct seasons, including six months of freezing conditions. The mean annual 
temperature is 1.9 °C, and annual precipitation is 585 mm. HNNR is a microcosm of wetlands in the 
Sanjiang Plain with three common vegetation communities: forest, shrub, and herbaceous vegetation 
(Figure 1). The dominant vegetation species of each community are described in Table 1. 

 

Figure 1. Study area (Gaofen-1 (GF-1) false-color image display: bands 4, 3, 2 in red, green, blue (RGB)) 
and vegetation associations. (a) Salix brachypoda; (b) shallow-water plants; (c) Betula platyphylla forest. 

Table 1. Classification types for mapping marsh vegetation in Honghe National Nature Reserve 
(HNNR). 

Classification Type Vegetation Associations Class Codes 

Figure 1. Study area (Gaofen-1 (GF-1) false-color image display: bands 4, 3, 2 in red, green, blue (RGB))
and vegetation associations. (a) Salix brachypoda; (b) shallow-water plants; (c) Betula platyphylla forest.

https://rsis.ramsar.org/ris/1149


Remote Sens. 2020, 12, 1270 4 of 26

Table 1. Classification types for mapping marsh vegetation in Honghe National Nature Reserve (HNNR).

Classification Type Vegetation Associations Class Codes

Forest Quercus mongolica Fisch. ex Ledeb.,
Populus davidiana Dode, Betula platyphylla Sukaczev A

Cropland Zea mays L., Sorghum abyssinicum (Fresen.) Kuntze B
Deep-water herbaceous vegetation Carex pseudocuraica F.Schmidt, Carex lasiocarpa Ehrh. C

Shallow-water herbaceous vegetation Calamagrostis angustifolia Kom., Carex tato Chang D

Shrub Salix brachypoda (Trautv. & C. A. Mey.) Kom.,
Spiraea salicifolia L. E

Open water None F
Paddy field Oryza sativa L. G

2.2. Data Source

2.2.1. Remotely Sensed and Ancillary Data

Remote sensing data was acquired from Chinese GF-1 PMS sensor and ZY-3 MS sensor, which
has four multispectral bands covering blue, green, red, and near-infrared spectra [34,35]. Technical
details of this dataset are described in Table 2. Other datasets were adopted including a 1:10,000
topographic map with 1 m elevation intervals developed by the Chinese National Administration of
Surveying, Mapping and Geoinformation; a 1:25,000 vegetation distribution map produced by field
measurements; and Advanced Land Observing Satellite (ALOS) generated digital elevation model
(DEM) data at 12.5 m spatial resolution (https://search.asf.alaska.edu/#/).

Table 2. Characteristics of GF-1 image.

Sensor Panchromatic
(nm)

Blue
(nm)

Green
(nm)

Red
(nm)

Near IR
(nm)

Spatial
Resolution

Radiometric
Resolution

Acquisition
Time

GF-1 450–900 450–520 520–590 630–690 770–890 2 m (Pan),
8 m (MS) 10 bit 2016.09.21

ZY-3 - 450–520 520–590 630–690 770–890 5.8 m (MS) 10 bit 2016.09.23

2.2.2. Field and Validation Data

The field investigation was conducted in August–October 2015 and May and September 2016.
Field data were collected in 63 sampling plots (1 m × 1 m) that randomly distributed throughout
the study area and located using a Global Positioning System (GPS) with an accuracy of ±5 m.
Each sampling plot is located at the center of a homogeneous area of 10 m × 10 m to avoid uncertainty
caused by insufficient accuracy of GPS device. Sixty-three sampling plots obtained from the field
survey includes all vegetation types except deep-water herbaceous vegetation because this vegetation
type usually grow in inaccessible area. In this study, the training and testing data of deep-water
herbaceous vegetation and the rest of plots of other vegetation types were both derived from the
1:10,000 topographic map and 1:25,000 vegetation map. In addition, all sampling plots were divided
randomly in half for training and testing using the Geostatistical Analyst Toolbox in ArcGIS v.10.2 [36].
The training and testing data are described in Table 3.

Table 3. Training and testing sample size for GF-1 and ZY-3.

Sample Types A B C D E F G Total

GF-1
Training 72 38 39 65 62 77 49 402
Testing 32 46 21 109 86 69 49 412

ZY-3
Training 70 37 46 76 76 61 49 415
Testing 122 47 48 91 118 30 26 482

A: forest; B: cropland; C: deep-water herbaceous vegetation; D: shallow-water herbaceous vegetation; E: shrub;
F: open water; G: paddy field.

https://search.asf.alaska.edu/#/
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2.3. Data Preparation

2.3.1. Data Preprocessing

Orthorectification of GF-1 and ZY-3 images was conducted using the Rational Polynomial
Coefficient (RPC) Orthorectification Using Reference Image tool in ENVI v.5.3 based on 1:10,000
topographic maps with error less than 0.5 pixels, ground control points including four high-precision
GPS actual measurement points, and eight elevation points selected from the 1:10,000 topographic
map [37]. The georeferenced image was processed for radiometric calibration and atmospheric
correction using Fast Line-of-Site Atmospheric Analysis of Spectral Hypercubes (FLAASH), and then
topographically corrected used the ENVI Topographic Correction Extension Tool with ALOS DEM
as input data [38]. In the HNNR, there exist small isolated marsh vegetation patches with complex
patterns. The use of high-spatial-resolution imagery is necessary to capture these patches. Therefore,
the high-resolution panchromatic (2 m) and multispectral bands (8 m) of GF-1 data were fused using
the Gram–Schmidt spectral sharpening (GS) method, so that the original spectral information is
retained, while the image details are higher contrast, which improves the accuracy of marsh vegetation
mapping [39–41].

2.3.2. Calculation of Spectral Indices and Textural Information

When mapping with optical data, some vegetation associations could not be separated due to their
similar spectral response, necessitating the use of additional data. Multispectral bands were taken full
advantage of to calculate spectral indices, as follows: normalized difference vegetation index (NDVI),
ratio vegetation index (RVI), green normalized difference vegetation index (GNDVI), and shadow
water index (SWI) (Table 4). Generally, researchers have found that terrain variables derived from DEM
data are indeed valuable for mapping wetlands [42,43]. TWI is strongly correlated with soil moisture
and can provide indirect information on land cover. Slope and TWI were calculated (Table 4) using
12.5 m ALOS DEM with a vertical resolution of 4–5 m and the Hydrology and Map Algebra toolbox in
ArcGIS [44]. Furthermore, textural features are inherent in an image and contain important information
about the structural arrangement of surfaces and their relationship to the surrounding environment [45].
Textural and geometric information are important data sources for describing spatial patterns and
variations of surface features. Some previous studies demonstrated the usefulness of textural and
geometric measures for wetland mapping [46–48]. In this paper, the gray-level co-occurrence matrix
(GLCM) with window size 9 × 9 [49,50] and 64 grayscale quantization levels was used to generate the
mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, standard deviation,
and correlation features for GF-1 and ZY-3 images (Table 4). Displacement vectors at four directions
(0◦, 45◦, 90◦, 135◦) with a spatial distance of one pixel were used to produce an averaged value for
each textural statistic. Geometric features area, roundness, main direction, rectangular fit, asymmetry,
border index, compactness, max difference, and shape index were calculated from segmented image
objects of GF-1 and ZY-3 images. Textural and geometric measurements were calculated by eCognition
Developer software (v.9.0, Trimble Germany GmbH, Munich, Germany, 2014) [51].

Table 4. Training and testing sample size for GF-1 and ZY-3.

Additional Data Description Reference

NDVI NDVI = (NIR−R)/(NIR + R) [52]
RVI RVI = NIR/R [53]

GNDVI GNDVI = (NIR−Green)/(NIR + Green) [54]
SWI SWI = Blue + Green−NIR [55]

Slope 12.5 m ALOS DEM with a vertical resolution of 4–5 m [56]
TWI TWI = ln(AS

∗/tan(Slope))

Texture measurements
Mean, variance, homogeneity, contrast, dissimilarity,

entropy, second moment, standard deviation, and
correlation for 4 spectral bands of GF-1 and ZY-3 data

[57]
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Table 4. Cont.

Additional Data Description Reference

Geometry
measurements

Area, roundness, main direction, rectangular fit,
asymmetry, border index, compactness, max

difference, and shape index of GF-1 and ZY-3 data
[58]

*As represents the catchment area (flow accumulation) per pixel and can be calculated by digital elevation model
(DEM). NDVI, normalized difference vegetation index; RVI, ratio vegetation index; GNDVI, green normalized
difference vegetation index; SWI, shadow water index; TWI, topographic wetness index.

3. Method

3.1. Multi-“Scales” Segmentation

An appropriate segmentation scale is the basis for obtaining a good classification result.
In this paper, the classical and highly successful multiresolution segmentation algorithm (MRSA) of
eCognition Developer was used to segment the image into objects with relatively uniform properties,
among which the three segmentation parameters of color/shape weight, smoothness/compactness
weight, and scale must be considered. A reported study concluded that objects created with color/shape
weight of 0.7/0.3 and smoothness/compactness weight of 0.5/0.5 were most recognizable as distinct
marsh vegetation patches, and the most appropriate scale parameter for identifying objects consistent
with vegetation patches varied from 50 to 300 [59]. Therefore, the segmentation parameters of
color/shape weight and smoothness/compactness weight were 0.7/0.3 and 0.5/0.5, respectively, in this
study. In order to select an appropriate scale parameter, values of 200, 150, 100, 75, 50, 30, and 25
were qualitatively assessed for their ability to identify vegetation categories. A tool for estimating the
optimum scale parameters in image segmentation [48] was used to determine the scale parameters of
GF-1 and ZY-3 images segmentation. Image objects produced by the smallest scale parameter were
small enough to sufficiently delineate fine-scale features of interest within the study area, such as
isolated Betula platyphylla. Two additional and coarser image segmentation scales were included in the
object-based classification to depict larger objects of interest (e.g., cropland and paddy field). Figure 2
and Table 5 show the detailed segmentation parameters of GF-1 and ZY-3 images and the variables of
the four classification scenarios.

Table 5. Segmentation scales and input layers for each scenario.

Multiresolution
Segmentation

Sensor Large Scale Small Scale

GF-1 150 50

ZY-3 150 30

Scenario Sensor Number of
Variables Candidate Image Layers

1 GF-1 and ZY-3 24 Four spectral bands, NDVI, RVI, GNDVI, SWI

2 GF-1 and ZY-3 26 Four spectral bands, NDVI, RVI, GNDVI, SWI,
slope, TWI

3 GF-1 and ZY-3 35 Four spectral bands, NDVI, RVI, GNDVI, SWI,
slope, TWI; nine geometric data layers

4 GF-1 and ZY-3 131
Four spectral bands, NDVI, RVI, GNDVI, SWI,

slope, TWI; nine geometric data layers; 96
textural data layers
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Figure 2. Segmentation base on GF-1 and ZY-3 false-color image display: bands 4, 3, 2 in red, green, blue
(RGB) using different scale parameters with color/shape weighting (0.7/0.3) and smoothness/compactness
weighting (0.5/0.5). Large and small values are shown in Table 5.

3.2. Object-Based RF Model Sevelopment and Classification

RF is a prediction algorithm based on multiple decision trees that can be used in both classification
and regression problems [60]. It is especially suitable for processing multidimensional datasets, since it
has strong generalization ability and does not easily fall into overfitting [61]. The RF algorithm can
estimate the importance of variables by randomly permuting the value of out-of-bag samples for
a certain variable; out-of-bag sample permutation is a measure of the importance of the variable,
providing an indication of how an input variable will influence overall accuracy [62,63]. A 10-fold
cross-validation procedure is used to evaluate the model where the training data is randomly partitioned
into different subsamples of equal size. This paper developed four classification scenarios (Table 5)
using the RF algorithm as implemented by the randomForest package [64] in R statistical software [65].
Scenario 1 used only the GF-1 and ZY-3 multispectral data and spectral indices. Scenario 2 used a
combination of multispectral data, spectral indices, slope, and TWI. Scenario 3 used the combination
of multispectral data, spectral indices, slope, TWI, and geometric information. Scenario 4 used all
variable features, integrating multispectral data, spectral indices, slope, TWI, geometric information,
and textural information. This paper customizes an optimal classifier for each scenario using parameter
optimization and variable selection.
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3.2.1. Parameter Optimization

In order to create an RF-based classifier model suitable for marsh vegetation mapping, the RF
classifiers for each scenario were trained with different combinations of the number of split variables
(mtry) and the maximum number of trees (ntrees) using the sample data. In this study, the range of
mtry for each classification scenario was different, which was determined by the square root of the
total input variables. The range of mtry in scenarios 1 and 2 was 3–7. The range of mtry in scenario
3 was 4–8. The range of mtry in scenario 4 was 9–13. The range of ntrees was 0–2000 with a step
size of 50. The object-based RF classifier for each scenario was iteratively trained 15 times with the
different combinations of mtry and ntrees to find the optimal classification model with the highest
overall accuracy. The optimal classification model determined the final combinations of mtry and ntrees.

3.2.2. Variable Selection Algorithms

Multidimensional datasets have advantages in wetland vegetation mapping, but irrelevant and
redundant variables can decrease the accuracy of the classification model. Feature selection has the
advantages of improving classifier performance, increasing computational efficiency, and building
better generalization models. In this study, RFE, Boruta, and VSURF algorithms were utilized to rank
and select the most relevant variables for inclusion in a classification scenario.

(1) RFE Algorithm

RFE offers a rigorous way to determine the important variables before feeding them into a
machine-learning algorithm. RFE is a feature selection method that fits a model and removes the
weakest variables [66]. The main steps of the RFE algorithm for variable selection are as follows:

i. Train the RF model on the training set using all features.
ii. Calculate model performance.
iii. Rank feature importance.
iv. for each subset size Si, i = 1 . . . S do

i. Keep the Si most important features.
ii. Preprocess the data.
iii. Train the model on the training set using Si predictors.
iv. Calculate model performance.
v. Recalculate the rankings for each predictor.

v. end
vi. Calculate the performance profile over the Si.
vii. Determine the appropriate number of predictors.
viii. Use the model corresponding to the optimal Si.

(2) Boruta Algorithm

Boruta is a feature ranking and selection algorithm based on random forest algorithm.
The advantage of the Boruta algorithm is that it clearly decides if a variable is important or not
and helps to select variables that are statistically significant for classification because it takes into
account the fluctuations in mean accuracy loss of trees in the forest [67]. The main steps of Boruta-based
variable selection are as follows:

i. Extend the information system by adding copies of all features (at least five shadow features).
ii. Remove their relevance to the response by adding features.
iii. Run RF classification on the expanded feature set and calculate z-scores.
iv. Find the maximum z-score among shadow features (MZSF) and then assign a hit for each

feature that scored better than MZSF.
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v. For each feature with undetermined importance, perform a two-sided test of equality with
the MZSF.

vi. Features that are significantly less important than MZSF are called “not important”; permanently
remove them from the feature set.

vii. Features that are significantly more important than MZSF are called “important.”
viii. Remove all shadow attributes.
ix. Repeat the procedure until you have specified importance for all attributes.

(3) VSURF Algorithm

VSURF is an R package for variable selection using RF. The VSURF algorithm returns subsets of
variables for classification. The first one includes some redundancy related to interpretation, and the
second one is smaller and tries to avoid redundancy focusing on the prediction objective [68]. The main
steps of VSURF-based variable selection are as follows:

i. Preliminary elimination and ranking

i. Sort features by feature importance in descending order (99 RF runs).
ii. Eliminate features of lower importance (let m denote the number of remaining features).

ii. Variable selection

i. For interpretation: construct a nested set of RF models involving the k first features,
for k = 1 to m and select the features involved in the model that cause the smallest
out-of-bag error. This leads to the consideration of m’ features.

ii. For prediction: starting with the ordered features reserved for interpretation, construct
an incremental sequence of RF models by invoking and testing the features in a stepwise
way. Select the features of the last model.

3.2.3. Accuracy Assessment

Confusion matrix, overall accuracy, standard error, and class-specific user and producer accuracy
for each classification scenario of marsh vegetation classification were reported at the 95% confidence
interval. A confusion matrix was used to represent the comparison array between the number of
objects in a vegetation class and the number of pixels actually verified as being in that class [69].
Overall accuracy, kappa coefficient, and user and producer accuracy were calculated from the confusion
matrix. The stability of the overall accuracy of each classification scenario was assessed using standard
error [70]. In order to quantitatively assess the significant difference in the effect of different input
variable combinations on the classification accuracy of wetland vegetation, McNemar’s chi-square test
was used to assess the statistical significance of the differences between classification scenarios [71–73].
The methodological framework developed for this study is shown in Figure 3.
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of GF-1 and ZY-3 data derived from the training sample are displayed in Figure 4. When the values 
of ntrees were in the 0–1000 range, the learning curve for each scenario presented a fluctuating 
increase. The overall accuracy of the classification model was unstable. The overall accuracy of each 
classification scenario with different mtry values was stable when ntrees was 1500. 
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4. Results

4.1. Parameter Optimization

The object-based RF classifier with the optimal combinations of mtry and ntrees was determined
by tuning parameters and training iterations. The learning curves for the four classification scenarios
of GF-1 and ZY-3 data derived from the training sample are displayed in Figure 4. When the values of
ntrees were in the 0–1000 range, the learning curve for each scenario presented a fluctuating increase.
The overall accuracy of the classification model was unstable. The overall accuracy of each classification
scenario with different mtry values was stable when ntrees was 1500.
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The parameter optimization results of the four classification scenarios of GF-1 data (Figure 4)
show that the optimal combination of mtry and ntrees of scenario 1 was six and 1450, and the overall
accuracy of the RF model was 81.87% at the 95% confidence interval. The optimal combination of mtry
and ntrees of scenario 2 is six and 1400, and the overall accuracy of the RF model was 83.47% at the 95%
confidence interval. The optimal combination of mtry and ntrees of scenario 3 was five and 1400, and
the overall accuracy of the RF model was 84% at the 95% confidence interval. The optimal combination
of mtry and ntrees of scenario 4 was 10 and 1450, and the overall accuracy of the RF classifier was 83.73%
at the 95% confidence interval. Scenario 2 improved 1.60% in overall accuracy compared to scenario 1,
when the slope and TWI data layers were added to the multidimensional datasets. The synergistic
use of multispectral data, spectral indices, slope, TWI, and geometric information improved overall
accuracy to 84%, an increase of 2.13% compared to using just multispectral data and spectral indices.
However, when scenario 4 used all available features from the combination of multispectral data,
spectral indices, slope, TWI, geometric information, and textural data layers, the overall accuracy
decreased to 83.73% (Table 6). The variation range of overall accuracy for the four classification
scenarios indicated that irrelevant and redundant variables derived from the multidimensional datasets
reduced the performance of the object-based RF classifier in marsh vegetation mapping. This conclusion
is also supported by the parameter optimization results of the four classification scenarios of ZY-3 data
(Table 6). The overall accuracy of the RF model for four scenarios of ZY-3 data increased from 70.26%
in scenario 1 to 74.72% in scenario 3. After adding textural data layers, the overall accuracy decreased
to 73.98%.
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with different combinations of mtry and ntrees.

Table 6. The optimal parameters of object-based RF model for four classification scenarios of GF-1 and
ZY-3 data.

Scenario Sensor mtry ntrees Overall Accuracy(%) Kappa(%)

1
GF-1 6 1450 81.87 78.36
ZY-3 4 1400 70.26 64.51

2
GF-1 6 1550 83.47 80.27
ZY-3 5 1250 73.61 68.43

3
GF-1 5 1400 84.00 80.90
ZY-3 7 1550 74.72 69.77

4
GF-1 10 1500 83.73 80.60
ZY-3 13 1350 73.98 68.85



Remote Sens. 2020, 12, 1270 12 of 26

4.2. Variable Selection

In order to explore the reason for the overall reduction of accuracy in classification scenario 4 of
GF-1 and ZY-3 data, the RFE, Boruta, and VSURF algorithms were utilized to rank the importance of
variables and remove irrelevant and redundant variables.

4.2.1. RFE-based Variable Selection Result

RFE-based variable selection for scenario 4 of GF-1 and ZY-3 data indicated that as the number
of input variables increased, the overall accuracy of RF classifier first gradually rose until it reached
86.13% (ZY-3 is 80.30%), the highest overall accuracy, with a standard deviation of 3.43% (ZY-3 is 4.72%)
at the 95% confidence interval when using 35 input variables (ZY-3 is 22). Then the overall accuracy
decreased to 83.73% (ZY-3 is 73.98%), the lowest overall accuracy, with a standard deviation of 3.04%
(ZY-3 is 4.02%) at the 95% confidence interval using all 131 input variables (Figure 5 and Table 7).
Therefore, these 35 (ZY-3 is 22) input data were the most important variables and were selected as the
final input variables after 10 cross-verifications. These 35 variables (ZY-3 is 22 variables) are mostly
comprised of spectral bands, spectral indices, and textural information.

Spectral bands and spectral indices have the highest importance among all input variables. DEM,
TWI, and slope were also essential input features for wetland vegetation mapping. In addition, the final
input variables also included geometric data layers (compactness, area of segmented object, and shape
index) and 19 textural data layers (Figure 6). After the RFE-based variable selection for scenario 4 of
GF-1 data, the final input variables improved overall accuracy to 86.13%, an increase of 2.40% relative
to using all 131 variables, and scenario 4 of ZY-3 data improved overall accuracy to 80.30%, an increase
of 6.32% relative to using all 131 variables
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Table 7. Overall accuracy of trained RF model using the RFE-based variable selection. OA: Overall
accuracy; SD: Standard deviation.

Sensor Order of Variables OA (%) SD(OA) (%) Kappa (%) SD(Kappa) (%)

GF-1

2 65.11 8.77 58.65 7.80
10 77.81 4.40 73.70 5.25
20 83.42 3.15 80.32 3.39
30 84.70 3.22 81.86 3.41
35 86.13 3.43 83.68 3.49
40 86.03 3.83 83.41 3.76
50 85.99 3.00 83.37 3.99
60 85.74 3.38 83.08 3.41

131 83.73 3.04 83.54 3.02

ZY-3

2 64.15 9.04 59.13 8.64
10 73.47 5.14 68.39 5.79
20 79.11 4.97 75.04 4.17
22 80.30 4.72 76.44 4.06
30 79.59 4.86 75.98 4.25
40 80.07 4.45 76.88 4.33
50 80.06 4.45 76.74 4.36
60 78.95 4.41 74.83 4.25

131 73.98 4.02 68.85 4.27

4.2.2. Boruta-based Variable Selection Result

Boruta-based variable selection for scenario 4 of GF-1 and ZY-3 data found that as the number
of input variables increased, the overall accuracy of RF classifier first kept increasing until it reached
85.07% (ZY-3 is 76.58%), the highest overall accuracy, with a standard deviation of 3.43% (ZY-3 is
4.31%) at the 95% confidence interval when using 76 input variables. However, the overall accuracy
fell to 83.73% (ZY-3 is 73.98%), the lowest overall accuracy with a standard deviation of 3.32% (ZY-3 is
4.02%) at the 95% confidence interval when using all 131 variables (Figure 7 and Table 8). Therefore,
76 variables (ZY-3 is 62 variables) in scenario 4 of GF-1 data were confirmed and selected as the final
input variables (Figure 8), and 53 variables (ZY-3 is 69 variables) were rejected after the RF model
implemented training iterations 99 times.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 27 
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The Boruta algorithm provided a z-score to measure the importance of input variables. In this
paper, variables with an average z-score greater than 3.09 were confirmed and selected as important
variables (Figure 8). Analysis of the final input variables found that NIR, red, and green bands,
GNDVI and NDVI, textural mean, TWI, and slope layers all had higher z-scores than other variables,
indicating that those input variables were more valuable for classifying marsh vegetation. This is
consistent with the findings of RFE-based variable selection. Compared with the RFE algorithm, the
Boruta algorithm selected more input variables, especially textural information, while the overall
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accuracy of the object-based RF classifier for scenario 4 using the variables derived from Boruta-based
variable selection was lower than RFE-based variable selection. The results of GF-1 and ZY-3 data using
Boruta-based variable selection indicated that the RFE algorithm had better performance than the Boruta
algorithm in removing redundancy and reducing the dimensionality of multidimensional datasets.
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Table 8. Overall accuracy of trained RF model using Boruta-based variable selection. OA: overall
accuracy; SD: standard deviation.

Sensor Order of Variables OA (%) SD (OA) (%) Kappa (%) SD (Kappa) (%)

GF-1

2 65.11 6.48 59.38 7.79
10 77.64 4.75 72.84 4.24
20 83.50 3.16 80.50 3.70
30 84.50 3.68 79.73 4.33
40 84.51 3.92 80.88 4.65
50 84.93 3.94 81.47 4.67
60 84.58 4.07 81.58 4.79
76 85.07 3.58 81.89 3.22
80 84.84 3.17 80.78 3.76

131 83.73 3.32 79.28 3.95

ZY-3

2 60.57 8.38 56.54 8.14
10 68.69 7.25 64.47 7.22
20 73.73 5.84 69.52 6.06
30 75.40 4.68 71.44 5.23
40 76.44 4.43 72.05 4.98
50 76.30 4.35 72.11 4.57
62 76.58 4.31 72.14 4.48
70 76.45 4.22 73.25 4.39
80 76.04 4.15 72.94 4.37

131 73.98 4.02 68.85 4.27
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4.2.3. VSURF-based Variable Selection Result

After 99 RF model iterations, VSURF-based variable selection for scenario 4 of GF-1 and ZY-3 data
generated two subsets respectively. For scenario 4 of GF-1 data, the first subset retained 60 variables,
including some redundant variables related to interpretation, and the second subset retained only
43 variables. For scenario 4 of ZY-3 data, the first subset retained 45 variables, including some redundant
variables related to interpretation, and the second subset retained only 33 variables, which indicated
that the second subset can better solve the problem of variable redundancy in marsh vegetation
classification. As the number of input variables increased, the overall accuracy trend of the RF classifier
for ZY-3 data is similar to that of GF-1 data (Figure 9). The overall accuracy of RF classifier for GF-1
data first increased to 85.73% (ZY-3 is 77.70%), the highest overall accuracy, with a standard deviation
of 4.63% (ZY-3 is 4.68%) at the 95% confidence interval when using the second subset. Then the overall
accuracy fell to 83.73% (ZY-3 is 73.98%), the lowest overall accuracy, with a standard deviation of 5.03%
(ZY-3 is 4.02%) at the 95% confidence interval when all variables were used (Figure 9 and Table 9). It is
worth mentioning that the overall accuracy was 84.83% (ZY-3 is 76.94%) for the first subset.Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 27 
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Table 9. Overall accuracy of trained RF model using VSURF-based variable selection. OA: overall
accuracy; SD: standard deviation.

Sensor Order of Variables OA (%) SD (OA) (%) Kappa (%) SD (Kappa) (%)

GF-1

2 64.63 6.41 58.00 6.29
10 78.54 4.57 73.90 5.37
20 83.51 5.17 79.54 5.58
30 85.03 4.93 82.47 4.07
40 85.21 3.13 83.10 3.11
43 85.60 3.63 83.31 3.54
50 85.41 3.99 83.06 3.96
60 84.80 3.51 82.37 3.58
70 84.25 3.48 82.68 3.52

131 83.73 3.03 81.49 3.01

ZY-3

2 61.54 7.75 53.96 8.37
10 69.25 6.51 64.81 7.54
20 74.32 5.48 69.87 6.34
30 76.87 4.97 72.32 5.11
33 77.70 4.68 73.25 4.69
40 77.21 4.52 73.11 4.36
45 76.89 4.28 72.84 4.23
50 76.32 4.31 71.97 4.15
60 76.11 4.08 71.54 4.18

131 73.98 4.02 68.85 4.27
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The input variables and their importance scores calculated by VSURF-based variable selection are
shown in Figure 10. It can be seen that spectral bands and spectral indices were ranked at the top.
DEM and TWI also performed well. In nine geometric data layers, only compactness, shape index,
and max difference entered the second subset. The remaining variables were textural data layers.
After the VSURF-based variable selection for scenario 4, the overall accuracy of classification was
85.60% (ZY-3 is 77.70%), and the overall accuracy of classification was improved 1.87% (ZY-3 is 3.72%);
while performing data dimensionality reduction, the performance of VSURF was 0.53% (ZY-3 is 2.60%)
lower than RFE-based variable selection, but 1.12% higher than Boruta-based variable selection.
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The results derived from three variable selection algorithms in scenario 4 commonly demonstrated
that blue red, green, and NIR bands, NDVI, GNDVI, RVI, and SWI were more important for RF-based
wetland vegetation mapping, followed by DEM and TWI. There were more redundant variables
in geometric and textural information (Figure A1). Among the three variable selection algorithms,
the RFE-based algorithm performed best, followed by VSURF-based, and the performance of the
Boruta-based algorithm in removing redundancy was inferior to the other two.

4.3. Visual Comparison and Accuracy Assessment of Classification Results

All classification scenarios of GF-1 and ZY-3 data provided an accurate visual depiction of
land-cover types in the study area (Figure 11). According to the visualization results of GF-1 data and
ZY-3 data, paddy field, shallow-water herbaceous vegetation, deep-water herbaceous vegetation, and
shrub are easily to be confused because of poor spectral separability, which is particularly obvious in
the ZY-3 data. GF-1 data can reduce pixel mixing to a certain extent due to its higher spatial resolution,
which increases classification accuracy. By comparing the different classification scenarios of GF-1 and
ZY-3 data, it is found that the classification result of scenario 4 (RFE) is more consistent with the actual
vegetation distribution.

Accuracy assessment was performed for each classification scenario with the testing data.
The overall classification accuracies for scenario 1, scenario 3, RFE-based, Boruta-based and
VSURF-based scenario 4 of GF-1 and ZY-3 data are shown in Table 10. The classification results
using GF-1 data were better than using ZY-3 data for all scenarios. The RFE-based RF algorithm
using GF-1 data or ZY-3 data both achieved the highest overall classification accuracy. In the
classification scenarios derived from GF-1 data, scenario 1 achieved the lowest overall accuracy
(81.87%) with a standard error of 3.97% at the 95% confidence interval; Comparison of classification
results derived from three variable selection algorithms, the RFE-based RF algorithms performed
better than Boruta-based (85.07%)and VSURF-based (85.60%)algorithm. In the classification scenarios
derived from ZY-3 data, scenario 1 achieved the lowest overall accuracy (70.26%) with a standard error
of 4.96% at the 95% confidence interval; Comparison of classification results derived from three variable
selection algorithms, the RFE-based RF algorithms performed better than Boruta-based (76.58%)and
VSURF-based (77.70%) algorithm.
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E: paddy field; F: shrub; G: open water.

Table 10. Accuracy assessment of RF models for different classification scenarios using testing data.

Sensor Scenario Estimate (%) Standard Error (%) 95% Confidence Intervals (%)

GF-1

1
Overall 81.87 3.97 77.59 85.63
Kappa 78.36 3.60 74.90 82.78

3
Overall 84.00 3.32 79.89 87.56
Kappa 80.90 3.83 76.54 84.59

4(RFE) Overall 86.13 3.43 79.60 87.32
Kappa 83.68 3.49 76.67 83.57

4(Boruta) Overall 85.07 3.58 79.60 87.32
Kappa 81.89 3.22 76.67 83.57

4(VSURF) Overall 85.60 3.63 79.60 87.32
Kappa 83.31 3.54 76.67 83.57

ZY-3

1
Overall 70.26 4.96 67.54 73.18
Kappa 64.51 4.24 61.78 66.79

3
Overall 74.42 4.65 71.62 77.14
Kappa 69.77 4.37 66.80 72.55

4(RFE) Overall 80.30 4.72 77.43 83.25
Kappa 76.44 4.06 74.37 78.89

4(Boruta) Overall 76.58 4.85 73.06 89.51
Kappa 71.95 4.21 68.67 75.57

4(VSURF) Overall 77.70 4.77 74.24 80.53
Kappa 73.24 4.16 70.12 76.57

Detailed confusion matrix, user’s accuracy, and producer’s accuracy were summarized in Table 11.
In the four classification scenarios without variable selection based on GF-1 data, forest achieved the
highest user’s accuracy (higher than 94.3%). Open water, cropland, and shrub all achieved over 83.1%
user’s accuracy. Paddy field had the lowest user’s accuracy (below 62.5%) for all vegetation classes.
Variable selection for scenario 4 of GF-1 data improved the classification accuracy of paddy field and
achieved over 66.7% user’s accuracy. Comparison of three variable selection algorithms, scenario 4
based on RFE algorithm achieved the highest user’s accuracy (76.2%) for paddy field. Shallow-water
herbaceous vegetation produced the lowest user’s accuracy because of easily confusion with paddy
field. In addition, in all classification scenarios without variable selection based on ZY-3 data, forest
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and open water achieved highest classification accuracy for all vegetation classes, with more than 78.9%
user’s accuracy. Cropland and shrub produced over 66.7% user’s accuracy. Paddy field achieved below
62.5% user’s accuracy, which are similar to the classification accuracy using GF-1 data. It is worth
mentioning that scenario 4 of ZY-3 data based on the RFE algorithm for variable selection obviously
improved classification accuracy of shallow-water herbaceous vegetation and paddy field. However,
the classification accuracy of each vegetation class except for shallow-water herbaceous vegetation and
paddy field using ZY-3 data is lower than that of using GF-1 data due to the coarse spatial resolution of
ZY-3 data.

Table 11. Confusion matrix and associated classification accuracies based on testing data. A: forest;
B: cropland; C: deep-water herbaceous vegetation; D: shallow-water herbaceous vegetation; E: shrub;
F: open water; G: paddy field. T, total sample; P, producer accuracy (%); U, user accuracy (%); CI, 95%
confidence interval (%).

A B C D E F G T U CI

Scenario 1
GF-1

A 82 0 0 0 3 0 0 85 96.5 93.2 98.8
B 0 34 0 0 0 0 0 34 100.0 100.0 100.0
C 0 0 30 3 4 3 1 41 73.2 69.9 76.8
D 0 0 2 41 0 0 22 65 63.1 60.4 68.0
E 1 8 3 2 69 0 0 83 83.1 80.6 86.3
F 0 0 2 0 1 35 0 38 92.1 88.3 95.8
G 0 0 0 13 0 0 16 29 55.1 53.0 58.8
T 83 42 37 59 77 38 39
P 98.8 81.0 81.1 69.5 89.6 92.1 41.0

CI
95.1 77.8 77.9 66.4 84.8 87.7 38.5

100.0 84.1 85.1 72.5 93.6 96.9 44.2

Scenario 3
GF-1

A 82 0 0 0 4 0 0 86 95.3 93.8 98.6
B 0 37 0 3 1 1 0 42 88.1 85.8 92.6
C 0 1 34 0 0 5 2 42 81.0 77.8 84.5
D 0 0 1 45 1 1 22 70 64.3 60.7 67.4
E 1 4 1 2 71 0 0 79 89.9 86.9 93.3
F 0 0 1 0 0 31 0 32 96.9 93.2 98.9
G 0 0 0 9 0 0 15 24 62.5 59.7 65.4
T 83 42 37 59 77 38 39
P 98.8 88.1 91.9 71.2 93.5 78.9 41.0

CI
94.0 85.1 87.8 67.3 88.9 75.4 38.4

100.0 93.2 94.9 74.6 97.4 81.8 44.6

Scenario 4
(RFE)
GF-1

A 83 0 0 0 1 0 0 84 98.8 96.0 100.0
B 0 36 1 1 0 0 0 38 94.7 91.6 97.1
C 0 0 31 1 4 1 1 38 81.6 77.7 84.0
D 0 2 0 51 3 0 22 78 65.4 62.7 68.4
E 0 4 0 1 69 0 0 74 93.2 90.1 96.7
F 0 0 5 0 0 37 0 42 88.1 84.6 91.2
G 0 0 0 5 0 0 16 21 76.2 73.2 80.0
T 83 42 37 59 77 38 39
P 100.0 88.1 83.8 86.4 89.6 97.4 41.0

CI
100.0 88.4 80.4 83.3 86.9 94.7 38.1
100.0 97.1 87.0 89.1 92.6 99.9 44.4

Scenario 1
ZY-3

A 55 0 0 0 11 1 0 67 82.1 78.5 85.3
B 0 19 0 2 4 0 0 25 76.0 72.6 79.5
C 0 0 20 6 2 5 2 35 57.1 54.3 60.4
D 0 0 3 22 1 0 8 34 64.7 61.7 67.9
E 3 5 2 2 38 6 1 57 66.7 62.8 70.1
F 0 0 3 0 1 15 0 19 78.9 75.3 82.2
G 0 1 0 10 1 0 20 32 62.5 59.3 65.8
T 58 25 28 42 58 27 31
P 94.8 76.0 71.4 52.4 65.5 55.6 64.5

CI
91.5 72.6 68.1 48.6 62.4 52.3 61.7
97.4 79.7 74.9 56.3 68.9 58.4 67.8
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Table 11. Cont.

A B C D E F G T U CI

Scenario 3ZY-3

A 56 0 0 0 3 1 0 60 93.3 91.0 96.2
B 0 19 0 0 1 0 0 20 95.0 91.8 98.3
C 0 0 22 4 2 5 0 33 66.7 63.5 70.0
D 0 0 0 24 2 0 20 46 52.2 49.1 55.4
E 2 6 2 1 50 1 1 63 79.4 76.3 82.8
F 0 0 4 0 0 20 0 24 83.3 80.5 86.4
G 0 0 0 13 0 0 10 23 43.5 40.2 47.1
T 58 25 28 42 58 27 31
P 96.6 76.0 78.6 57.1 86.2 74.1 32.3

CI
93.2 72.3 75.6 54.0 82.9 71.5 29.1

99.4 78.9 81.2 60.8 89.6 77.7 35.4

Scenario 4
(RFE)
ZY-3

A 58 1 0 0 4 1 0 64 90.6 87.4 93.7
B 0 19 0 2 0 0 0 21 90.5 87.5 93.2
C 0 0 20 3 1 5 1 30 66.7 63.2 70.3
D 0 2 0 30 1 0 12 45 66.7 62.4 70.6
E 0 3 1 2 52 1 1 60 86.7 83.3 90.0
F 0 0 6 1 0 20 0 27 74.1 71.5 77.7
G 0 0 1 4 0 0 17 22 77.3 74.1 80.4
T 58 25 28 42 58 27 31
P 100.0 76.0 71.4 71.4 89.7 74.1 54.8

CI
100.0 73.1 68.1 68.5 86.8 70.9 51.5
100.0 79.4 74.3 71.6 92.4 77.0 57.9

McNemar’s chi-square test (Table 12) revealed that there are significant differences between
classification scenarios 1, 3, and 4 of GF-1 and ZY-3 data at the 95% confidence level. When comparing
classification results derived from GF-1 data, there were statistically significant differences between
scenario 1 and other three classification scenarios with the except of scenario 4 (Boruta). There are also
significant differences between scenario 3 and scenario 4 (RFE). When comparing classification results
derived from ZY-3 data, there were statistically significant differences between scenario 1 and the
other four classification scenarios. Meanwhile, there were statistically significant differences between
scenario 3 and scenario 4 based on three variable selection algorithms. For scenario 4 of GF-1 and ZY-3
data, the difference between RFE-based and Boruta-based classifications is statistically significant.

Table 12. McNemar’s statistic comparing the classification of each scenario.

Sensor Comparisons Scenario 1 Scenario 3 Scenario 4
(RFE)

Scenario 4
(Boruta)

Scenario 4
(VSURF)

GF-1

Scenario 1 – 2.00 2.67 1.42 3.15
Scenario 3 – 2.91 1.14 1.80

Scenario 4 (RFE) – 2.23 0.25
Scenario 4 (Boruta) – 0.06
Scenario 4 (VSURF) –

ZY-3

Scenario 1 – 3.52 8.25 4.58 5.27
Scenario 3 – 5.53 3.41 4.19

Scenario 4 (RFE) – 3.32 1.87
Scenario 4 (Boruta) – 1.69
Scenario 4 (VSURF) –

Differences are significant at the 95% confidence level (McNemar’s test |z| > 1.96) [62].

5. Discussion

Previous studies reported that the default number of mtry in the RF algorithm is the square of the
total number of input variables, and the default number of ntrees is 500 [74,75]. In this study, if the
default parameters (mtry, ntrees) were used, the parameter settings for the four classification scenarios
of GF-1 data were (5, 500), (5, 500), (6, 500), and (11, 500). However, after parameter optimization of the
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RF algorithm, the optimal parameters after 15 iterations for the four classification scenarios of GF-1
data were (6, 1450), (6, 1550), (5, 1400), and (10, 1450). Although the RF algorithm used the default
parameters for HNNR marsh vegetation identification with high overall accuracy, it is extremely
unstable and unrepresentative. Compared with the default parameters, the overall accuracy of optimal
parameters was more stable, which meets the needs of this study. The results of parameter optimization
for the four classification scenarios of ZY-3 data also support this conclusion, which indicated that the
default parameters of the RF algorithm are not applicable to HNNR marsh vegetation classification
because of its poor stability [76,77].

In addition, previous studies reported that fusing multidimensional datasets for classification
of land-use types could improve classification accuracy [78]. In this study, scenario 1 (24 input
variables), scenario 2 (26 input variables), and scenario 3 (35 input variables) of GF-1 and ZY-3 data
with increased input variables had higher classification accuracy, but the classification accuracy for
scenario 4 (131 input variables) of GF-1 data decreased by 0.27% (ZY-3 is 0.74%) compared to scenario
3 (35 input variables). This result indicated that the texture information contains a lot of redundant
variables, which reduces the calculation efficiency and overall accuracy of classification. Therefore, it
is important to reduce the dimensionality of large multidimensional datasets, eliminate redundant
variables and retain effective variables [79,80]. This study performed three RF-based variable selection
algorithms for scenario 4 of GF-1 and ZY-3 data to obtain optimum and stable classification [81,82].
Compared with scenario 4 with an initial 131 input layers, the RFE algorithm for GF-1 data only selected
35 (ZY-3 is 22) variables to develop the classification model, and achieved the highest overall accuracy
is 86.13% (ZY-3 is 80.30%) with 3.43% (ZY-3 is 4.02%) standard error at the 95% confidence interval.
The VSURF algorithm for GF-1 data selected 43 (ZY-3 is 33) variables to develop the classification
model and achieved 85.60% (ZY-3 is 77.70%) overall accuracy with 3.63% (ZY-3 is 4.68%) standard
error at the 95% confidence interval. The Boruta algorithm for GF-1 data had the worst effect in
eliminating redundant variables; 76 (ZY-3 is 62) variables were selected to develop the classification
model, and overall accuracy was 86.13% (ZY-3 is 76.58%) with 3.58% (ZY-3 is 4.31%) standard error at
the 95% confidence interval. Among the three variable selection algorithms for GF-1 and ZY-3 data, the
RFE algorithm had the best dimensionality reduction performance, followed by the VSURF algorithm,
and the Boruta algorithm had the worst performance. The results show that dimensionality reduction
of high-dimensional variables can improve the classification accuracy while improving the efficiency
of the classifier [83].

The three variable selection algorithms based on RF algorithm could rank the importance of input
variables of scenario 4, which is important to further exploration of the different variables on the
accuracy of swamp wetland vegetation identification [84]. The RFE, Boruta, and VSURF algorithms
for GF-1 and ZY-3 data found that four optical spectral bands, four spectral indices, GLCM_Mean_2
(mean value of green band in textural information), GLCM_Mean_4 (mean value of NIR band in
textural information), DEM and TWI were more useful for discriminating marsh vegetation in HNNR.
DEM and TWI are highly correlated with soil moisture content and surface water pooling and has
been demonstrated to provide good measurement of wetland location and boundaries [85]. DEM and
TWI as important input variables in the classification model, improved the ability to discriminate
shallow-water and deep-water herbaceous vegetation. In addition, compactness, max difference, and
shape index in geometric information also contribute to the preparation of swamps. These conclusions
demonstrate that when using the RF model for marsh vegetation classification with remote sensing
data, parameter optimization and variable selection should be conducted to improve classification
diagnostics and performance.

Applying high-resolution remote sensing images can improve the accuracy of vegetation mapping
to a certain extent [41,86]. The object-based classifications produced by GF-1 images consistently
achieved more than 81% overall accuracy, indicating that GF-1 images are a valuable data source
to discriminate marsh vegetation. The overall accuracy of object-based classifications produced by
ZY-3 images is between 70.26% and 80.30%, which indicated that limited by the spatial resolution
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of ZY-3 data (5.8 m), and its performance of application to marsh vegetation mapping with intricate
vegetation distribution is inferior to GF-1 data (2 m) with higher spatial resolution. GF-1 and ZY-3
data in this study had higher classification accuracy for forest, cropland, shrubs, and open water
than other vegetation types because of the spectral differences; the spectral difference between
forest and shrubs is small, but the textural and geometric information are different, and the spectral
indices can distinguish the two to a certain extent. However, limited by the spectral resolution and
spectral range (450–900 nm), GF-1 and ZY-3 data in this study had low classification accuracy for
deep-water herbaceous vegetation, shallow-water herbaceous vegetation, and paddy field because of
the subtle differences of the spectral response and similar textural. Future studies will use high spatial
resolution hyperspectral satellite images or low-altitude UAV images of different growing seasons in
high-precision marsh vegetation mapping.

6. Conclusions

The object-based RF algorithm was used to evaluate the performance of GF-1 and ZY-3 data on
marsh vegetation mapping. This study attempted to customize an object-based RF model suitable for
marsh vegetation through multiscale image segmentation, parameter optimization, multidimensional
dataset input, and variable selection and explored the differences in accuracy of different parameter
settings and variable inputs. Some important conclusions are that parameter optimization of the RF
model can effectively improve its applicability in marsh vegetation classification, obtaining stable high
accuracy. Combining spectral bands, spectral indices, textural information, and geometric information
as multidimensional dataset input variables can effectively improve the classification accuracy of
marsh vegetation. However, multidimensional dataset input generates many redundant variables,
which reduces classification efficiency and accuracy. The RF-based variable selection algorithms can
effectively remove redundant variables with high correlation and improve classification accuracy.
Compared with Boruta-based and VSURF-based variable selection, RFE-based is a more efficient
variable selection algorithm. Measurements of the importance of the input variables indicated that four
optical spectral bands, four spectral indices, mean value of green and NIR bands in textural information,
DEM, TWI, compactness, max difference, and shape index were more useful for distinguishing marsh
vegetation in HNNR. The classification results show that GF-1 and ZY-3 images are valuable source
of data for distinguishing marsh vegetation, and the performance of ZY-3 images that application
to marsh vegetation mapping is inferior to GF-1 images in HNNR. GF-1 and ZY-3 images had
higher classification accuracy for forest, cropland, shrubs, and open water. However, limited by
spectral resolution and spectral range, GF-1 had low classification accuracy for deep-water herbaceous
vegetation, shallow-water herbaceous vegetation, and paddy fields.
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