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Abstract: Quantifying uncertainties of precipitation estimation, especially in extreme events,
could benefit early warning of water-related hazards like flash floods and landslides. Rain gauges,
weather radars, and satellites are three mainstream data sources used in measuring precipitation but
have their own inherent advantages and deficiencies. With a focus on extremes, the overarching goal
of this study is to cross-examine the similarities and differences of three state-of-the-art independent
products (Muti-Radar Muti-Sensor Quantitative Precipitation Estimates, MRMS; National Center
for Environmental Prediction gridded gauge-only hourly precipitation product, NCEP; Integrated
Multi-satellitE Retrievals for GPM, IMERG), with both traditional metrics and the Multiplicative
Triple Collection (MTC) method during Hurricane Harvey and multiple Tropical Cyclones. The results
reveal that: (a) the consistency of cross-examination results against traditional metrics approves the
applicability of MTC in extreme events; (b) the consistency of cross-events of MTC evaluation results
also suggests its robustness across individual storms; (c) all products demonstrate their capacity of
capturing the spatial and temporal variability of the storm structures while also magnifying respective
inherent deficiencies; (d) NCEP and IMERG likely underestimate while MRMS overestimates the
storm total accumulation, especially for the 500-year return Hurricane Harvey; (e) both NCEP and
IMERG underestimate extreme rainrates (>= 90 mm/h) likely due to device insensitivity or saturation
while MRMS maintains robust across the rainrate range; (g) all three show inherent deficiencies in
capturing the storm core of Harvey possibly due to device malfunctions with the NCEP gauges,
relative low spatiotemporal resolution of IMERG, and the unusual “hot” MRMS radar signals.
Given the unknown ground reference assumption of MTC, this study suggests that MRMS has the
best overall performance. The similarities, differences, advantages, and deficiencies revealed in
this study could guide the users for emergency response and motivate the community not only to
improve the respective sensor/algorithm but also innovate multidata merging methods for one best
possible product, specifically suitable for extreme storm events.
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1. Introduction

Extreme rainfall events associated with flash floods [1,2], landslides [3,4], and debris flow [5] often
lead to tremendous damages to properties and fatalities. According to Cerveny [6] and Mazzoglio [7],
extreme rainfall events are becoming more frequent. It is thus an increasing concern for emergency
agencies, researchers, and the public, especially residents in coastal cities [8]. Tropical cyclones carry a
considerable amount of water vapor from oceans inland and are the predominant cause of deaths in
the United States and disruption to transportation, utilities, communications, and agriculture [8–10].
Hurricane Harvey, starting as a tropical storm, became a category four hurricane while making landfall
in Texas causing devastating urban flooding and fatalities in August 2017. Based on the survey by
Emanuel [11], Hurricane Harvey had reached the heaviest rainfall record in the history of the United
States and caused at least 70 casualties, and an economic loss beyond 150 billion US dollars [11,12].
In Fall 2019, another tropical cyclone Imelda made landfall in Texas, with a recorded 1096 mm of
rainfall that occurred in Jefferson County, which is ranked as the fourth-highest rainfall record in the
history. Two additional tropical cyclones Bill and Cindy, influenced southeast Texas and brought in
copious amounts of rainfall in 2015 and 2017, respectively.

Traditionally, rainfall is estimated by gauges as a direct measurement but only at a point scale [13].
Even though gauge data are often treated as the “ground truth” for rainfall measurement, they
are still not impeccable due to splash-out during heavy rainfall, lack of sensitivity to light rain rates,
under-catching by wind drift, and evaporation [14–16]. Especially in heavy rain events, multiple studies
have demonstrated that the error caused by these inherent factors is not trivial [15,16]. Luyckx [15]
investigated the disadvantages of tipping bucket rain gauges during extreme weather conditions
and found there was an underestimation of rainfall volumes due to loss of water during the tipping
action from the comparison of 24 well calibrated gauges. Molini et al. [16] quantified the bias as an
underestimation from 60% to 100% for the 1h design rainfall and return periods from 20 to 200 years.
The wind from tropical cyclones would substantially affect the performance of rain gauges as well,
with the relative bias ranging from 5% to 80% [17]. Besides the systematic error, when interpolating
point samples, errors caused by spatial interpolation accounts for 50% to 80% of the total difference
depending upon the gauge quality and density [14,18]. Stampoulis and Anagnostou [19] discovered
that the convective nature of rainfall can also increase gauge-interpolation uncertainties. All these
may result in problems when one applies gauge-based corrections for other products, for example,
radar QPE, satellite precipitation estimation in extreme events.

In the past three decades, the emerging radar technology has been applied in meteorology to
estimate rainfall by emitting and receiving electromagnetic signals. The most prominent advantage
of radar over rain gauges is that radar provides a more refined spatiotemporal scale and a larger area
coverage. However, since it is an indirect measurement of rain rate, radar technology itself produces and
propagates errors in its end products. The uncertainties of radar-based precipitation estimation can be
categorized as incorrect calibration, sampling representativeness, non-weather echoes, and uncertainties
in Z-R relations [14,17,20–23]. These inherent systematic errors are challenging to mitigate by improving
radar technology alone. Thus, many researchers chose to blend radar with rain gauges and satellite
data to improve the performance, for example, Kriging with External Drift (KED) [24,25], Mean
Field Bias Correction (MFB) [26]. A few studies investigated the bias of radar rainfall products in
excessive rainfall events [17,20,27,28]. Kidd et al. [28] compared ground-radar Quantitative Precipitation
Estimation (QPE) with gauge data in Germany, and the results indicated radar overestimation in
convective rainfall regimes. Medlin et al. [17] evaluated National Weather Service (NWS) Weather
Surveillance Radar-1988 Doppler (WSR-88D) during Hurricane Danny. They concluded that both radar
and rain gauge seriously underestimated rainfall. Cao et al. [20] evaluated the performance of S-band
dual-polarized radar in Hurricane Irma in which the radar showed nearly 50% of underestimation.
Gao et al. [29] evaluated the performance of Multi-Radar Multi-Sensor (MRMS) QPE during Hurricane
Harvey. MRMS QPE underestimated the total accumulated rainfall by a small factor and overestimated
very light precipitation.
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Another commonly used data source is remote sensing satellite, attributing to the advantages of
broad spatial coverage and an ability to scan downward over complex terrain [13,30]. Satellite-based
precipitation products utilize the information provided by visible-infrared (VIS-IR) channels from
geostationary (GEO) satellites, passive microwave (PMW) sensors, and spaceborne radars from low
orbiting (LEO) satellites. Just like weather radar QPE, satellite rainfall retrieval is also an indirect
measurement of rainfall. Many previous works [12,30,31] stated that satellite data would underestimate
the magnitude of high rainfall rates. Hong et al. [32] stated that satellite performance degrades with the
increase of rain rate but has higher relative bias in the light rain. Chen et al. [27] compared four satellite
precipitation products (SPPs) and ground-based radar with gauge references for Typhoon Morakot,
and they found that SPPs underestimate extreme rainfall. Omranian et al. [12] evaluated Integrated
Multi-satellitE Retrievals for GPM (IMERG) Version 5 final gauge-adjusted products with the National
Weather Service/National Centers for Environmental Prediction (NWS/NCEP) River Forecast Center
(RFC) Stage-IV Quantitative Precipitation Estimates (QPEs) as the reference in Hurricane Harvey.
They revealed that IMERG is able to detect the spatial variability of the rainfall field but suffered in
heavy rainrate regions.

Given the context that these independent data sources come with its respective inherent deficiencies,
researchers performed stochastic approaches to analyze these uncertainties [13,33]. Triple Collocation
(TC) has been proven to be a powerful statistical tool to estimate uncertainties within each of three
independent products [34–42]. TC was firstly applied to evaluate ocean surface wind variability
by inputting different wind products [41]. After that, it has been extended to determine errors of
sea surface temperature [36], sea surface salinity [43], and wave height [35]. Roebeling et al. [40]
were the first to apply TC in hydrometeorology to accommodate remote sensing, weather radar and
rain gauges in Europe. Massari et al. [38] compared the performance of five satellite precipitation
products over the U.S., and applied the TC method to evaluate correlation coefficients worldwide.
Alemohammad et al. [34] introduced the Multiplicative Triple Collocation method (MTC), suggesting its
appropriateness in rainfall error estimation and proposed a way to decompose the error term in order
to investigate the violation of assumptions. Li et al. [37] used the TC method to perform uncertainty
analysis for five SPPs, reanalysis data, and gridded gauge data over ungauged regions in Tibetan
Plateau in China after validating TC with traditional statistics. Tang et al. [44] first evaluated the
accuracy of snow observations for satellite precipitation products and reanalysis products.

To our knowledge, the TC and particular MTC methods have not been applied for evaluating
gauge-radar-satellite precipitation products, exclusively for extreme events. Thus, the overarching
goals of this study are to: (a) evaluate the applicability of MTC method in uncertainty assessment
under extreme events; and (b) investigate the similarities, differences, and deficiencies of each product
along with its inherent deficiency in extreme events. More specific objectives of this study include:

1. Evaluate the applicability of MTC in extreme events with the cross-examination of three products
using traditional metrics;

2. Further examine the stability of MTC method’s performance in multiple extreme events;
3. Understand gauge rainfall product uncertainties in extreme events, which are often associated

with splash-out, wind undercatch, as well as interpolation uncertainties;
4. Understand satellite QPE uncertainties in extreme events, which are associated with signals that

are indirectly tied to surface precipitation and poor spatiotemporal resolutions;
5. Understand radar QPE uncertainties in extreme events, which are associated with incorrect Z-R

formulations, non-weather signals, inadequate sampling;

This article is organized into four sections: Section 2 introduces the study domain and briefly
reviews the three state-of-the-art datasets being used in this study; Section 3 describes in detail the
formulas to derive Root Mean Squared Error (RMSE) and Correlation Coefficient (CC) from the TC
method; Section 4 analyzes the results from a broad overview and further examines the specific event
(Hurricane Harvey); and Section 5 provides the conclusions and future works.
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2. Materials and Methods

2.1. Study Domain

The area of interest is in the Gulf Coast of the U.S., where it has endured several events recently
and historically, as shown in Figure 1. It is one of the most frequently impacted areas by hurricanes,
such as Hurricane Dennis (2005), Isaac (2012), Harvey (2017), and tropical storms such as Bill (2015),
Cindy (2017), Imelda (2019) also affected this area in the past five years. Given that this study focuses on
the GPM era, Figure 1 illustrates the storm tracks and accumulative precipitation amount of Bill, Cindy,
and Imelda as well as Harvey, all after the year of 2015. Due to the unprecedented nature of Hurricane
Harvey, the three other tropical storms were selected for analysis to improve the generality of the
study findings. All three tropical storms were accumulated in total to match the Hurricane Harvey,
which gave the analogous data sample sizes and accumulative rainfall amounts for two comparable
study groups: Harvey and Other. The impacted area of the aforementioned events contains the
states of Texas, Oklahoma, Louisiana, Arkansas, Tennessee, Mississippi, and Alabama, which almost
accounts for 10 percent of the conterminous United States (CONUS). These events had similar moving
patterns in that they approached inland from the Gulf of Mexico and then bending towards the
northwest after making landfall, except for Imelda, which dissipated shortly after making the landfall.
Table 1 lists the details of four individual events, including their durations and maximum amount of
rainfall. Harvey was observed to contiguously produce rainfall across seven days. The durations of
the other three tropical cyclones (Bill, Cindy, Imelda) were as short as three days, two days, and four
days, respectively.

Figure 1. Accumulative rainfall for four events combined is measured by Multi-Radar Multi-Sensor
(MRMS) radar data. Four cyclone tracks are illustrated with lines. Red dots (numbers from 1 to 4) in
the bottom right panel are selected representative pixels in the Harvey core region.

Table 1. Events overview.

Hurricane/Storm Start Date End Date Duration Maximum Rainfall Amount

Harvey 25 August 2017 31 August 2017 7 days 1625 mm
Bill 16 June 2015 18 June 2015 3 days 496 mm

Cindy 22 June 2017 23 June 2017 2 days 233 mm
Imelda 18 September 2019 21 September 2019 4 days 1126 mm
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2.2. Datasets Description

The NCEP gridded gauge-only hourly precipitation product (hereafter denoted as NCEP) is an
operational product [45] covering the CONUS and parts of Puerto Rico. It is automatically derived
from approximately 3000 operational hourly rain gauge observations across 48 states to produce a
4 km/hour rainfall field, using the interpolation method from Seo [46] in which the Double Optimal
estimation (DO) and Single Optimal estimation (SO) are used to gain a conditional expectation of
the rainfall estimation. This technique accounts for fractional coverage of rainfall due to sparse
gauge networks. Gourley et al. [45] performed inter-comparisons of NCEP, NCEP Stage IV radar
QPE, and PERSIANN-CSS SPP, and demonstrated that NCEP delivers the best performance at longer
time scale, for example, seasonal, daily. However, it encounters underperformance at a shorter
time scale, i.e., one hour, especially for the convective scale storms. NCEP data were obtained
from the National Center for Atmospheric Research/Earth Observing Laboratory (NCAR/EOL):
https://data.eol.ucar.edu/dataset/21.088.

The MRMS radar-only product (hereafter MRMS) has around 180 integrated operational radars,
including 146 S-band and 30 C-band radars, creating seamless 3D radar mosaic across the CONUS
and Southern Canada at 1 km/2 min resolution [47]. It is selected because of the strict quality
control, involving filtering out non-hydrometeor signals, corrections for anomalous propagation,
beam blockage, vertical profile reflectivity (VPR) correction, and adaptive Z-R relations [47]. Despite the
adoption of these rigorous quality control steps, it still suffers from uncertainties of common issues
mentioned before. For our study, 1 km/2 min radar-based QPE were retrieved and aggregated by
averaging to 4 km/hourly, in order to be compatible with NCEP. Historical MRMS radar-only QPE
was downloaded at http://mtarchive.geol.iastate.edu/.

IMERG satellite precipitation final product V06 (hereafter IMERG [48]) is an integrated SPP from
its core satellite GPM Core Observatory (GPM CO), microwave constellations, Infrared, and additional
constellations, aiming at providing global coverage of rainfall field (90N-S from V06 onward) beyond
its predecessor Tropical Rainfall Measurement Mission (TRMM). GPM CO has additional channels of
dual-frequency precipitation radar (DPR) and GPM Microwave Imager (GMI), which are capable of
detecting very light precipitation and falling snow [49]. It produces three stages: early run, late run,
and final run with 4 h latency, 12 h latency, and 3.5 months latency, respectively, to accommodate
different purposes. The early run provides near real-time brief observations with inter-calibrated
satellite products primarily for operational forecasting, and the late run adds up the late coming
high-quality PMW data and climatological calibration to serve for agricultural purposes. The final run
compares the late run product with the Global Precipitation Climatology Project (GPCP), and adjust
the factor to compensate for under/over-estimation [48]. To account for the independence, we selected
the final run without calibration in this study. In order to perform pixel-wise analysis, we further
downscaled IMERG data using a nearest neighbor approach and then accumulated it up to hourly.
The current IMERG final run product V06 can be accessed at https://disc.gsfc.nasa.gov/datasets/
GPM_3IMERGHH_06/summary?keywords=IMERG.

2.3. TC Evaluations

2.3.1. Assumptions

A few assumptions are needed to comply for the TC method: (1) the three datasets should be
independent, for instance, they are derived from different instruments; (2) the errors of the datasets
should be independent or unrelated, which is referred to as zero cross-correlation. (3) The expectation
of error is treated as zero known as the unbiasedness, which is often described in a geostatistical
analysis, for example, kriging. Yilmaz and Crow [50] conducted experiments on the TC errors due to
the relevance of three products, and the results revealed that the more independent they are, the less TC
induced error. It is essential to consider the relevance of the inputs in order to make the TC method more
reliable [37]. The three precipitation products selected, i.e., gauge-only, radar-only, and satellites-only
meet the above criteria well because they are derived from different and independent instruments.

https://data.eol.ucar.edu/dataset/21.088
http://mtarchive.geol.iastate.edu/
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary?keywords = IMERG
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary?keywords = IMERG
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2.3.2. Expressions

The basics of the TC method is to treat three independent datasets as equally important, and thus
no bias is produced in between them. Since no ground truth values are assumed, the TC method then
uses a linear combination of three products and affine transformed error model to derive RMSE and
CC [42].

Ri = ai + biG + εi (1)

where Ri indicates each of the independent source data, G is the “relative truth”, ai, bi correspond
to the weights and biases to adjust, and ε represents the error for each product. Tian et al. [51] then
proposed a way to transform the additive error model to multiplicative by logarithmic transformation,
and it is proved to be more appropriate in rainfall error estimation [34,37,51]. Hence, the error model
can be reformed as:

ri = ai + big + εi (2)

From that, the rain rate and error model can be derived by transforming back into linear
combination so that it fits into the TC method.

ri = ai + big + εi (3)

where ri is the logarithmic form of rain rate Ri, ai = ln αi demonstrates the multiplicative error,
εi = ln εi indicates the residual error, and bi = βi as the deformation error. From linear Equation (3),
we are able to derive RMSE in the following set of equations based on the covariance of triples [39]:

σ2
r1 = Cov(r1, r1)− Cov(r1,r2)Cov(r1,r3)

Cov(r2,r3)

σ2
r2 = Cov(r2, r2)− Cov(r1,r2)Cov(r2,r3)

Cov(r1,r3)

σ2
r3 = Cov(r3, r3)− Cov(r1,r3)Cov(r2,r3)

Cov(r1,r2)

(4)

Because the model is transformed to be in additive form, these parameters, along with error,
should also be in logarithmic form. In the analysis of Alemohammad et al. [34], they transformed error
to linear scale by Taylor series expansion as first order approximation.

σri
2 =

(
σRi

µRi

)2
(5)

σRi = µRi σri (6)

σRi , σri , µRi here represent the RMSE in linear form, logarithmic form, and the mean of field. In doing
so, the error field could be identified in linear scale, meaning the same unit of mm/hour as rain
rate. McColl et al. [39] introduced a way to evaluate correlation coefficient (CC) from manipulating
covariance matrices in which CC is expressed below as a set of equations.

CC2
1 = Cov(r1,r2)Cov(r1,r3)

Cov(r1,r1)Cov(r2,r3)

CC2
2 = Cov(r1,r2)Cov(r2,r3)

Cov(r2,r2)Cov(r1,r3)

CC2
3 = Cov(r1,r3)Cov(r2,r3)

Cov(r3,r3)Cov(r1,r2)

(7)

To clarify the MTC calculated RMSE with traditional evaluation, thereafter we only use RMSE that
refers to MTC results and RMSD for traditional evaluation. Since both RMSE and CC are derived from
covariance between the three products, the MTC statistics reveal the relative error, which is treated
as uncertainties. Therefore, the less uncertain product or the best performance is the one that has the
lowest RMSE and highest CC. Likewise, the most uncertain is associated with the highest RMSE and
lowest CC. In the following content, the unit of RMSE is in logarithmic mm/hour and CC is unitless.
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2.3.3. Data Preparation

The rainfall data retrieved from each source have different spatial extends and resolutions.
To make them comparable, IMERG and MRMS are downscaled with nearest neighbors and aggregated
to the same resolution as NCEP, with 4 km in space and 1-hour in time. To fit in MTC, the rainfall
data should be logarithmically transformed. Previous studies demonstrated that the treatment of
zero values can be done either by simply removing zero values [34,38] or replacing with near-zero
values [37,40]. It is found that the displace with near-zero values can retain more sample sizes,
especially in event analysis [40]. Based upon previous suggestions [37,40], the NAN values are then
removed and zeros are replaced with 10−3 in this study. To obtain more robust results and filter out
noise, the bootstrapping strategy is utilized with 500 trials for evaluation at each pixel and the mean
values of RMSE and CC are used.

2.4. Conventional Statistical Metrics

A list of evaluation metrics is summarized in Table 2. As there is assumed no absolute ground
truth in the extreme events, the “error” is termed as “difference” between two products, for example,
Root Mean Squared Difference (RMSD). They are all computed in a domain at each pixel (4 by 4 km)
for each pair. For categorical indices between two products, the Probability of Detection (POD),
False Alarm Rate (FAR), Critical Success Index (CSI) are chosen as indicators to investigate the
sensitivity of rainfall detection. The reasons that NCEP is not regarded as reference are: (1) NCEP is
not well quality controlled; (2) it involves uncertainties from interpolation in space; (3) NCEP likely
encounters device problems in extreme rainfall events. It thus exposes more uncertainties and is
justified in our study analysis. The “reference” data in the denominator is chosen by the less uncertain
product calculated with regard to MTC method. The threshold for computing these categorical indices
is set to 0.1 mm/h [44].

Since it is also insightful to compute these metrics in a conditional way during extreme events [52],
they are conditioned to regions within the core of Harvey to validate the consistency between
unconditioned results and conditioned (i.e., RMSD, RMSDcond,p). This condition is based upon
what the percentile of rainfall rate the product exceeds with a similar formula in Table 2. To take
the extreme values into account, three percentiles are selected (i.e., 50 percentiles, 75 percentiles,
and 95 percentiles) with an analogy to previous work [52]. Therefore, at point-level, only rain rates
beyond those conditions are used to compute the differences in the Harvey core.

Table 2. Continuous and categorical indices used in this study.

Metrics Equation Best Value Conditional Values

Continuous Indices Correlation coefficient ∑n
i=1(xi−x̄)(xi−ȳ)√

∑n
i=1(xi−x̄)∑n

i=1(y−ȳ)
1 CCcond,p

RMS difference (RMSD)
√

1
n ∑n

i−1(xi − Ri)2 0 RMSDcond,p

Categorical Indices
POD hits

hits+misses 1 PODcond,p

FAR f alsealarm
f alsealarm+hits 0 FARcond,p

CSI hits
f alsealarms+hits+missies 1 CSIcond,p

Note: For categorical indices, hits is defined by both evaluated value and reference value larger than the
threshold. The false alarm is an evaluated value larger than the threshold but a reference less than it. Misses are
evaluated values less than the threshold while the reference is larger than it. Conditional metrics are defined
by given source data larger than a threshold, i.e., p percentile of the daily rainfall for extreme events.

2.5. Hierarchical Evaluation

Three hierarchical levels of evaluation are performed: In level one, all events are combined
(denoted as All) and further events breakdown as Harvey event only and Other non-Harvey events
for cross-examination. In level two, an extreme Harvey event is exclusively taken into account to test
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the consistency of MTC results with conventional metrics. Lastly, an analysis is conducted specifically
within the storm core of Hurricane Harvey to examine uncertainty in such an ultra extreme region,
with the core delineated with 400mm rainfall isoline. In the core region, the conditional metrics
described above are also calculated, and several representative pixels are selected to investigate their
temporal variations. These pixels from one to four, as shown in Figure 1, are: (1) Houston metropolitan
area where NCEP is highly uncertain; (2) the maximum amount of rainfall observed by IMERG; (3) the
maximum amount of rainfall observed by MRMS; and (4) the highly uncertain place for MRMS.

3. Results

3.1. Cross-Events Comparison

3.1.1. Conventional Inter-Comparison

Figure 2 depicts the accumulative rainfall maps, and Table 3 lists the inter-comparison results
with conventional metrics for three cases (i.e., All, Harvey, and Other) from the three datasets (i.e.,
NCEP, MRMS, and IMERG). The rainfall spatial patterns observed by each product are similar, as their
spatial correlations are all above 0.8 cross cases in Table 3. MRMS/IMERG has the highest spatial
correlation for All (0.91) and Harvey event (0.94) while similar to NCEP/MRMS in Other non-Harvey
events (both 0.87). Despite these similarities, neither NCEP nor IMERG adequately capture the high
spatial variability inside the core regions, due to their relatively coarse spatial resolutions. Especially
in the Harvey case, one can observe the “patchiness” pattern for NCEP, which is further investigated
in Section 3.3. From the rainfall distribution histogram inserted in Figure 2, the non-Harvey events
have higher densities of rainfall amount in the light rain range (<200 mm), but Harvey produces more
in the heavy rain range (>800 mm).

Table 3 lists the inter-comparison results with conventional metrics. In terms of total accumulation,
MRMS always observes the highest accumulative rainfall amount, followed by IMERG and NCEP.
Both spatial and temporal correlations demonstrate the highest similarity between the two remote
sensing technology-derived IMERG and MRMS in all cases. For categorical metrics (i.e., POD, FAR,
CSI), IMERG and MRMS also show the best agreement in general, suggesting NCEP possibly suffers
from gauge device malfunction in these extreme events.

Table 3. Overall conventional statistics for three cases (i.e., All, Harvey, and Other) and pairs of comparison.

Metrics All Harvey Other

Max. total rain (mm)
NCEP 1366 979 686
MRMS 2876 1625 1451
IMERG 1749 1116 853

RMSD (mm/h)
NCEP/IMERG 2.51 1.44 1.87
NCEP/MRMS 3.08 1.55 2.54

IMERG/MRMS 2.71 1.42 2.20

Temporal CC
NCEP/IMERG 0.52 0.48 0.48
NCEP/MRMS 0.49 0.54 0.40

IMERG/MRMS 0.62 0.56 0.60

Spatial CC
NCEP/IMERG 0.85 0.90 0.85
NCEP/MRMS 0.80 0.87 0.87

IMERG/MRMS 0.91 0.94 0.87

POD
NCEP/IMERG 0.64 0.52 0.56
NCEP/MRMS 0.72 0.58 0.62

IMERG/MRMS 0.70 0.69 0.62

FAR
NCEP/IMERG 0.28 0.47 0.39
NCEP/MRMS 0.29 0.39 0.42

IMERG/MRMS 0.19 0.41 0.27
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Table 3. Cont.

Metrics All Harvey Other

CSI
NCEP/IMERG 0.52 0.44 0.41
NCEP/MRMS 0.57 0.52 0.43

IMERG/MRMS 0.60 0.51 0.51

Figure 2. Accumulative rainfall observed in three cases. Inside each axes, the inset corresponds to the
histogram of accumulative rainfall.

3.1.2. MTC Comparison

Because no absolute ground truth is assumed, MTC instead evaluates the relative deviation
from “truth” among three independent products. The first overview of TC analyzed results for All,
Harvey, and Other are illustrated in Figure 3. Both CC (relative agreement) and RMSE (relative
deviation) indicate MRMS (CC = 0.80; RMSE = 2.77 mm/h) is the overall best product (closest to truth)
across all events, followed by IMERG (CC = 0.72; RMSE = 4.35 mm/h) and then NCEP (CC = 0.66;
RMSE = 5.16 mm/h). Therefore, the similarity and difference of NCEP and IMERG relative to the
MRMS are mostly notable in the storm core Houston area, especially during the Harvey extreme event.
For example, NCEP differs from MRMS more in the Houston metropolitan areas, as marked in black
circles in Figure 3b. This result is on a par with the investigation of Chen et al. (2020) [53] in the Harvey
event that MRMS has the highest CC (0.91) value and correspondingly lowest RMSE (5.75 mm/h)
among NCEP gauge-only products and IMERG V06A in Hurricane Harvey. IMERG, on the other hand,
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exhibits better agreements with MRMS in the rainfall core regions than NCEP. Notably, the deviation
from the most uncertain NCEP to the best overall MRMS is much more magnificent in the Harvey case,
which can also be quantified as the range of the median value of CC (0.14, 0.27, and 0.09) and RMSE
(1.79, 2.01, 1.52 mm/h) for All, Harvey, and Other, respectively. This reveals that MTC can capture the
high variability in this 500-year return Harvey extreme event. In summary, the above analysis results
from both the MTC method and the conventional metrics suggest the consistence and robustness of
TC in extreme events.

Figure 3. Spatial plot of Multiplicative Triple Collection (MTC) results (a) Correlation Coefficient
(CC); (b) Root Mean Squared Error (RMSE) for three cases (concatenated all events, Harvey-only and
non-Harvey) in each row, and each column represents each product. The small panel inside each axis
is the violin plot for the metric, and the white bar is where the median value is located. Two marked
circles emphasize where the National Centers for Environmental Prediction (NCEP) is highly uncertain.
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3.2. Hurricane Harvey Analysis

3.2.1. Conventional Inter-Comparison and MTC Results

The excessive rainfall extreme and high diverging behaviors of the TC results of Hurricane Harvey
in the previous results motivate us to further investigate this event at the pixel level, as shown in
Figure 4. First, the conventional CC indicates the MRMS/IMERG pair has the highest correlation
values (0.69) with the least range than other pairs; and MTC calculated CC is also ranked MRMS (0.86),
IMERG (0.79), and NCEP (0.65) from high to low. Second, even though conventional RMSD for each
pair is similar (2.23 mm/h for NCEP/MRMS and NCEP/IMERG, 2.16 mm/h for MRMS/IMERG),
MRMS/IMRG (NECP/MRMS) has the smallest (largest) range; similarly, MTC ranks MRMS to have
the least (2.25 mm/h) , followed by IMERG (2.60 mm/h) and NCEP (4.80 mm/h) based on RMSE.
A previous study by Omranian et al. (2018) [54] revealed the average POD, FAR, and CSI score to
be 0.9, 0.3, and 0.7, respectively, for the IMERG Final product against radar data in the Harvey case.
This result is consistent with our study (POD = 0.92; FAR = 0.25; CSI = 0.73). Overall, IMERG/MRMS
pair has the highest agreement among categorical indices. Again, the results at point-scale corroborate
the consistence and robustness of MTC in this extreme Harvey event.

Figure 4. Boxplot for conventional metrics and MTC results in Hurricane Harvey. (a) Continuous
indices and MTC results; (b) categorical indices.

3.2.2. Further Exploration of MTC Results

Since both cross-events results and exclusive Harvey case show the applicability of MTC in
extreme events in previous sections, MTC is further applied to investigate the performance of each
product with respect to accumulative rainfall ranges at 50 mm intervals, as shown in Figure 5. Overall,
MRMS performs consistently well, with higher CC cross the range and lower RMSEs (only slightly
higher than IMERG at a higher range 1100 vmm). Interestingly, IMERG shows higher uncertainties in
the light rain (i.e., below 150 mm), but with improved performance gradually toward a higher range.
This is similar to reported literature [55–57]. Specifically, Omranian et al. [12] also concluded that the
IMERG final product generally has better performance with higher precipitation rates compared to
lower rates in the case of hurricane Harvey.



Remote Sens. 2020, 12, 1258 12 of 18

Figure 5. Boxplot of MTC measured CC, RMSE (from top down) in Hurricane Harvey at each
accumulative rain bins for a 50 mm interval based on MRMS data. The lines connected the median
value of each box for the corresponding product.

3.3. Storm Core of Harvey Event

Figure 6 depicts the MTC results of CCs and RMSEs for whole area, storm core, and non-core
of Harvey with the core delineation of 400 mm rain isoline. First, the results (i.e., RMSEs and CCs)
are generally better inside the core region because the rainy samples inside the core are more than
non-cores and thus strengthen the robustness of MTC. Second, the performance for each product
remains consistent: MRMS > IMERG > NCEP. Therefore, recall previous results, MTC gives consistent
rankings of these products in three different levels: Cross-events, Harvey event, and Harvey storm core.

Figure 6. Boxplot of MTC measured CCs and RMSEs for three products grouped by whole, core,
and non-core regions in Hurricane Harvey. Extreme values, i.e., outliers (outside of 1st/3rd quartile ∓
inter-quartile), are ignored to visualize the difference. The notch represents the median value for the
samples in the region.

By looking at the core of Harvey alone, the accumulative rainfall distribution in Figure 7 reveals the
systematic difference in this 500-year return extreme event. NCEP has the highest density within the low
range of 400 to 600 mm, contributing almost 60% of the occurrence. In this same low range, IMERG with
MRMS illustrates more similarities. In the middle range (i.e., 650 to 900 mm), on the contrary, NCEP and
MRMS achieve better agreements and IMERG seems to overdetect. Unlike NCEP and IMERG, which
drop off after 1100 mm, MRMS continuously observes rainfall in the higher end. Hence, both NCEP
and IMERG underestimate high-end rainfall and overestimate at the lower/middle range.
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Figure 7. Histogram of accumulative rainfall binned at 50 mm interval from 400 (core) to 1400 mm in
Hurricane Harvey. Vertical axis indicates the density.

Figure 8 further examines their performance conditioned at the medium to high end accumulative
rainfall at three different percentiles (50th, 75th, and 95th). Figure 8a shows the conventional metrics
with consistent results to MTC results across the three percentiles. Moreover, the differences of
categorical indices in Figure 8b indicate IMERG/MRMS performs the best among the three pairs.
In general, these results (conditional high rainfall) again approve the applicability of MTC in (ultra)
extreme events.

Figure 8. Boxplot of metrics conditioned at 50, 75, and 95 percentiles in the core region: (a) Continuous
indices; (b) Categorical indices.

To look into event temporal variability, the time series of storm core average and some
representative pixels of extreme are shown in Figure 9. Overall, the areal average time series in
the uppermost panel shows they all indeed captured the temporal variability of the storm event.
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However, there are variations in pixel (local) details for each product. Site 1, 3, and 4 refer to the
place where NCEP have very high uncertainty (MTC calculated RMSE beyond 8 mm/h). The gray
windows in the three corresponding time series plots indicate when NCEP data either showed zero
value (site 1, 3) or stopped recording any data (site 4), while the other two remote sensing data sources
captured intense rainfall. Site 2 is selected as IMERG measured the maximum amount of rainfall in
this event. The horizontal blue line marks the upper maximum rain rate of 60 mm/h that GMI can
observe due to its sensor sensitivity [49]. In other words, the IMERG product has an upper bound
due to its sensor sensitivity. The red-shaded windows in site 1, 3, and 4 indicate when MRMS rises
up instantaneously while NCEP and IMERG show some degree of agreements at lower rain rates.
Such spike anomalies could be caused either by non-weather echoes, or more likely high-sensitivities
in the Z-R relation to hails mixed with rain storms [21,58].

Figure 9. Core separated plot with selected pixel-wise time series. The black thick line in the left panel
is the 400 mm accumulated rainfall contour line to separate the Harvey core regions. The windows in
the right pane highlight special characteristics, with black corresponding to the NCEP observation,
red for MRMS, and blue for Multi-satellitE Retrievals for GPM (IMERG).

4. Discussions

Throughout this study, three state-of-the-art precipitation products are intercompared with the
conventional and MTC method. It is worth noting that during extreme events, particularly for 500-year
return Harvey event, the ground-based observations (i.e., gauge and radar) are possibly contaminated
due to saturation/malfunction and hot signals. Observations from space (i.e., satellite) suffer from
relatively coarse spatiotemporal resolution and is thus unrepresentative of the storm core. Previous
studies [32,54] described in detail the impact of spatiotemporal resolution to the accuracy of rainfall
products. With the limitation on identifying “ground truth”, this study adopts the MTC method and
complements with the conventional method to provide the evaluations of the three products in extreme
events. These agreements between MTC and conventional metrics corroborate these research findings
and suggest the potentials of the MTC method in such circumstances. Beyond that, it is opportunistic
to utilize the results of MTC and further develop innovative data merging/assimilation methods to
integrate for one best possible combined product, especially suitable for extreme events.

5. Conclusions

In order to better understand uncertainties of precipitation estimation in extreme events, this study
utilizes both traditional metrics and also the MTC method to cross-examine the similarities and
differences of three independent rainfall datasets, i.e., MRMS, IMERG, and NCEP in Houston
Storm/Hurricane events during the GPM era.
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First, the applicability of the MTC method to extreme events is cross-evaluated with the
conventional metrics and the results reveal that: (a) the consistency of cross-examination results against
traditional metrics (both conditioned and non-conditioned continuous/categorical metrics) approves
the applicability of MTC in multiple extreme events; (b) the consistency of cross-event evaluation
results also indicates the robustness of the MTC method across such individual extreme events.

Second, both traditional metrics and especially MTC results conclude that: (c) all three
independent products demonstrate their capacity of capturing the spatial and temporal variability of
the storm structures while also magnify respective inherent deficiencies; (d) NCEP and IMERG likely
underestimate, while MRMS overestimates the storm total accumulation, especially for the 500-year
return Hurricane Harvey; (e) both NCEP and IMERG underestimate extreme rain rates (>= 90 mm/h),
while MRMS maintains robust performance across the rain storm range; (g) all three products show
respective inherent deficiencies in capturing the storm core of Harvey. For example, the NCEP
discontinuity in time (zero or no records) is likely due to in-situ tipping buck gauge saturation or
device malfunctions during the Harvey extreme; the relative coarse spatiotemporal resolution of
IMERG under-capture the extremes; and while MRMS experiences “hot” radar signals possibly from
non-weather echoes or hail contamination during such extremes.

Given the unknown ground reference assumption of MTC, this study suggests that MRMS
has the best overall performance, followed by IMERG and NCEP. The similarities, differences,
advantages, and deficiencies revealed in this study could guide the users, such as operational
agencies, to carefully select products for emergency planning and response during extreme storms,
and also hopefully motivate the research community to improve respective gauge network designs
and sensor/algorithms. Furthermore, this study also calls for developing innovative multi-platform
multi-sensor data merging/assimilation methods to integrate one best possible combined product,
especially suitable for extreme storm events.
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