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Abstract: Detailed and accurate information on the spatial variation of land cover and land use is a
critical component of local ecology and environmental research. For these tasks, high spatial resolution
images are required. Considering the trade-off between high spatial and high temporal resolution in
remote sensing images, many learning-based models (e.g., Convolutional neural network, sparse
coding, Bayesian network) have been established to improve the spatial resolution of coarse images
in both the computer vision and remote sensing fields. However, data for training and testing in these
learning-based methods are usually limited to a certain location and specific sensor, resulting in the
limited ability to generalize the model across locations and sensors. Recently, generative adversarial
nets (GANs), a new learning model from the deep learning field, show many advantages for capturing
high-dimensional nonlinear features over large samples. In this study, we test whether the GAN
method can improve the generalization ability across locations and sensors with some modification
to accomplish the idea “training once, apply to everywhere and different sensors” for remote sensing
images. This work is based on super-resolution generative adversarial nets (SRGANs), where we
modify the loss function and the structure of the network of SRGANs and propose the improved
SRGAN (ISRGAN), which makes model training more stable and enhances the generalization ability
across locations and sensors. In the experiment, the training and testing data were collected from
two sensors (Landsat 8 OLI and Chinese GF 1) from different locations (Guangdong and Xinjiang
in China). For the cross-location test, the model was trained in Guangdong with the Chinese GF
1 (8 m) data to be tested with the GF 1 data in Xinjiang. For the cross-sensor test, the same model
training in Guangdong with GF 1 was tested in Landsat 8 OLI images in Xinjiang. The proposed
method was compared with the neighbor-embedding (NE) method, the sparse representation method
(SCSR), and the SRGAN. The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) were
chosen for the quantitive assessment. The results showed that the ISRGAN is superior to the NE
(PSNR: 30.999, SSIM: 0.944) and SCSR (PSNR: 29.423, SSIM: 0.876) methods, and the SRGAN (PSNR:
31.378, SSIM: 0.952), with the PSNR = 35.816 and SSIM = 0.988 in the cross-location test. A similar
result was seen in the cross-sensor test. The ISRGAN had the best result (PSNR: 38.092, SSIM: 0.988)
compared to the NE (PSNR: 35.000, SSIM: 0.982) and SCSR (PSNR: 33.639, SSIM: 0.965) methods, and
the SRGAN (PSNR: 32.820, SSIM: 0.949). Meanwhile, we also tested the accuracy improvement for
land cover classification before and after super-resolution by the ISRGAN. The results show that the
accuracy of land cover classification after super-resolution was significantly improved, in particular,
the impervious surface class (the road and buildings with high-resolution texture) improved by 15%.
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1. Introduction

Detailed and accurate information on the spatial variation of land cover and land use is a critical
component of local ecology and environmental research. For these tasks, high spatial resolution
images are required to capture the temporal and spatial dynamics of the earth’s surface processes [1].
Considering the trade-off between high spatial and high temporal resolution in remote sensing images,
at present, there are two main methods for obtaining high spatio-temporal resolution images: 1) the
multi-source image fusion models [2,3] and 2) the image super-resolution models [4,5].

Compared to the image fusion models, the methods in the super-resolution field do not require
auxiliary high spatial resolution data with the same location and a similar observation date to predict
the detailed spatial texture, which makes these methods more approachable for different scenarios in
both the computer vision and remote sensing fields.

The basic assumption of the image super-resolution model is that missing details in a low spatial
resolution image can be either reconstructed or learned from other high spatial resolution images if
these images follow the same resampling process as was used to create the low spatial resolution image.
Based on this assumption, in the last decade, efforts have been made to focus on accurately predicting
the point spread function (PSF), which represents the mixture process that forms the low-resolution
pixels. There are mainly three groups of methods: 1) interpolation-based methods, 2) refactoring-based
methods, and 3) learning-based methods (Table 1).

Firstly, the interpolation-based methods [6–8] are based on a certain mathematical strategy to
calculate the pixel value of the target point to be restored from the relevant points, which is of low
complexity and high efficiency. However, the edge effect in the resulting image is obvious, and the image
details cannot be recovered since there is no new information produced in the interpolation process.

Secondly, the refactoring-based methods [9–11] model the imaging process and integrate different
information from the same scene to obtain high-quality reconstruction results. Usually, these methods
trade time differences for spatial resolution improvement, which usually requires pre-registration and
a large amount of calculation.

Thirdly, the learning-based methods [12–20] overcome the limitation of the difficulty by
determining the resolution improvement multiple of the reconstruction method and can be oriented
towards a single image, which is the main development direction of the current super-resolution
reconstruction. In this category, commonly used methods include the neighbor-embedding method
(NE) [21], the sparse representation method (SCSR) [22] and the deep learning method.

Table 1. The comparison of super-resolution methods.

Types of Method Basic Hypothesis Representative Models Advantages Disadvantage

Interpolation-based
methods

The value of the current pixel can be
represented by the nearby pixels

The nearest neighbor
interpolation [6] low complexity and

high efficiency

No image texture detail can
be predicted and usually

makes the image
smoother looking

The bilinear interpolation [7]
The bicubic interpolation [8]

Refactoring-based
methods

The physical properties and features can be
recovered by image reconstruction (RE)

technology, and these rules of the point spread
function (PSF) can be further applying for the

detail recovering

Joint MAP registration [9] The different information on
the same scene is fused to

obtain high-quality
reconstruction results

Requires pre-registration
and a large amount

of calculation

Sparse regression and natural
image prior [11]

Kernel regression
PSF deconvolution [23]

Learning-based
methods

The point spread function can be created by
learning from a large number of image

samples [24]

Neighbor-embedding (NE) [21] Getting better performance
when training samples are
more like the target image,
and can achieve a higher

PSNR when a large number
of samples are involved

Highly time consuming,
requiring big training

datasets and usually limited
model generalization ability

across datasets

Convolutional neural network
(SRCNN) [25]

Bayesian networks [26]
Kernel-based methods [27]
SVM-based methods [28]

Sparse representation
(SCSR) [22]

Super-resolution
GAN(SRGAN) [29]
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The learning-based method usually requires the high representative of the training samples to
cover the data variation of the whole population. In practice, a large number of training samples from
different sources are usually collected to achieve this goal. However, in the remote sensing field, it
is almost impossible to prepare such a training sample set because the variation of remote sensing
data not only depends on the variation of the object but also on the different locations and different
satellite sensors. Due to this limitation, many learning-based methods are limited to a certain location
and specific sensor, resulting in the limited generalization ability of the model across locations and
sensors. This limitation remains a challenge for producing one super-resolution model for different
locations and different satellite sensors.

In recent years, with the rapid development of artificial intelligence, especially neural
network-based deep learning methods, deep learning has been widely applied in the field of computer
vision, due to its obvious advantages for nonlinear process fittings of large samples. One benefit of
these models is their ability to handle large sample sets while retaining a good generalization ability. In
the field of image super-resolution, the super-resolution CNN model (SRCNN) was first presented by
Dong [25] in 2014. Compared with traditional image super-resolution, this method achieves a higher
peak signal-to-noise ratio, but when the image on the sampling ratio is high, the reconstructed image
will be too smooth, and details will be lost. To overcome this shortage, a super-resolution generative
adversarial network model (SRGAN) was presented by replacing the original CNN structure with
the generative adversarial network (GAN) [29]. As the newest learning model from the deep learning
field, the SRGAN shows many advantages for capturing high-dimensional nonlinear features over
large samples. However, the generalization ability of the SRGAN model in remote sensing images
across different locations and sensors remains unknown.

In this study, we test whether the GAN-based method can improve the generalization ability
across locations and sensors by making some modifications so that we can train once and apply the
results everywhere and with different sensors. Our work is based on the SRGAN model by modifying
the loss function and the structure of the network of the SRGAN. The major contributions of this study
are as follows:

• We propose the improved SRGAN (ISRGAN), which stabilizes the model training and enhances
the generalization ability across locations and sensors;

• We test the performance of the ISRGAN from two sensors (Landsat 8 OLI and Chinese GF 1) at
different locations (Guangdong and Xinjiang in China). Specifically, for the cross-location test,
the model training in Guangdong with the Chinese GF 1 data was tested with the GF 1 data in
Xinjiang. For the cross-sensor test, the same model training in Guangdong with GF 1 was tested
with the Landsat 8 OLI data in Xinjiang;

• The proposed method is compared to the neighbor-embedding (NE), sparse representation
(SCSR), and the original SRGAN methods, and the results show that the ISRGAN achieved the
best performance;

• The model provided in this study shows a good generalization ability across locations and sensors.
This model can be further applied to other satellite sensors and different locations for image
super-resolution to achieve the goal of “training once, apply to everywhere and different sensors.”

The structure of this paper is as follows: The overall workflow (Section 2.1), the review of the
original SRGAN (Section 2.2), the problem of the original SRGAN and the corresponding improvement
(Section 2.3) are described in the Methods section (Section 2). The study area, dataset and assessment
method in this study are explained in the Experiments section (Section 3). Section 4 describes the main
results and findings in our study. In Section 5, we discuss the advantages and possible further works
followed by the Conclusion section (Section 6).
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2. Methods

2.1. Workflow

In this paper, the experiment on whether the super-resolution model has generalization capability
across locations and sensors is mainly divided into three parts, as presented in Figure 1. The blue part
represents the model training part, which used the GF 1 data in Guangdong. The green part indicates
that the model was tested for generalization ability across regions, using the GF 1 data in Xinjiang.
The orange part indicates that the model was tested for whether there was generalization ability across
sensors, mainly using the Landsat 8 data in Xinjiang.

Figure 1. The workflow of the experiment.

First, we used the ISRGAN to train the Guangdong GF 1 data and obtained the super-resolution
model. At the same time, we divided the test set into three parts, namely test dataset 1 (GF 1 data in
Guangdong province), test dataset 2 (GF 1 data in Xinjiang province) and test dataset 3 (Landsat 8 data
in Xinjiang province).

For the test of whether the model had generalization ability across locations in the green part,
we tested dataset 1 and dataset 2 and obtained the PSNR and SSIM, respectively, in order to conduct
a t-test to determine whether the model had generalization ability across locations. For the test of
whether the model had generalization ability across sensors in the orange part, we tested dataset 2
and dataset 3 and obtained the PSNR and SSIM, respectively, in order to conduct a t-test to determine
whether the model had generalization ability across sensors.

2.2. SRGAN Review

The GAN is a deep learning model proposed by Goodfellow et al. [30] in 2014. The structure of
the GAN is inspired by the two-person zero-sum game in game theory. The framework consists of a
generator (G) and a discriminator (D), where the generator (G) learns the distribution of real sample
data and generates new sample data, and the discriminator (D) is a binary classifier used to distinguish
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whether the data is from real samples or generated samples. The structure diagram of the GAN is
shown in Figure 2. The optimization process of the GAN is a minimax problem. When the generator
and discriminator reach the Nash equilibrium, the optimization process is completed.

Figure 2. The typical structure of generative adversarial nets (GANs) adapted from [30].

In machine learning, GANs have become a hot research direction. At present, the field of computer
vision has become the most widely studied and applied field of GANs, which have broad applications.

The SRGAN is a super-resolution network structure proposed by Christian Ledig [29] in a
paper published at the 2017 CVPR conference, which brings the effect of super-resolution to a new
height. The SRGAN is trained based on the GAN network, which consists of a generator and a
discriminator. The generators use a ResNet structure [31], the former part of the network is connected
with several residual blocks, each containing two 3 × 3 convolution layers, which is followed by
the batch normalization layer, which is activated with the ReLu function. In the latter part, two
subpixel network modules are added to increase the size so that the generator can learn high-resolution
image details in the front layer during the training process and improve the image resolution later,
so as to achieve the purpose of reducing computing resources. The discriminator adopts the vgg-19
network structure [32], including eight convolution layers, where the LeakyReLu function is used
as the activation function for the hidden layer, and finally, the probability of the predicted image
coming from the real high-resolution and generated high-resolution image is obtained by using the
full connection layer and sigmoid activation function.

The main innovation of the SRGAN is to propose an optimization algorithm of perceived loss
based on a neural network, which is to replace the mean square error (MSE) content loss with the loss
calculated based on the vgg-19 network feature map. The original pixel-level MSE loss calculation
(LSR

mse) and the characteristic loss calculation (LSR
VGG/i, j) based on the vgg-19 network are shown in

Equations (1) and (2), respectively

LSR
mse =

1
r2WH

rW∑
x=1

rH∑
y=1

(IHR
x,y −GθG(ILR)x,y)

2
(1)

LSR
VGG/i, j =

1
Wi, jHi, j

Wi, j∑
x=1

Hi, j∑
y=1

(∅i, j(IHR)x,y −∅i, j(GθG(ILR))x,y)
2

(2)

where represents the ratio between the spatial resolution of a high- and low-resolution image, W and H
respectively represent the pixel numbers of the width and height of the low-resolution image, Wi, j and
Hi, j represent the dimension of the corresponding feature map in the vgg-19 network, ∅i, j represents
the feature map obtained before the jth convolution before the ith max-pooling layer within the vgg-19
network, I x,y represents the gray value of the layer map at the point (x, y), and GθG represents the
reconstructed image.
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2.3. The Improved SRGAN

2.3.1. Problems in SRGAN

Due to the phenomena of gradient disappearance and mode collapse in the SRGAN training
process, the model does not have a good generalization ability for remote sensing image super-resolution
across locations and sensors. Next, we analyze the nature of this phenomenon.

The first phenomenon, gradient disappearance, can be explained as follows:
In the training process of the SRGAN, we want the discriminator to be strong enough to distinguish

the samples well, and we want to give a result of 1 for the real high-resolution sample image and a
result of 0 for the generated high-resolution sample image. Therefore, the discriminator loss function
of the original SRGAN is shown in Equation (3):

maxV(G, D) = Ex∼Pr [logD(HR)] + Ex∼Pg [log(1−D(G(LR)))] (3)

where V(G, D) represents the difference between the ground true high-resolution (HR) image and
the model-generated image, HR and LR represent high-resolution images and low-resolution images,
respectively, G and D represent the generator and discriminator, respectively, Pr and Pg represent the
distribution of the real HR image and the generated super-resolution (SR) image, and E represents
the expectation.

The generator hopes that the image generated by itself can be marked as 1 by the discriminator,
so the adversarial loss function of the generator is:

minV(G, D) = Ex∼Pg [log(1−D(G(LR)))] (4)

Therefore, the loss function of the SRGAN is shown in Equation (5):

min
G

max
D V(G, D) = Ex∼Pr [logD(HR)] + Ex∼Pg [log(1−D(G(LR)))] (5)

The training process of the SRGAN is divided into two steps. The first step is to fix the generator
and train the discriminator. For Equation (3):

V(G, D) = Ex∼Pr [logD(HR)] + Ex∼Pg [log(1−D(G(LR)))]
=

∫
HR Prlog(D(HR))d(HR) +

∫
LR Pglog(1−D(G(LR)))d(LR)

=
∫

HR(Pr log(D(HR)) + Pglog(1
−D(HR)))d(HR)

(6)

In order to optimize the discriminator’s ability to distinguish data sources, Equation (6) is
maximized as follows

D∗G =
Pr

Pr + Pg
(7)

where D∗G is the optimal discriminator.
The second step is to fix the discriminator trained in the first step to optimize the generator.

For Equation (5), we substitute Equation (7) into it. The new form of V(G, D) as shown in Equation (8):

V(G, D) = Ex∼Pr

[
logD∗G(HR)

]
+ Ex∼Pg

[
log

(
1−D∗G(G(LR))

)]
= Ex∼Pr

[
log Pr

Pr+Pg

]
+ Ex∼Pg

[
log

Pg
Pr+Pg

]
=

∫
HR Prlog Pr

Pr+Pg
d(HR) +

∫
LR Pglog

Pg
Pr+Pg

d(LR)

= −2log2 +
∫

HR Prlog Pr
Pr+Pg

2

d(HR) +
∫

LR Pglog
Pg

Pr+Pg
2

d(LR)

(8)
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In addition, the Kullback-Leibler (KL) divergence and Jensen-Shannon Divergence (JSD) can be
expressed as Equations (9) and (10)

KL(P1||P2) = Ex∼P1 log
P1

P2
=

∫
P1log

P1

P2
dx (9)

JSD(P1||P2) =
1
2
(KL(P1||

P1 + P2

2
) + KL(P1||

P1 + P2

2
)) (10)

where P1 and P2 represent the two probability distributions.
By substituting Equations (9) and (10) into Equation (8), we can get the final form of V(G, D)

V(G, D) = −2log2 + KL(Pr||
Pr+Pg

2 ) + KL(Pg||
Pr+Pg

2 )

= −2log2 + 2JSD(Pr||Pg)
(11)

where JSD(Pr||Pg) represents the JSD divergence of the Pr and Pg.
As can be seen from Equation (11), only if Pr = Pg, V(G, D) reaches the minimum value is the

generation effect the best. In practice, the generated distribution can only be infinitely close to the real
distribution, but the two can never overlap completely. According to Equation (11), only when the
real distribution and the generated distribution overlap completely is the V(G, D) equal to −2log2,
otherwise, it always equals 0. Therefore, when using the gradient descent method, the generator cannot
get any gradient information, which means it faces the problem of gradient disappearance.

The second phenomenon, mode collapse, can be explained as follows:
The generator loss function can also be written as:

Ex∼Pg [− log(D(G(LR)))] (12)

Due to the KL divergence, Pr and Pg can be transformed into the form containing D*:

KL(Pg||Pr) = Ex∼Pg

[
log

Pg
Pr

]
= Ex∼Pg

log
Pg

Pg+Pr
Pr

Pg+Pr

 = Ex∼Pg

[
log

1−D∗G
D∗G

]
= Ex∼Pg log

[
1−D∗G

]
− Ex∼Pg logD∗G

(13)

From Equations (12) and (13), it can be concluded that the loss function is equivalent to:

Ex∼Pg

[
− log

(
D∗G(G(LR))

)]
= KL(Pg||Pr

)
− Ex∼Pg log

[
1−D∗G(G(LR))

]
= KL(Pg||Pr)−2JS(Pr||Pr) + 2log2 + Ex∼Pr logD∗G(HR)

(14)

Since only the first two terms depend on the generator (G), the final loss function of the generator
is equivalent to minimizing the following function:

F = KL(Pr||Pg) − 2JS(Pr||Pg) (15)

According to Equation (15), in the process of training the discriminator, the KL divergence should
be reduced while the JS divergence should be increased, resulting in unstable training. At the same
time, due to the asymmetry of the KL divergence, the following phenomenon occurs: the generator
generates an unreal image, and the punishment is relatively high, so the generator generates an image
similar to the real image, with a lower penalty. The result of this phenomenon is that the generator
tends to produce similar images, which is called the mode collapse problem.

The two problems stated above led to the unstable performance of the SRGAN in the training
process, which led to a poor generalization ability for remote sensing image super-resolution across
locations and sensors.
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2.3.2. Improved SRGAN

Inspired by the idea of WGANs [33], we modified the loss function and the partial structure of
the network in view of the weak generalization ability caused by the instability of the SRGAN in
the training process and proposed the ISRGAN. In this paper, the Wasserstein distance is used to
replace the KL divergence and JS divergence. The calculation of the Wasserstein distance is shown in
Equation (16)

V(G, D) = W
(
Pr, Pg

)
=

in f
γ ∼

∏
(Pr, Pg)

E(x,y)∼γ

[∣∣∣∣∣∣x− y
∣∣∣∣∣∣] (16)

where W
(
Pr, Pg

)
represents the Wasserstein distance of the Pr and Pg, γ represents the joint distribution

of the real HR image and the generated image,
∏
(Pr, Pg) represents the set of all possible joint

probability distributions of the Pr and Pg,
∣∣∣∣∣∣x− y

∣∣∣∣∣∣ represents the distance between a pair of samples x
and y, (x, y) ∼ γ represents how much “mass” must be transported from x to y in order to transform
the distributions of the Pr into the distribution of the Pg, and the marginal distributions of x and y are
the Pr and Pg, respectively, and inf represents the lower bound that we can take on the expectation of
all possible joint distributions.

However, when learning the image distribution, the random variable has thousands of dimensions,
and it is difficult to solve directly by solving the linear programming problem. Therefore, we convert it
into the dual form

V(G, D) = W
(
Pr, Pg

)
=

1
K

sup∣∣∣∣∣∣ f ∣∣∣∣∣∣L ≤ K
Ex∼Pr [ f (x)] − Ex∼Pg [ f (x)] (17)

where
∣∣∣∣∣∣ f ∣∣∣∣∣∣L ≤ K means that f is a K-Lipschitz function, the K-Lipschitz function is defined as, for K >0,∣∣∣∣∣∣ f (x1) − f (x2)

∣∣∣|≤ K||x1 − x2|
∣∣∣ and K is the Lipschitz constant of f , and sup represents the upper bound

of the expectation. Therefore, based on the SRGAN structure and the ideal of the WGAN, this paper
modifies the network structure, and the loss function during training can be summarized as follows:

(1) Sigmoid was removed from the last layer of the discriminator to transform the classification
problem into a regression problem;

(2) The loss functions of the generator and discriminator were not logarithmic;
(3) During the training process, after updating the discriminator parameters, its absolute value was

truncated to no more than a fixed constant;
(4) The convolution kernel of the last layer of the generator was changed from 1 × 1 to 9 × 9.

3. Experiments

3.1. Study Area

The study area selected included some areas of the Guangdong–Hong Kong–Macao greater bay
area and Yuli county, Xinjiang. The Guangdong–Hong Kong—Macao greater bay area is located in
the pearl river delta of Guangdong, which is the fourth largest bay area in the world after the New
York bay area, the San Francisco bay area, and the Tokyo bay area. The economic foundation of this
region is solid, the development potential is huge, and it has a pivotal status; Yuli county, located in
the middle of Xinjiang, is an important transportation hub in Xinjiang. The area is particularly rich in
mineral resources and tourist resources and is known as the “back garden” of Korla. The two research
areas are representative of the study of the super-resolution of remote sensing images and subsequent
ground-object extraction. Figure 3 shows the image coverage of GF 1 in the study area.
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Figure 3. Study area and the image coverage of GF 1.

3.2. Data and Datasets

The experimental data included the GF 1 satellite data (Land observation satellite data service
platform: http://218.247.138.119:7777/DSSPlatform/index.html) and the Landsat 8 satellite data (the
USGS Earth Explorer: https://earthexplorer.usgs.gov/). The GF 1 satellite was successfully launched
from the Jiuquan Satellite Launch Center on April 26, 2013, and is the first satellite from a major
Chinese project using a high-resolution earth observation system. The GF 1 satellite is equipped with
two 2-m panchromatic resolution cameras, two 8-m resolution multispectral cameras, and four 16-m
resolution multispectral wide-width cameras, among which PMS sensor multispectral cameras contain
four bands: blue, green, red, and near-infrared. Landsat 8 was launched by NASA on February 11,
2013, and is equipped with two sensors: the Operational Land Imager (OLI) and the Thermal Infrared
Sensor (TIRS) thermal infrared sensor, among which the OLI sensor multispectral cameras contain
nine bands: coastal, blue (B), green (G), red (R), near-infrared (NIR), short wave infrared 1 (SWIR1),
and short wave infrared 2 (SWIR2). The details are shown in Tables 2 and 3.

Table 2. The parameters of GF 1.

Parameters 2m-PAN Sensor/8m-MS Sensor 16m-MS Sensor

Spectral range

Panchromatic 0.45-0.90um

Multispectral

0.45-0.52um 0.45-0.52um
0.52-0.59um 0.52-0.59um
0.63-0.69um 0.63-0.69um
0.77-0.89um 0.77-0.89um

Spatial resolution Panchromatic 2m
16mMultispectral 8m

Scale range 60km (2 cameras) 800km (4 cameras)
Revisit cycle (side swing) 4 days

Revisit cycle (non-side swing) 41 days 4 days

http://218.247.138.119:7777/DSSPlatform/index.html
https://earthexplorer.usgs.gov/
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Table 3. The parameters of Landsat 8.

Sensor Band Spectral Range/um Spatial Resolution/m

OLI

1-COASTAL 0.43-0.45 30
2-Blue 0.45-0.51 30

3-Green 0.53-0.59 30
4-Red 0.64-0.67 30
5-NIR 0.85-0.88 30

6-SWIR1 1.57-1.65 30
7-SWIR2 2.11-2.29 30
8-PAN 0.50-0.68 15

9-Cirrus 1.36-1.38 30

TIRS
10-TIR 10.60-11.19 100
11-TIR 11.50-12.51 100

Table 4 shows the data details used in this paper. Considering the difference in the spectral range
between the two kinds of satellite data in each channel, the experimental data selected in this paper
only includes three RGB bands.

Table 4. The information of used data.

Location Sensor Latitude and
Longitude Time Filename

Guangdong GF1-PMS1 E114.2, N22.7 20171211 GF1_PMS1_E114.2_N22.7_20171211_L1A0002840075
Guangdong GF1-PMS1 E114.3, N23.0 20171211 GF1_PMS1_E114.3_N23.0_20171211_L1A0002840076
Guangdong GF1-PMS2 E114.6, N22.7 20171211 GF1_PMS2_E114.6_N22.7_20171211_L1A0002840310
Guangdong GF1-PMS2 E114.6, N22.9 20171211 GF1_PMS2_E114.6_N22.9_20171211_L1A0002840309
Guangdong GF1-PMS2 E114.7, N23.2 20171211 GF1_PMS2_E114.7_N23.2_20171211_L1A0002840307

Xinjiang GF1-PMS1 E86.3, N42.2 20180901 GF1_PMS1_E86.3_N42.2_20180901_L1A0003427463
Xinjiang GF1-PMS1 E86.6, N41.1 20171028 GF1_PMS1_E86.6_N41.1_20171028_L1A0002715402
Xinjiang GF1-PMS1 E87.2, N40.8 20171130 GF1_PMS1_E87.2_N40.8_20171130_L1A0002807153
Xinjiang GF1-PMS2 E87.0, N40.7 20170917 GF1_PMS2_E87.0_N40.7_20170917_L1A0002605364
Xinjiang Landsat-8 OLI E86.2, N41.7 20171229 LC08_L1TP_143031_20171229_20180103_01_T1

When doing the experiment, we need to make sure that the same ratio of the high-resolution
image and low-resolution image pixel must be strictly 1:4, while the GF 1 PMS sensor data and
Landsat satellite’s OLI sensor data is not a strict 1:4 relation. In order to guarantee the feasibility of the
experiment, we used the GF1 data and cut it into images of 256 × 256 size, while obtaining images of
64 × 64 size through cubic subsampling. Finally, we selected 3200 images of 256 × 256 size and their
subsamples for training as high-resolution and low-resolution images, respectively.

3.3. Network Parameter Setting and Training

The proportion factor of the high-resolution image (HR) and low-resolution image (LR) used in
the experiment was × 4, among which the LR images were obtained by sampling the HR image four
times, using the nearest-neighbor method in Python. During training, the batch size was set to 16, and
the training process was divided into two steps. In the first step, the ResNet [31] was trained to obtain
the mean square error (MSE) between the generated high-resolution image and the real high-resolution
image, namely the traditional pixel-based loss, and the learning rate was initialized to 10-4, training
100 epochs in total. In the second step, we used the model trained in the first step as the initialization
of the generator. Using pretreatment based on pixel losses can make the method based on the GAN
achieve a better effect. The reason for this can be summarized as follows: 1) The high-resolution image
generated by preprocessing is a relatively good image for the discriminator, so it pays more attention to
texture details in the following training process. 2) It is better to avoid the generator reaching the local
optimization. The initialization learning rate of the generator training was 10-4, and it was reduced to
1/2 in each 250 iterations, training 500 epochs in total.
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We used the RMSProp optimization algorithm to update the generator and discriminator alternately
until the model converged. The model was implemented using the Tensorflow framework (Google Inc.
https://www.tensorflow.org) and was trained on four NVIDIA GeForce GTX TITAN X GPUs. The code
is modified based on the SRGAN code, which can be freely downloaded from the GitHub website
(https://github.com/tensorlayer/srgan).

3.4. Assessment

In this paper, we adopted the peak signal-to-noise ratio (PSNR) [34] and structural similarity
index measurement (SSIM) [35] as the evaluation indexes for the experimental results. Usually, after an
image is compressed, the image spectrum will change, so the output image will be somewhat different
from the original image. In order to measure the quality of the processed image, the PSNR is usually
used to measure whether a processor meets the expected requirements and is calculated as follows

PSNR = 10× log10

(
MAX2

MSE

)
(18)

where the MSE is calculated as shown in Equation (19)

MSE =

∑N
n=1(I

n
− Pn)

N
(19)

where In refers to the gray value of the nth pixel of the original image, and Pn refers to the gray value of
the nth pixel after processing. The unit of the peak signal-to-noise ratio (PSNR) is dB, and the higher
the value, the better the image quality.

SSIM is a method used to measure the subjective experience quality of television, film, or other
digital images and video. This method was first proposed by the image and video engineering laboratory
of the University of Texas at Austin and then developed in cooperation with New York University.
The SSIM algorithm is used to test the similarity of two images, and its measurement or prediction of
image quality is based on uncompressed or undistorted images as a reference. The model measures
image similarity in brightness, contrast, and structure. Its calculation is shown in Equation (20)

SSIM(X, Y) =
(2uXuY + C1)(2σXY + C2)(

u2
X + u2

Y + C1
)(
δ2

X + δ2
Y + C2

) (20)

where uX and uY represent the means of the gray values of image X and image Y, respectively, and δ2
X,

δ2
Y and σXY represent the variances of the gray values of image X and image Y, respectively.

Generally, C1 = (K1 ∗ L)2, C2 = (K2 ∗ L)2, K1 = 0.01, K2 = 0.03 and L is the maximum image value.
The range of SSIM is (0,1); the larger its value, the less image distortion there is.

4. Results

4.1. High Spatial Resolution Image of ISRGAN across Locations and Sensors

Based on the ISRGAN super-resolution training model, we tested the ISRGAN on a GF 1 dataset
from Guangdong, a GF 1 dataset in Xinjiang, and a Landsat 8 dataset in Xinjiang. Some test results are
shown in Figures 4–6.

https://www.tensorflow.org
https://github.com/tensorlayer/srgan
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Figure 4. The predicted super-resolution image for our ISRGAN model (b) on a GF 1 dataset in
Guangdong, compared to the input image (a) and the ground truth (c). Figures (d), (e), and (f) are 1:1
plots of the Digital Number (DN) value in the red, green and blue bands compared to the ground truth
(c), with slopes of 1.0063, 1.0032, and 0.9955, respectively.

Figure 5. Cross-location comparison: the predicted super-resolution image for our ISRGAN model (b)
on a GF 1 dataset in Xinjiang, compared to the input image (a) and the ground truth (c). Figures (d), (e),
and (f) are 1:1 plots of the DN value in the red, green and blue bands compared to the ground truth (c),
with slopes of 0.9658, 0.9378 and 0.9485, respectively.
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Figure 6. Cross-sensor and -location comparison: the predicted super-resolution image for our ISRGAN
model (b) on a Landsat 8 dataset in Xinjiang, compared to the input image (a) and the ground truth (c).
Figures (d), (e), and (f) are 1:1 plots of the DN value in the red, green and blue bands compared to the
ground truth (c), with slopes of 0.9527, 0.9564 and 0.9760, respectively.

As can be seen from the examples, the slope of the statistical pictures of the image after
super-resolution and the real image in the gray value of the three bands is close to 1, so this model
maintains the spectral information of the original image.

In addition, in order to verify the generalization ability of the super-resolution model across
locations and sensors, we defined the following: if the evaluation indexes on two data sets follow a
normal distribution and the mean value is not significantly different, then the model is approximately
considered to have the same property on two datasets. Therefore, when verifying the generalization
ability of the model across locations, we conducted t-tests on the evaluation indexes of the Guangdong
(GF 1) dataset and the Xinjiang (GF 1) dataset. When verifying the generalization ability of the
model across sensors, we also conducted a t-test on the evaluation indexes of the Xinjiang (GF 1)
dataset and the Xinjiang (Landsat) dataset by using the R software with the “car” package (https:
//www.rdocumentation.org/packages/car/versions/3.0-3), for which the confidence was 95%. The test
results are shown in Tables 5 and 6, respectively.

Table 5. T-Test of the model across locations.

Levene Test of Variance T-Test of the Mean
Sig Sig(2-tailed)

SSIM
Variances are equal

0.510
1.000

Variances are not equal 1.000

PSNR
Variances are equal

0.033
0.621

Variances are not equal 0.625

https://www.rdocumentation.org/packages/car/versions/3.0-3
https://www.rdocumentation.org/packages/car/versions/3.0-3
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Table 6. T-Test of the model across sensors.

Levene Test of Variance T-Test of the Mean
Sig Sig(2-tailed)

SSIM
Variances are equal

0.011
0.824

Variances are not equal 0.826

PSNR
Variances are equal

0.197
0.000

Variances are not equal 0.000

In Tables 5 and 6, first, we judge whether there is a significant difference between the two groups
of data, which is the Levene test of the variance equation. If the Sig parameter values are greater than
0.05, there is no significant difference in variance. After judging the variance, a t-test was performed on
the mean value. Similarly, if the Sig (2-tailed) index value is greater than 0.05, there is no significant
difference in the mean value of the two groups of data, which means that there is no significant
difference between the two groups of data. As can be seen from Table 5, there is no significant difference
in the mean values of the two groups of data in the PSNR and SSIM. Therefore, the model has
generalization ability across locations. As can be seen from Table 6, there is no significant difference
between the two groups of data in the SSIM, while there is a significant difference between the two
groups of data in the PSNR. Since the PSNR only considers the gray value of pixels between the two
groups of images, while the SSIM comprehensively considers the brightness, contrast, structure, and
other information between the two groups of images, the SSIM has generalization ability across sensors.

4.2. Compare ISRGAN with NE, SCSR, and SRGAN

In this paper, the super-resolution methods we compared include the NE and SCSR methods, and
the SRGAN. According to the super-resolution results, we calculated the evaluation indexes between
them and the original images. In this paper, it was difficult to obtain the Landsat 8 satellite data and
GF 1 satellite data at the same time and in the same scene, and the corresponding number of pixels
was not consistent, considering the subsequent consistency of the computational criteria in validating
whether the model has generalization ability across locations and sensors. Therefore, all the reference
images of the quantitative calculation in this paper were the original images before super-resolution.
The calculation method was to reduce the sampling of the image after super-resolution and then
calculate the quantification index between the image after super-resolution and the original image.
Figure 7 shows the partial comparison results of this paper based on the NE and SCSR methods, the
SRGAN, and the ISRGAN in the three test sets.

We counted the evaluation indexes of the test data on the three test sets with three super-resolution
algorithms and calculated their means. The results are shown in Table 7:

As can be seen from Table 7, in the horizontal comparison of the three super-resolution algorithms,
the ISRGAN algorithm in this paper is significantly superior to the other three methods in the PSNR
and SSIM, so it has certain advantages.
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Figure 7. Comparison of the output of our ISRGAN model (the fifth column) to other models (NE,
SCSR, SRGAN). Figures (a) and (b) are the results of the GF 1 dataset in Guangdong, (c) is the result of
the cross-location testing in the GF 1 dataset in Xinjiang, and (d) is the result of Landsat 8 in Xinjiang.
The ground truth is shown as HR. The low-resolution inputs are marked as LR.

Table 7. Image quality comparison of different super-resolution algorithms.

Data Sets Index NE
Super-Resolution Algorithms

SCSR SRGAN Ours

Guangdong
(GF 1)

PSNR 33.6349 31.1207 32.1658 36.3744
SSIM 0.9600 0.8854 0.9375 0.9884

Xinjiang
(GF 1)

PSNR 32.0343 30.1631 31.3782 35.8160
SSIM 0.9608 0.9001 0.9524 0.9885

Xinjiang
(Landsat 8)

PSNR 35.0010 33.639 32.8203 38.0922
SSIM 0.9818 0.9654 0.9488 0.9879

4.3. The Improvement of Land Cover Classification after ISRGAN Super-Resolution

The purpose of image super-resolution is to make better use of the advantages of high spatial
resolution images and improve the accuracy of target recognition [36], classification [37], and change
detection [38,39]. Taking the land cover classification and ground feature extraction as examples, the
changes in the land use classification and ground feature extraction in the Landsat images before and
after super-resolution were compared and analyzed.

The classification area selected was in the area at the border of Guangzhou and Shenzhen, where the
feature categories are rich and densely distributed. It is beneficial to fully take advantage of high spatial
resolution images in the land use classification and feature extraction. As shown in Figure 8, the original
Landsat 8 image of the super-resolution application sample area was obtained on February 7, 2016.
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Figure 8. Landsat 8 image of the demonstration area.

For the classification of features, in order to avoid the interference of human factors on the
classification results, we used the K-means algorithm to classify the before and after images of
super-resolution, and the classification results are shown in Figure 9.

Figure 9. Comparison of the classification results between the images before and after super-resolution.
Figure (a) is the classification result on the image before super-resolution and Figure (b) is the
classification result on the image after super-resolution.

By comparing the classification results before and after the super-resolution images, we can see
that the extraction effect of the image after super-resolution is better than that before super-resolution
in the areas where the features are densely distributed and texture details are not obvious, such as
roads and impervious surfaces. From the overall extraction effect, the result of the image after the
super-resolution classification is better than that of the former in boundary and separability. Therefore,
the image after super-resolution is broadly applicable in the classification of remote sensing images.

In addition, in order to better reflect the superiority of the image after super-resolution on the
extraction of impervious surfaces, we used the Support Vector Machine (SVM) algorithm to extract
impervious surfaces based on images before and after super-resolution. Similarly, in order to minimize
the influence of human factors on the extraction results, we randomly selected the same set of training
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samples and test samples on Google Earth, converted them into the area of interest at the corresponding
resolution, and then classified and extracted them. The extraction results of the impervious surfaces
before and after super-resolution are shown in Figure 10.

Figure 10. Comparison of the extraction results of impervious surfaces between the images before
and after super-resolution (Figure (a) is the extraction result on the image before super-resolution and
Figure (b) is the extraction result on the image after super-resolution).

In order to quantitatively verify the improvement of the extraction accuracy of impervious surfaces
based on the image after super-resolution, we tested the same set of test samples selected above,
which included 122 impervious surface sample points and 71 non-impervious surface sample points.
The confusion matrix of the impervious surface extraction before and after super-resolution is shown in
Tables 8 and 9. The overall accuracy of the impervious surface extraction before super-resolution was
70.1%, and the Kappa coefficient was 0.419. After super-resolution, the overall extraction accuracy of
impervious surfaces was 86.1%, and the Kappa coefficient was 0.720. The quantitative results show that
the extraction accuracy after super-resolution was nearly 15% higher than that before super-resolution.

Table 8. Confusion matrix of construction on the image before super-resolution.

Class Impervious Surface Others

Impervious Surface 61.48% 15.28%
Others 38.52% 84.71%
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Table 9. Confusion matrix of construction on the image after super-resolution.

Class Impervious Surface Others

Impervious Surface 79.51% 2.78%
Others 20.49% 97.22%

5. Discussion

In comparison with the NE method, SCSR method, and the SRGAN, the ISRGAN shows better
performance of generalization in the cross-location and -sensor tests. However, like many other
super-resolution algorithms, the pseudo-textures can still be seen in the output after super-resolution,
and the bell effect near the edges still needs to be improved. The edge enhancement algorithms can be
further applied to recover the edge details, especially in the high spatial variation area.

Meanwhile, the scale ratio can lead to a dramatic change in the visual satisfaction of the model
output. For most super-resolution algorithms, the perfect scale ratio is about 2:4. This means you
can get a satisfying prediction when you down-scale an image with 30-m resolution down to 8-m
rather than to 1-m. By increasing this ratio, the output of the image texture could show more random
pseudo-textures and lead to a more serious bell effect. The fundamental reason for this is that the
learning-based super-resolution algorithms try to recover the nonlinear point spread function (PSF)
from a large number of available samples. However, when the ratio increases, the image details
lost when crossing the different scales could be more and more complex and harder to capture by
one universal PSF based on limited samples. The process of recovering the image details by the
super-resolution algorithms is ill-posed, since the number of pixels needed to be predicted always
needs to be larger than the number of known low spatial resolution pixels. Other than the large-scale
ratio, the other possible way to recover the image details is by using image fusion technology, such
as the spatial and temporal adaptive reflectance fusion model (STARFM) [40], enhanced STARFM
(ESTARFM) [41] and the U-STFM model [42], which is basically “borrowing” the detailed image texture
from the high spatial resolution reference image rather than predicting it. However, the consequences
are when the discrepancy between the reference image and the input image goes large or the land
cover changes rapidly, and thus the fusion-based method can fail to predict these changes.

In addition, due to the fact that GANs have two networks, which are named the generator and
discriminator networks, more parameters than a convolutional neural network need to be optimized
during training, so a long training time is needed. Currently, Muyang Li [43] has proposed the GAN
compression method, which greatly shortens the training time. Through a large number of experiments,
the computations in pix2pix [44], CycleGAN [45], and GauGAN [46] with this method were reduced
from 1/9 to 1/21 without losing the fidelity of the generated image in the meantime. Therefore, the GAN
compression method can be applied to the super-resolution network to effectively reduce the training
time of the model.

6. Conclusions

Based on the super-resolution algorithm of the generated adversarial network in the computer
vision field, this paper aimed to solve the problems of gradient disappearance and mode collapse
that exist in the training of the generated adversarial network itself. Combined with the method of
minimizing the Wasserstein distance proposed in the WGAN, we modified the original super-resolution
network (SRGAN) and proposed the ISRGAN. Then we applied it to the super-resolution of remote
sensing influence and drew the following conclusions:
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(1) The ISRGAN super-resolution network proposed in this paper is applied to the super-resolution
of remote sensing images, and the results obtained are better than other super-resolution methods,
such as the neighbor-embedding method, the sparse representation method, and the SRGAN;

(2) In order to realize the one-time training and repeated use of the super-resolution model, we
directly applied the model trained with the Guangdong GF 1 image data to the Xinjiang GF
1 image data and conducted a t-test on the evaluation indexes of the super-resolution results
of the two datasets, which verified the generalization ability of the super-resolution model
across locations;

(3) In order to combine the advantages of the domestic GF 1 image data and the Landsat 8 data, the
super-resolution model trained on the GF 1 data was directly applied to the Landsat 8 data, and
a t-test was performed on the evaluation indexes of the super-resolution results, verifying the
generalization ability of the super-resolution model across sensors;

(4) Taking the land use classification and ground-object extraction as examples, we compared the
classification and extraction accuracy of the images before and after super-resolution. The K-means
clustering algorithm was adopted for the land use classification, and the SVM algorithm was
used for the ground-object extraction. The results show that the visual effect and accuracy of the
images after super-resolution are improved in the classification and ground-object extraction,
indicating that the super-resolution of remote sensing images is of great application value in
resource development, environmental monitoring, disaster research, and global change analysis.
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