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Abstract: There are a significant number of image processing methods that have been developed
during the past decades for detecting anomalous areas, such as hydrothermal alteration zones, using
satellite images. Among these methods, dimensionality reduction or transformation techniques
are known to be a robust type of methods, which are helpful, as they reduce the extent of a study
area at the initial stage of mineral exploration. Principal component analysis (PCA), independent
component analysis (ICA), and minimum noise fraction (MNF) are the dimensionality reduction
techniques known as multivariate statistical methods that convert a set of observed and correlated
input variables into uncorrelated or independent components. In this study, these techniques were
comprehensively compared and integrated, to show how they could be jointly applied in remote
sensing data analysis for mapping hydrothermal alteration zones associated with epithermal Cu–Au
deposits in the Toroud-Chahshirin range, Central Iran. These techniques were applied on specific
subsets of the advanced spaceborne thermal emission and reflection radiometer (ASTER) spectral
bands for mapping gossans and hydrothermal alteration zones, such as argillic, propylitic, and phyllic
zones. The fuzzy logic model was used for integrating the most rational thematic layers derived from
the transformation techniques, which led to an efficient remote sensing evidential layer for mineral
prospectivity mapping. The results showed that ICA was a more robust technique for generating
hydrothermal alteration thematic layers, compared to the other dimensionality reduction techniques.
The capabilities of this technique in separating source signals from noise led to improved enhancement
of geological features, such as specific alteration zones. In this investigation, several previously
unmapped prospective zones were detected using the integrated hydrothermal alteration map and
most of the known hydrothermal mineral occurrences showed a high prospectivity value. Fieldwork
and laboratory analysis were conducted to validate the results and to verify new prospective zones
in the study area, which indicated a good consistency with the remote sensing output. This study
demonstrated that the integration of remote sensing-based alteration thematic layers derived from
the transformation techniques is a reliable and low-cost approach for mineral prospectivity mapping
in metallogenic provinces, at the reconnaissance stage of mineral exploration.
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1. Introduction

The interaction of hydrothermal fluids and wall rocks during the uprising process through conduits
(e.g., faults and fractures), which results in the alteration of mineralogy and chemical composition of
rocks, can lead to the generation of polymetallic epithermal and porphyry deposits [1–4]. The footprints
of various types of hydrothermal alteration on the surface are key indicators through the exploration
of outcropping or deep-seated deposits [5–8]. Each alteration type shows a specific spectral behavior
due to different mineral assemblages. Exploration geologists use these spectral characteristics as
diagnostic features for detecting and discriminating between different alteration types, using remote
sensing data [9–11]. Detailed spectral information on the mineralogy and geochemistry of rock types
comprising the Earth’s surface are provided by multispectral and hyperspectral remote sensing
instruments, and this technology has been used for decades to map rocks, mineral assemblages, and
weathering characteristics in different regions [9,10,12–18]. Mapping prospective zones of various
types of the hydrothermal alteration minerals is one of the most important applications of remote
sensing in the field of mineral exploration [11,18–22].

The spectral and spatial resolution provided by the advanced spaceborne thermal emission
and reflection radiometer (ASTER) sensor makes the identification of specific alteration assemblages
feasible. The ASTER spectral subsets, including visible and near infrared, short-wave infrared, and
thermal infrared wavelength regions provide complementary data for lithologic mapping and mineral
exploration. The ASTER remote sensing data have been extensively used for alteration and lithological
mapping [16,23–25]. Image processing approaches such as dimensionality reduction or transformation
techniques are considered as efficient tools in identifying hydrothermal alteration zones in metallogenic
provinces [10,15,16,26–29]. Transformation techniques such as principal component analysis (PCA),
independent component analysis (ICA), and minimum noise fraction (MNF) are powerful statistical
techniques that can be used for suppressing irradiance effects that dominate all bands, therefore,
enhancing the spectral reflectance features of geological materials [30,31]. These techniques can be
applied to multivariate data sets, such as multispectral satellite images, to extract specific spectral
responses, as in the case of hydrothermal alteration minerals.

PCA has been used to transform remote sensing data in the form of image to uncover the
most important features [32,33], by extracting a smaller set of variables with less redundancy from
high-dimensional data sets [34,35]. This technique has been widely used for mapping lithological
features and hydrothermal alteration zones, using different types of remote sensing data [23,36–38].
ICA has less been considered to be a common technique in image processing, although it has a wide range
of applications in signal processing [39]. The lack of a comprehensive understanding of the underlying
theory and foundations of ICA is one of the main reasons that ICA has not been applied commonly in
geosciences, particularly, for multi- or hyper-spectral image-processing. There are only a few studies
focused on the application of ICA in alteration mapping [40,41]. MNF is used to determine the inherent
dimensionality of image data, segregate noise in the data, and reduce the computational requirements for
subsequent processing [42,43]. This transformation can identify spectral signatures of spectral anomalies.
MNF is of interest to exploration geologists because spectral anomalies are often indicative of hydrothermal
alteration zones and has been applied on different data types for detecting such anomalies [44–46].

The integration and comparison of the dimensionality reduction techniques provide
comprehensive information for creating the most informative thematic layers and generating a
remote sensing evidential layer. In this study, we used the PCA, ICA, and MNF for mapping
hydrothermal alteration zones, using ASTER remote sensing data in the Toroud-Chahshirin range,
Central Iran (Figure 1). This region is mostly known for several epithermal polymetallic vein-type
mineral occurrences, and anomalous Cu and Au concentration values have been reported to be
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associated with altered dacite, dacite-andesite, and volcaniclastics rocks. The presence of several
mineral occurrences associated with widespread alteration zones suggests that the Toroud-Chahshirin
range is a prospective zone for high-grade gold veins and base metal epithermal deposits [47]. There is
no regional prospectivity map available for the study area. Accordingly, the main objectives of this
study are: (1) to compare the PCA, ICA, and MNF techniques for mapping gossans and hydrothermal
alteration zones, including argillic, phyllic, and propylitic, using selected spectral subsets of the ASTER
data; (2) to select the most informative thematic layers for detecting gossans, argillic, phyllic, and
propylitic zones, using statistical analyses; (3) to integrate the most informative thematic layers for
generating a remote sensing evidential layer using fuzzy logic; and (4) to verify the prospective zones
through detailed fieldwork and laboratory analysis.

2. Geological Setting

The magmatic arc of Toroud-Chahshirin located in Central Iran, lies between the Anjilow
and Toroud faults (Figure 1) [48]. The rock outcrops of the study area are composed of Eocene
volcano-pyroclastic rocks with an intermediate composition (andesite), which have been affected by
Oligo-Miocene intrusive bodies. The magmatic activities commenced in the first and second geological
eras along with tectonic events, gradually. The peak of magmatic activities occurred from middle to
upper Eocene, which constitute the heights of the Toroud-Chahshirin region. Most of the magmatic
products are made of andesite and basalt, which have an acidic or trachytic state. On the other hand,
some magmatic products are basic in terms of composition and have changed into andesite lavas,
breccias, and tuffs, at the end of Eocene. The volcanic rocks of the study area have been cut by multiple
intrusive bodies aged Oligo-Miocene, which are known to be one of the key factors of mineralization.
These rocks include granite, micro-granite, granodiorite, micro-granodiorite, micro-quartz monzonite,
micro-monzonite, micro-monzodiorite, and micro-quartz monzodiorite. The major constituent minerals
include quartz, alkali-feldspar, plagioclase, biotite, amphibole, pyroxene, apatite, titanite, zircon,
tourmaline, magnetite, and ilmenite. The volcanic rocks are mainly from magmatic, subalkaline, and
alkaline series [47]. The Toroud-Chahshirin range is the largest known gold and base metal province
of Iran [47,49]. In this province, the Northern Iranian region hosts five gold and base metal deposits.
Other types of deposits in this range include placer gold, an underground mine for turquoise at Baghu,
skarn deposits, and Pb-Zn deposits in carbonate rocks.
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3. Materials and Methods

3.1. ASTER Data Characteristics and Pre-Processing

The ASTER remote sensing data are the result of a joint plan between the United States and
Japan, with a strong focus on geological and mineral exploration applications [51]. This sensor, which
is aboard the Earth observing system (EOS) Terra platform, records solar radiation in 14 spectral
bands [14,52]. It measures the reflected radiation in three subsets, including visible and near infrared
(VNIR), short-wave infrared (SWIR), and thermal infrared (TIR). The VNIR consists of three bands
between 0.52 and 0.86 micrometers (µm), the SWIR includes six bands from 1.6 to 2.43 µm, and emitted
radiation in five bands in the 8.125–11.65 µm wavelength region constitute the TIR. The resolution of
VNIR, SWIR, and TIR is 15 meters (m), 30 m, and 90 m, respectively [53]. Many clay and carbonate
minerals show diagnostic spectral features in the short-wave infrared range, where the ASTER sensor
provides six spectral bands [54]. According to the geological setting and metallogenetic characteristics
of the study area, and different types of the hydrothermal alteration associated with epithermal mineral
deposits [55–58], we used the ASTER data for mapping the hydrothermal alteration zones.

We used two cloud-free level 1 precision terrain corrected and registered at-sensor radiance
(AST_L1T) ASTER scenes in this study. These scenes downloaded from the US Geological Survey
Earth Explorer [59], were both acquired on October 3, 2004. The ASTER AST_L1T data was calibrated
at-sensor radiance, which corresponded to ASTER Level 1B (AST_L1B); which was geometrically
corrected, and rotated to a north-up universal transverse Mercator projection [60]. The ASTER scenes
used in this study were pre-georeferenced to the UTM zone 40 North. The QUAC module within the
ENVI software package [61], which works with the visible and near-infrared to short-wave infrared
(VNIR–SWIR) wavelength range, was used to provide an atmospheric-corrected surface reflectance
image of the study area. Moreover, this module was a quick solution for converting radiance-calibrated
data to apparent reflectance. Eventually, the SWIR bands were resampled to the spatial resolution of
VNIR using the nearest neighbor technique.

3.2. Image Processing

3.2.1. Principal Component Analysis

Principal component analysis aims at finding a set of linearly uncorrelated components called
principal components, which can be considered to be projections from the original data [62–64]. In other
words, the principal components are the projection of input data onto the principal axes or eigenvectors.
The output components are arranged on the basis of the variance, in descending order. The first
principal component has the largest variance and the next component has the next highest variance.
There is a constraint that each component has to be orthogonal to the preceding components [65,66].
In PCA, the same number of output principal components as input spectral bands can be generated.
Although, a small number of principal components often involve the majority of the variance in the
data and provide most of the information about the structure of the data [67,68]. In this study, we
assumed a normal data distribution and used the covariance matrix for calculating the principal
components. The principal component with the loadings, which shows a similar trend to the spectral
characteristics of the target alteration minerals, is considered to be the appropriate component for
enhancing the target zones. The selected principal component image contains a unique contribution of
eigenvector loadings in terms of magnitude and sign, for the absorption and reflection bands of an
alteration mineral or mineral group. This feature helps by enhancing the target alteration zone.

3.2.2. Independent Component Analysis

Independent component analysis is known to be an efficient statistical signal processing technique
for decomposing a set of multivariate signals into statistically independent streams, without losing
much information [69]. ICA is able to reveal hidden features that underlie sets of random signals and
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attempts to make the separated signals as independent as possible. The independent components
and the mixture signals are always assumed to have a zero mean and a unit variance, in order to
simplify the model without a loss of generality. This assumption leads to no variance ranking of the
independent components. There are many mature algorithms available for implementing ICA using
various estimators of independence. In this study, we choose the fast ICA that uses a fixed-point
algorithm for an approximation of negentropy as a measurement of independence, for data processing,
due to its computing efficiency, flexible parameters, and robustness [70]. In information theory and
statistics, negentropy is used as a measure of distance to normality [71]. Unlike the PCA, which
is based on the assumptions of uncorrelation and normality, ICA is rooted in the assumption of
statistical independence. PCA only requires the second-order statistics, while ICA looks for statistically
independent components, a much stronger condition than being uncorrelated. In addition, ICA
components are not necessarily geometrical orthogonal. The most important difference is that ICA
needs a linear model to describe data while PCA does not. Therefore, ICA cannot be considered as a
generalization of PCA [72].

3.2.3. Minimum Noise Fraction

Minimum noise fraction is known to be an efficient technique for reducing the dimensions of
a large dataset into a smaller number of components that involve the majority of information [42].
This technique was similar to the PCA, but the resulting components were not necessarily orthogonal
and were arranged according to the signal-to-noise ratio, in descending order. MNF is applied for
discriminating between noise and signal in a dataset. Moreover, this technique is able to determine the
inherent dimensionality of an image [28]. The MNF transform implemented in this study involved
two cascaded PCA transformations. The first transformation is called noise-whitening and is based
on an estimated noise covariance matrix that aims at decorrelating and rescaling the noise in the
data. The second step is a standard PCA transformation of the noise-reduced data. The number
of output components can be as many as the input bands, with a decreasing overall variance of
the dataset from the first component to the last. Similar to other transformation techniques, only a
small number of components were often required to describe most of the information for the entire
dataset. The contribution of each component to the overall information in a multivariate dataset, such
as multispectral or hyperspectral images, is measured by an eigenvalue. The output components
can be divided into two parts, including the part associated with large eigenvalues and the other
with near-unity eigenvalues and noise-dominated images. The part with large eigenvalues separates
the noise from the data, and improves spectral results [42]. The contribution of each band to each
component is measured by an eigenvector, which can be interpreted akin to a correlation coefficient [73].
The dimensionality reduction techniques used in this study, were executed using the ENVI software
package [61].

3.2.4. Hydrothermal Alteration Mapping by the PCA, ICA, and MNF Techniques

In this study, the PCA, ICA, and MNF techniques were applied to specific subsets of the ASTER
spectral bands. The subsets were selected according to the characteristic spectral features of key
alteration minerals in the VNIR and SWIR ranges of the electromagnetic spectrum. The selected
spectral bands involved absorption and reflection diagnostic features of the indicative minerals in each
alteration zone. In this study, we targeted the detection of gossans and different types of hydrothermal
alterations, including argillic, propylitic, and phyllic, which were mainly related to the epithermal
ore deposits. The laboratory spectra of these types of alteration minerals are available in Figure 2,
which were resampled to the ASTER spectral bands [74]. Gossans are important guides to buried
metallic ore deposits and are usually found in the upper and exposed part of an ore deposit or mineral
vein, which involves intensely oxidized and weathered rocks [75]. Iron oxide and hydroxide minerals
such as goethite, hematite, jarosite, and limonite are known to be indicative minerals of a gossan [75].
According to Figure 2a, these minerals showed an absorption feature in bands 1–3, located in the VNIR
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portion of the electromagnetic spectrum due to electronic transitions, and a reflectance feature in band
4 (1.65 µm). Therefore, we selected bands 1–4 as the input to the PCA, ICA, and MNF techniques for
mapping gossans.
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Figure 2. Laboratory spectra of the indicative minerals in (a) gossans, (b) argillic, (c) propylitic, and
(d) phyllic hydrothermal alteration zones. These spectra were resampled to the advanced spaceborne
thermal emission and reflection radiometer (ASTER) spectral bands and are shown against wavelength
and band numbers in the second and third columns, respectively [74].

The indicative minerals that were considered for each hydrothermal alteration zone included
alunite, illite, kaolinite, and montmorillonite for argillic; calcite, chlorite, and epidote for propylitic;
and illite and muscovite for the phyllic alteration zones. As shown in Figure 2b, the clay minerals that
constituted the major part of argillic alteration and usually exhibited aluminum hydroxide spectral
features caused by vibrational processes, showed an absolute and relative reflectance feature in bands
4 (1.65 µm) and 7 (2.26 µm), respectively. Moreover, there was an absolute absorption in band 5
(2.165 µm). Therefore, we selected bands 1, 4, 5, and 7 as a spectral subset for enhancing the argillic
alteration zones. According to Figure 2c, the indicative minerals of propylitic alteration, particularly
chlorite and epidote showed an absolute and relative reflection in bands 5 (2.165 µm) and 4 (1.65 µm).
Additionally, there was an absolute absorption in band 8 (2.33 µm) that was attributed to the vibrations
of OH groups bound to the Fe and Mg cations. Therefore, we selected bands 1, 4, 5, and 8 as a
spectral subset for enhancing propylitic alteration zones. According to the field observation, illite
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and muscovite minerals constituted most of the phyllic alteration zones in the study area. As shown
in Figure 2d, there was an absolute and relative reflectance in bands 4 (1.65 µm) and 7 (2.26 µm),
respectively. Additionally, there was an absolute absorption in band 6 (2.205 µm), due to the presence
of aluminum hydroxide compound. Therefore, we selected bands 1, 4, 6, and 7 as a spectral subset for
enhancing the phyllic alteration zones.

We used statistical analyses for selecting the meaningful component for enhancing each alteration
type, derived from different transformation techniques. The concentration-area (C-A) fractal method
was applied for determining an appropriate threshold for discriminating between the anomaly
population and the background in each selected component [76]. The number of correctly classified
rock samples was used to assess the accuracy of each selected component in terms of consistency with
field observations, and to help us find the appropriate transformation technique for mapping each
alteration type [77].

3.3. Integration of Hydrothermal Alteration Thematic Layers Using Fuzzy Logic

We used a logistic function for scaling input components to the integration process between
0 and 1 [78]. These components were integrated using a knowledge-driven approach based on
fuzzy logic. The components were weighted from 1 to 10, using a subjective judgement based on
the metallogenic models presented for hydrothermal mineralization and expert knowledge [79–81].
The more favorable the alteration type, the higher weight it took. The phyllic alteration is known to
be highly associated with hydrothermal mineralization and is usually found close to the center of a
mineralization system [82,83]. This alteration type is given the highest weight equal to 9. The argillic
alteration and gossans are considered to be exploration guides and are usually not associated with target
hydrothermal mineralization [84]. They are usually found in the surrounding regions of mineralization
and were weighted 7. The propylitic alteration usually constitute the outermost ring of hydrothermal
mineralization on the ground surface [85] and was given the lowest weight equal to 3. We applied
the fuzzy gamma operator for integrating input components. The fuzzy gamma operator allowed
a judicious choice of gamma, leading to an output that ensured a flexible compromise between the
increasing trend of fuzzy algebraic sum and the decreasing effect of fuzzy algebraic product [86].
In this study, the fuzzy gamma operator was experimented with changing gamma values in the range
of 0 and 1. The most satisfying map was obtained when the gamma equaled 0.9, which yielded the
highest prediction rate based on the prediction-area (P-A) plots. We used the prediction-area plots
in order to quantitatively validate the remote sensing evidential layers derived from the integration
of transformation techniques, using different gamma values [87]. Moreover, we investigated the
spatial association of anomalous zones and known hydrothermal mineral occurrences. The detailed
methodology flowchart of this study is presented in Figure 3.

3.4. Field Survey

A field survey was planned for collecting samples from the detected hydrothermal alteration
zones and verifying the results. We used a handheld global positioning system navigator (Garmin eTrex
10), with an accuracy of less than 15 m, for recording the coordinates of the samples. Overall, 55 rock
samples were collected from different alteration zones and lithological units, for the microscopic studies
and X-ray diffraction (XRD) analysis. The XRD analysis was carried out using Bruker AXS D8 Advance
at the University of Tehran. The field data were used for selecting the appropriate transformation
technique for enhancing each alteration type.
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4. Results

4.1. Hydrothermal Alteration Mapping Using PCA

The eigenvectors of each selective principal component analysis used for enhancing the gossans,
argillic, propylitic, and phyllic alteration zones presented in Tables 1–4, respectively. The eigenvectors
of each selective PCA are plotted in Figure 4. According to the spectral characteristics of the indicative
minerals in the gossans shown in Figure 2a and the graphs presented in Figure 4a, negated PC 2 in PCA
(1234) was considered for enhancing the gossans. This principal component showed a high negative
loading in band 4 and an average constant and positive loading in bands 1–3. The relevant eigenvector
showed a similar, but reverse trend, compared to the spectral graphs of the indicative minerals in



Remote Sens. 2020, 12, 1261 9 of 29

gossans, such as jarosite. Therefore, the target areas appear in dark pixels in the original component,
which had to be negated.

According to Table 2 and Figure 4b, the negated PC 4 in PCA (1457) was considered to be the
component that could be used for enhancing the argillic alteration zones. In the relevant eigenvector,
there was a large difference between the loadings in bands 5 and 7, and they showed opposite signs.
This large difference was consistent with the spectral behavior of the indicative minerals in argillic
alteration zones, such as alunite and kaolinite. The target areas appeared as dark pixels due to the
reverse trend of the relevant eigenvector, compared to the target spectral behavior, thus the negated
component was used for mapping the anomalous pixels. Based on the results presented in Table 3
and Figure 4c, the negated PC 4 in PCA (1458) enhanced the propylitic alteration zones. The relevant
eigenvector to this PC showed a large difference between the loadings in bands 5 and 8, with opposite
signs. This was similar to the spectral behavior of the indicative minerals in the propylitic alteration
zones, such as chlorite and epidote. Similar to the reason mentioned above for the argillic alteration
zones, the target zone in this component also appeared in dark pixels, and the negated component was
used for enhancing the phyllic alteration zones.

According to Table 4 and Figure 4d, PC 3 in PCA (1467) was considered to be the component that
could be used for enhancing the phyllic alteration zones. The relevant eigenvector showed a large
difference between the loadings in bands 6 and 7, with opposite signs. Although PC 4 showed a larger
difference, only the relevant eigenvector to PC 3 followed a similar trend to the spectral graphs of the
indicative minerals in the phyllic alteration zones, such as muscovite. The anomalous areas in this
component are displayed in bright pixels.

Table 1. Eigenvectors of the principal component analysis on a spectral subset of the ASTER data for
detecting the gossans in the study area.

Eigenvectors Band 1 Band 2 Band 3 Band 4

PC 1 0.341997 0.472648 0.499262 0.640608
PC 2 0.321681 0.413772 0.371346 −0.76643
PC 3 −0.680078 −0.19108 0.706279 −0.046394
PC 4 0.563075 −0.754244 0.337652 −0.007266

Table 2. Eigenvectors of the principal component analysis on a spectral subset of the ASTER data for
detecting the argillic alteration zones in the study area.

Eigenvectors Band 1 Band 4 Band 5 Band 7

PC 1 0.207235 0.505504 0.51344 0.66174
PC 2 0.947905 −0.240599 −0.203849 0.045107
PC 3 0.202174 0.78474 −0.113303 −0.574867
PC 4 0.132878 −0.266011 0.825825 −0.47916

Table 3. Eigenvectors of the principal component analysis on a spectral subset of the ASTER data for
detecting the propylitic alteration zones in the study area.

Eigenvectors Band 1 Band 4 Band 5 Band 8

PC 1 −0.264923 −0.649083 −0.657148 −0.276883
PC 2 −0.953077 0.22522 0.19047 −0.068121
PC 3 −0.050172 −0.725165 0.666135 0.166981
PC 4 −0.13763 −0.045865 −0.296886 0.943829
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Table 4. Eigenvectors of the principal component analysis on a spectral subset of the ASTER data for
detecting the phyllic alteration zones in the study area.

Eigenvectors Band 1 Band 4 Band 6 Band 7

PC 1 0.18246 0.442498 0.657435 0.581965
PC 2 0.961565 −0.24002 −0.130325 0.028251
PC 3 0.120262 0.801479 −0.585627 0.014461
PC 4 −0.166245 −0.322827 −0.455889 0.812595

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 30 

 

PC 4 0.132878 -0.266011 0.825825 -0.47916 

Table 3. Eigenvectors of the principal component analysis on a spectral subset of the ASTER data for 
detecting the propylitic alteration zones in the study area. 

Eigenvectors Band 1 Band 4 Band 5 Band 8 
PC 1 -0.264923 -0.649083 -0.657148 -0.276883 
PC 2 -0.953077 0.22522 0.19047 -0.068121 
PC 3 -0.050172 -0.725165 0.666135 0.166981 
PC 4 -0.13763 -0.045865 -0.296886 0.943829 

Table 4. Eigenvectors of the principal component analysis on a spectral subset of the ASTER data for 
detecting the phyllic alteration zones in the study area. 

Eigenvectors Band 1 Band 4 Band 6 Band 7 
PC 1 0.18246 0.442498 0.657435 0.581965 
PC 2 0.961565 -0.24002 -0.130325 0.028251 
PC 3 0.120262 0.801479 -0.585627 0.014461 
PC 4 -0.166245 -0.322827 -0.455889 0.812595 

 

 
Figure 4. Trends of eigenvectors related to the selective principal component analysis on the ASTER 
spectral bands presented in Tables 1–4, are shown in a–d, respectively. 

The principal components obtained were in the form of grayscale images and needed to be 
converted into binary images, through mapping alteration zones. Based on the pixel values, C-A plots 
were generated on a logarithmic scale for each principal component selected, to enhance the different 
alteration zones. These plots are presented in Figure 5. The inflection points in these plots were 
considered to be the appropriate thresholds for separating the different populations, including 
background and anomaly. In Figure 6, we present the enhanced alteration zones, using PCA based 
on the C-A fractal method. The alteration zones were overlaid on the hillshade of the study area 
created by the ASTER digital elevation model. 

Figure 4. Trends of eigenvectors related to the selective principal component analysis on the ASTER
spectral bands presented in Tables 1–4, are shown in (a–d), respectively.

The principal components obtained were in the form of grayscale images and needed to be
converted into binary images, through mapping alteration zones. Based on the pixel values, C-A
plots were generated on a logarithmic scale for each principal component selected, to enhance the
different alteration zones. These plots are presented in Figure 5. The inflection points in these plots
were considered to be the appropriate thresholds for separating the different populations, including
background and anomaly. In Figure 6, we present the enhanced alteration zones, using PCA based on
the C-A fractal method. The alteration zones were overlaid on the hillshade of the study area created
by the ASTER digital elevation model.
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4.2. Hydrothermal Alteration Mapping Using ICA

We applied the same spectral subsets used in PCA for independent component analysis and
for enhancing the target alteration zones. Before performing the independent component forward
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calculation, we used the principal component rotation for data whitening with the same eigenvectors,
as presented in Tables 1–4. Two main discrepancies for extracting components using ICA were: (i) There
was no order of magnitude associated with each component in ICA. This meant that no better or worse
component could be selected and other criteria such as two-dimensional (2D) spatial coherence might
be considered by the user. (ii) The extracted components were invariant to the sign of the sources [88].
There are different ways to determine the most suitable IC for enhancing a target alteration zone. One
way is to compare the spectral profile of both anomalous bright and dark pixels of each IC with the
reference spectra. The other is to compare anomalous pixels of each IC with known criteria, such as
the known color of each alteration zone, in specific false color composite images. For instance, argillic,
propylitic, and phyllic alteration zones are displayed in pink, light green, and dark magenta, in the
false color composite image created using bands 4, 6, and 8 of the ASTER data in red, green, and blue
channels, respectively.

In this study, the independent components were sorted, based on the 2D spatial coherence, which
is the average of the two correlation coefficients. One correlation coefficient was calculated between
each spectral band and a version of itself, offset by one line. The other correlation coefficient was
calculated between each spectral band and a version of itself, offset by one sample. Using the 2D
spatial coherence sorting, independent components that contained the spatial structure and most of the
information, appeared first, and those that contained little spatial structure and more noise appeared
last. Based on these results, negated IC 2, IC 3, negated IC 2, and negated IC 3 were recognized as
the most suitable components for enhancing gossans, argillic, propylitic, and phyllic alteration zones,
respectively. As shown in Figure 7, the appropriate threshold for separating the anomalous pixels of
the selected ICs were determined using the C-A fractal plots. The enhanced alteration zones using the
ICA and based on the C-A fractal plots are presented in Figure 8.
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4.3. Hydrothermal Alteration Mapping Using MNF

We used identical spectral subsets to the PCA and ICA as input to this technique. We presented
the transformation vectors of each selective MNF analysis used for enhancing the gossans, argillic,
propylitic, and phyllic alteration zones in Tables 5–8, respectively. The transformation vectors of each
analysis are shown in Figure 9. According to the spectral characteristics of the indicative minerals in
gossans (shown in Figures 2a and 9a), the second component (C 2) in MNF (1234) was considered for
enhancing gossans. This component showed a relatively similar trend to the spectral graphs of the
indicative minerals in gossans. Therefore, the target areas appeared in bright pixels in this component.

Table 5. Transformation vectors of minimum noise fraction (MNF) analysis on a spectral subset of the
ASTER data for detecting gossans in the study area.

Transformation Vectors Band 1 Band 2 Band 3 Band 4

C 1 0.001754 −0.00002 0.000029 −0.01711
C 2 −0.01966 −0.00557 0.007738 0.005621
C 3 −0.024987 0.004426 0.018885 −0.00362
C 4 0.022636 −0.033569 0.017022 −0.000533
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Table 6. Transformation vectors of MNF analysis on a spectral subset of the ASTER data for detecting
the argillic alteration zones in the study area.

Transformation Vectors Band 1 Band 2 Band 3 Band 4

C 1 0.001734 −0.013649 −0.011389 0.005532
C 2 −0.005871 0.034231 −0.025712 −0.005107
C 3 0.014524 0.007016 −0.019229 0.005719
C 4 −0.008015 −0.004828 −0.015279 0.018378

Table 7. Transformation vectors of MNF analysis on a spectral subset of the ASTER data for detecting
the propylitic alteration zones in the study area.

Transformation Vectors Band 1 Band 2 Band 3 Band 4

C 1 −0.001556 0.016958 0.013699 −0.028643
C 2 −0.006848 0.031257 −0.016662 −0.03121
C 3 −0.009486 −0.015755 0.028617 −0.024276
C 4 −0.013196 −0.00112 −0.012047 0.044362

Table 8. Transformation vectors of MNF analysis on a spectral subset of the ASTER data for detecting
the phyllic alteration zones in the study area.

Transformation Vectors Band 1 Band 2 Band 3 Band 4

C 1 0.001676 −0.01846 −0.003035 0.004273
C 2 0.004374 −0.032869 0.020412 0.001996
C 3 0.016131 0.003897 −0.010992 0.004757
C 4 0.005622 0.007379 0.010819 −0.019848
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According to Table 6 and Figure 9b, we considered C 2 in MNF (1457) as the appropriate component
for enhancing argillic alteration zones. In the relevant transformation vector, there was a relatively
high difference between the loadings in bands 5 and 7. This difference was consistent with the spectral
behavior of the indicative minerals in the argillic alteration zones, such as alunite and kaolinite. The
target areas appeared in bright pixels in this component. Based on the results in Table 7 and Figure 9c,
negated C 4 in MNF (1458) enhanced the propylitic alteration zones. The relevant transformation
vector to this component showed a relatively high difference between the loadings in bands 5 and 8,
with opposite signs. This was similar to the spectral behavior of the indicative minerals in propylitic
alteration zones, such as chlorite and epidote. The target zone in this component appeared in dark
pixels, and the negated component was used for enhancing the phyllic alteration zones.

According to Table 8 and Figure 9d, we considered negated C 2 in MNF (1467) as the component
that could be used for enhancing the phyllic alteration zones. The relevant transformation vector
showed a relatively large difference between the loadings in bands 6 and 7, with opposite signs.
Although C 4 showed a higher difference, only the relevant transformation vector to C 2 followed
a similar trend to the spectral graphs of the indicative minerals of phyllic alteration zones, such as
muscovite. The anomalous areas in this component are displayed in dark pixels.

As shown in Figure 10, we determined the appropriate thresholds for separating anomalous pixels
of the selected MNF components, using the C-A fractal method. We present the enhanced alteration
zones using the MNF analysis based on the C-A fractal method in Figure 11.

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 30 

 

Figure 9. Trends of transformation vectors related to the selective MNF analysis on the ASTER 
spectral bands presented in Tables 5–8, are shown in a–d, respectively. 

As shown in Figure 10, we determined the appropriate thresholds for separating anomalous 
pixels of the selected MNF components, using the C-A fractal method. We present the enhanced 
alteration zones using the MNF analysis based on the C-A fractal method in Figure 11. 

 
Figure 10. Logarithmic scaled plots of area versus pixel values for the selected MNF components for 
enhancing the (a) gossans, (b) argillic, (c) propylitic, and (d) phyllic alteration zones. 

 

Figure 10. Logarithmic scaled plots of area versus pixel values for the selected MNF components for
enhancing the (a) gossans, (b) argillic, (c) propylitic, and (d) phyllic alteration zones.



Remote Sens. 2020, 12, 1261 16 of 29

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 30 

 

Figure 9. Trends of transformation vectors related to the selective MNF analysis on the ASTER 
spectral bands presented in Tables 5–8, are shown in a–d, respectively. 

As shown in Figure 10, we determined the appropriate thresholds for separating anomalous 
pixels of the selected MNF components, using the C-A fractal method. We present the enhanced 
alteration zones using the MNF analysis based on the C-A fractal method in Figure 11. 

 
Figure 10. Logarithmic scaled plots of area versus pixel values for the selected MNF components for 
enhancing the (a) gossans, (b) argillic, (c) propylitic, and (d) phyllic alteration zones. 

 

Figure 11. Anomalous pixels of different MNF components determined using the C-A plots for
enhancing the (a) gossans, (b) argillic, (c) propylitic, and (d) phyllic alteration zones, overlaid on the
hillshade of the study area.

4.4. Field Data and Laboratory Analysis

A comprehensive geological fieldwork was carried out in the study area, particularly in the
alteration zones detected using the applied transformation techniques. The photos taken from different
alteration types, such as phyllic, argillic, propylitic, and gossan are presented in Figure 12. We collected
55 rock samples from the prospects and used some of them for creating thin sections and the rest
were sent for the XRD analysis (Figure 15). We carried out petrographic studies on the thin sections
shown in Figure 13, which indicated the transformation of primary silicate minerals (feldspars) such as
plagioclase to secondary altered minerals (calcite, clay minerals, epidote, and sericite). The opaque
minerals constituted a notable part of the thin sections created using the rock samples collected from
argillic and phyllic alteration zones. In the propylitic zone, the original minerals were fully replaced
with secondary minerals (calcite and epidote). The minerals identified using the XRD analysis shown
in Figure 14, included montmorillonite, illite, goethite, hematite, muscovite, albite, orthoclase, and
quartz in the argillic zone; epidote, calcite, chlorite, albite, anorthite, and quartz in the propylitic zone;
muscovite, illite, hematite, magnetite, albite, epidote, calcite, montmorillonite, and quartz in the phyllic
zone; and goethite, hematite, kaolinite, muscovite, illite, and quartz in gossans.

The results using the XRD analysis indicated that most of the diagnostic spectral features in the
argillic alteration zones were due to the presence of montmorillonite and illite; in the propylitic zone
these were associated with chlorite, epidote, and calcite; in the phyllic zone these were derived from
muscovite; and in gossans these were related to goethite and hematite. Moreover, we found that iron
oxide or hydroxide minerals were associated with the alteration mineral assemblages in the argillic,
propylitic, and phyllic alteration zones.
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Figure 12. Photos taken from different alteration types including (a) phyllic alteration, (b) phyllic
alteration associated with clay minerals known as the indicators of argillic alteration, (c) phyllic
alteration associated with iron oxide and hydroxide minerals, (d) propylitic alteration, and (e) gossan.
(f) Close view of a vein-type mineralization hosted by a silicified rock.
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Figure 13. Thin sections of different types of alteration mineralogy. Microphotographs of (a,b) argillic
alteration zone—plagioclase replaced with sericite and clay mineral groups; (c,d) phyllic zone—opaque
minerals and plagioclase replaced with clay mineral groups and quartz; and (e,f) propylitic
zone—completely replaced original mineralogy by calcite, epidote, chlorite, and quartz.
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4.5. Integration of Selected Components
Fifty-five rock samples that were collected from the study area (shown in Figure 15) were used

to generate the confusion matrix of each transformation technique (Table 9). The component with
the highest number of correctly classified samples was selected for enhancing each alteration type.
These components were integrated by generating the remote sensing evidential layer. Moreover, the
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overall accuracy of each transformation technique is presented in Table 9, which was the ratio of the
total number of correctly classified samples in each confusion matrix to the total number of samples.
The overall accuracy was used to assess the accuracy of each transformation technique. This ratio had
a clear meaning and was simple to estimate [89].
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Table 9. Confusion matrices of the transformation techniques used for enhancing different alteration types.

Ground Truth
PCA Gossan Argillic Propylitic Phyllic

Gossan 14 1 0 0
Argillic 1 11 0 3

Propylitic 1 0 9 0
Phyllic 0 2 0 13

Overall accuracy 0.85
ICA

Gossan 13 1 0 1
Argillic 0 13 0 2

Propylitic 2 0 8 0
Phyllic 0 1 0 14

Overall accuracy 0.87
MNF

Gossan 12 2 0 1
Argillic 0 14 0 1

Propylitic 3 0 7 0
Phyllic 0 3 0 12

Overall accuracy 0.81

We experimented with different gamma values for integrating the weighted components selected
for enhancing different alteration types. Based on the prediction rates obtained by the P-A plots, gamma
0.9 was used for generating the remote sensing evidential layer. Using a P-A plot, we showed the
cumulative percentage of predicted mineral occurrences and the corresponding cumulative occupied
area, with respect to the total area, against the pixel values. Therefore, the prediction ability of the
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integrated map and its ability to delimit the exploration area for further investigation was evaluated in
a scheme. The P-A plot showed a curve of the percentage (prediction rate) of known mineralization
and a curve of the percentage of the occupied area corresponding to the classes of a map [90]. When
an intersection point of the two curves was at a higher place, it portrayed a small area containing a
large number of known mineral occurrences. The prediction rate in the P-A plots helped analyze the
efficiency and association of a map in predicting target mineralization. We presented the P-A plot of
the integrated map obtained using gamma 0.9 in Figure 16, which showed a higher prediction rate
compared to other gamma values. According to the plot, the integrated map was able to predict 70%
of the mineral occurrences in 30% of the study area. It is noteworthy that for assigning probabilistic
values to the map, in terms of prospecting for the hydrothermal mineralization and distribution of the
pixel values between 0 and 1, these were transformed to a fuzzy space using a linear function. We used
the C-A fractal plot for classifying the integrated map and separating the anomaly population; shown
in Figure 17. The classified integrated map which was suggested to be used as the remote sensing
evidential layer, was presented in Figure 18a. The red-colored class could be considered to be the
certain anomaly population. Moreover, we presented another map classified using the Jenks Natural
Breaks [91] in Figure 18b, to provide a higher number of classes.
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5. Discussion

In this study, we applied different dimensionality reduction or transformation techniques on
the ASTER data for mapping the gossans and hydrothermal alteration zones in a mineral-rich range
located in Central Iran called Toroud-Chahshirin. It is thought that subpopulation samples, such
as hydrothermal alteration zones, are more distinguishable using the components derived from the
transformation techniques, such as PCA, ICA, and MNF. Thus, these components might provide clear
geological meanings for interpretation. However, principal and independent components do not
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genetically correspond to distinct geological features, due to the intimate mixing of geological units or
alteration types. The transformation techniques provided exploratory tools to view data from another
perspective. We used this type of techniques to provide useful information, based on the knowledge of
actual geological problems.

Principal component analysis is an orthogonal decomposition and we used it based on covariance
matrix analysis and the Gaussian assumption, while independent component analysis is based on a
non-Gaussian assumption of independent sources. The PCA and MNF use only second-order statistics,
while the ICA uses higher-order statistics. Higher-order statistics is a stronger statistical assumption
that reveals interesting features in the usually non-Gaussian datasets. If the feature of interest, such as
a hydrothermal alteration zone only occupies a small portion of all pixels, it makes an insignificant
contribution to the covariance matrix. In the PCA, the feature of interest would be probably buried in
the noisy bands, while in ICA and MNF, the features are distinguished from the noisy bands. Based
on the spectral characteristics of the indicative minerals of each hydrothermal alteration zone, we
selected four spectral bands with diagnostic absorption and reflection characteristics as the input
to the transformation techniques. The selective approach was preferred to the standard approach,
due to the ease of interpreting the results based on the characteristic spectral behavior of each target
zone. In PCA and MNF, we used the eigenvectors and transformation vectors for determining the
appropriate component for detecting each alteration zone. In the ICA, we determined the target
components based on the spectral behavior of known alteration zones.

We used the C-A plots for discriminating between the anomalous pixels and the background in
each component were determined to be appropriate for enhancing the target zones. The maps created
using the PCA and ICA for enhancing the gossans, showed a similar pattern, along with the number
of correctly classified samples, whereas the ICA component showed a less noisy pattern. The MNF
technique yielded a less accurate map and interference of vegetation and iron oxide/hydroxide-bearing
pixels could be observed. The PCA failed to provide an acceptable map for enhancing the argillic
alteration zones and the relevant component showed a noisy pattern and a low number of correctly
classified samples. The ICA and MNF components showed a relatively similar pattern for the argillic
alteration zones, whereas the ICA provided a less noisy pattern. The respective transformations
applied in this study, showed a relatively similar number of correctly classified samples and pattern
for the propylitic alteration zones. However, the MNF component was noisier compared to the other
components. The ICA and MNF components provided a similar map for enhancing the phyllic
alteration zones, while the PCA yielded a noisy map. Nevertheless, the number of correctly classified
samples for all components was almost the same.

According to the field observations and Table 9, the applied techniques and to a greater extent, ICA,
efficiently revealed the alteration halos. The components derived from the ICA showed the highest
overall accuracy. The results indicated that the ICA has a great ability for providing comprehensive
and significant exploration information at a regional scale. In general, the study area was dominantly
covered by advanced argillic, argillic, and phyllic alteration zones. Additionally, gossans and propylitic
alteration zones covered large parts of the study area. The argillic and phyllic alteration zones, along
with gossans were mostly focused in the central and western portions of the study area. The propylitic
alteration zone was located in the southwestern portion of the study area. Typically, gossans and
phyllic alteration zones showed the closest spatial relationship in many parts of the study area with the
hydrothermal mineralization. According to the results, there were a number of pixels which showed
anomalous values for different alteration zones. This confirmed the presence of alteration minerals
and their spatial distribution at the subpixel level in the study area.

According to the geological map presented in Figure 1, the gossans detected using the ICA were
correlated with andesitic and dacitic units. The argillic alteration zones were associated with andesitic
and dacitic units in central and northwestern, and the rhyolitic units in the southwestern portions of
the study area. The propylitic alteration zones located mostly in the southwest of the study area were
related to andesitic and rhyolitic units. The phyllic alteration zones in the central portion of the study
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area were associated with the andesitic and dacitic units, and were correlated with the dioritic units in
the western portion.

Based on the number of correctly classified samples presented in Table 9, we selected the
appropriate technique for enhancing each alteration type. The PCA components were selected for
enhancing the gossans and propylitic alteration, and we considered the ICA and MNF components for
enhancing phyllic and argillic alteration, respectively. The integrated map generated by combining the
weighted selected components using the fuzzy gamma operator (see Figure 18) showed an acceptable
prediction rate, based on the relevant P-A plot (see Figure 16). The results of fieldwork and XRD analysis
verified the presence of gossan, argillic, phyllic, and propylitic zones in the study area. Distinctive
spectral features related to montmorillonite, illite, chlorite, epidote, calcite, muscovite, goethite, and
hematite were found in the alteration zones. Moreover, new prospective areas were detected in the
western portions of the study area, along with the ring structures in northeast. The central portion
of the study area was a high-altered zone associated with different metallic ore deposits. This map
could be used as an efficient evidential layer through mineral prospectivity mapping of the study area.
This methodology could be extrapolated to the unexplored regions for identifying new prospects of
high-potential base metal mineralization zones in Central Iran and other arid or semi-arid regions
on earth.

6. Conclusions

This study compared the efficiency of different dimensionality reduction or transformation
techniques in terms of enhancing various types of the hydrothermal alteration in the Toroud-Chahshirin
range located in Central Iran, using ASTER satellite data. Moreover, a framework was proposed for
selecting and integrating the appropriate techniques through enhancing each alteration type, which
led to generating a reliable remote sensing evidential layer. In this framework, a selective approach
was used for implementing the transformation techniques based on the spectral characteristics of the
indicative minerals in each alteration zone. Based on the field observations, we used the number of
correctly classified rock samples for investigating the accuracy of each component in detecting different
types of hydrothermal alteration zones. In parts of the study area, different alteration types were
collocated and the results confirmed the presence of alteration minerals and their spatial distribution
at the subpixel level. In general, ICA provided more accurate and less noisy maps, compared to the
other techniques. We selected the components with the highest number of correctly classified samples
for the integration process by providing a remote sensing evidential layer. The fuzzy gamma operator
was used for generating an integrated map based on the components derived from the transformation
techniques. The integrated map showed a high prediction rate that implied the efficiency of the
proposed framework. Moreover, this map was consistent with the results of petrographic and XRD
analysis. Using the integrated map, high potential zones of the hydrothermal mineralization were
identified in the study area, particularly in the western and northeastern portions, which could be
considered for future systematic exploration programs. The methodology used in this study could be
applied for mapping hydrothermal alteration zones in other metallogenic provinces in the arid and
semi-arid regions around the world.
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