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Abstract: For decades, significant effort has been put into the development of plant detection and
classification algorithms. However, it has been difficult to compare the performance of the different
algorithms, due to the lack of a common testbed, such as a public available annotated reference
dataset. In this paper, we present the Open Plant Phenotype Database (OPPD), a public dataset for
plant detection and plant classification. The dataset contains 7590 RGB images of 47 plant species.
Each species is cultivated under three different growth conditions, to provide a high degree of
diversity in terms of visual appearance. The images are collected at the semifield area at Aarhus
University, Research Centre Flakkebjerg, Denmark, using a customized data acquisition platform
that provides well-illuminated images with a ground resolution of ∼6.6 px mm−1. All images
are annotated with plant species using the EPPO encoding system, bounding box annotations for
detection and extraction of individual plants, applied growth conditions and time passed since
seeding. Additionally, the individual plants have been tracked temporally and given unique IDs.
The dataset is accompanied by two experiments for: (1) plant instance detection and (2) plant species
classification. The experiments introduce evaluation metrics and methods for the two tasks and
provide baselines for future work on the data.
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1. Introduction

Visual recognition systems are becoming increasingly widespread for farm management in
modern agriculture [1–4]. The systems are typically used in conjunction with remote sensing
technologies to extract knowledge about various field conditions. Airborne sensing platforms, such
as satellites and Unmanned Aerial Vehicles (UAVs), have in recent years been demonstrated to be
efficient for mapping vegetation coverage [5] and weed infestations (binary distinction between
weed or crop) [6–8] in fields, due to the relatively high capacity of such systems. However, the high
capacity of airborne platforms usually comes at the cost of spatial resolution, which together variable
scene illuminations causes a high risk of erroneous plant detections and identifications, which might
lead to faulty syllogism/interpretations [9,10]. Low spatial resolutions also impair the capability of
aerial sensing systems, to distinguish between individual plant objects and to perform plant species
classification, especially at the early growth stages of the plants [6,10–12]. Alternatively, ground-based
sensing platforms (proximal sensing) generally provide higher spatial resolution compared to airborne
platforms, which can be used to efficiently map the population and composition of plants in fields at
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species level [10,12–14]. Proximal sensing systems can also be mounted directly on the farming
equipment, which is a highly desired property, due to an increasing focus on automation (e.g.,
agricultural robots) of the agricultural practices [3,13,15]. Detailed plant population maps can, for
instance, be used in decision support systems for weed management, to optimize control strategies
according to the observed weed species and composition, which can provide significant reductions
in herbicide usages [3,12,16,17]. Proximal sensing and visual recognition can also be applied for
other applications, such as phenotyping, diseases and pests detection, grain quality and plant fitness
estimation, etc. [2,18].

Visual recognition of individual plants is generally a challenging task, as plant appearances
depend heavily on several factors such as: species, temporal changes and environmental conditions
(soil type, nutrients, climate, etc.) [15,19,20]. Historically, algorithms for visual recognition of plants
have been based on the empirical measurement and handcrafted features (e.g., shape and texture
descriptors, Fourier descriptors, or active shape modeling), which were processed using relatively
simple discriminative models such as linear classifiers or support vector machines [18,21]. Newer
methods for visual recognition of plants are primarily inspired by a more data-driven approach such
as deep learning (DL) [1,3], which have shown impressive results in various other domains. E.g.,
Dyrmann et al. [22,23] has demonstrated effective detection and classification of weeds in highly
occluded cereal fields using convolutional neural networks, which was used to map weed populations.
Additionally, the systems demonstrated by Lottes et al. [24] can pixel-wise segment weed and crop in
images based on a time series of images, which enables them to treat plants individually. Zhang et al. [4]
provide a comprehensive review of visual recognition systems for dense scenes analysis in agriculture,
which concludes “By comparing the DL methods with other methods in the survey paper, it shows that DL
provides better performance in dense scenes and is superior to other popular image processing techniques."

DL algorithms are primarily trained by applying supervised learning, which requires large
quantities of annotated training data [25,26]. However, for visual recognition of plants, the availability
of such training data is somewhat limited, as there only exist few public datasets. Furthermore, these
datasets only represent relatively few plant species, growth condition or growth seasons, which reduces
the inter-species and intra-species variability with respect to the plant appearances, thus making them
imperfect for building robust DL systems. Due to these limitations, research in this domain is often
performed on private datasets, which makes it difficult to validate and compare results from different
studies/projects. To overcome these issues and boost research in visual recognition of plants more
public available datasets are needed [1,27,28].

The aim of this study is to develop a new public dataset for visual recognition of plants.
This dataset should include several different plant species and a high degree of intra-species variability
with respect to plant appearances, as these properties are currently lacking/limited in existing public
datasets.

This work presents the Open Plant Phenotype Database (OPPD), a large-scale dataset for visual
recognition of plant seedlings. The dataset provides high resolution top-down RGB images of
plants, cultivated at the semifield area at Aarhus University, Research Centre Flakkebjerg, Denmark.
The dataset consists of 7590 images with 315, 038 plant objects, representing 64, 292 individual plants
from 47 different species. Each plant species has been cultivated using three growth conditions (ideal,
drought and natural) and tracked temporally to achieve high intra-species variability. This work also
introduces two baseline experiments, which introduces two use-cases of OPPD: (1) plant instance
detection and (2) plant species classification. The baseline experiments are primarily used to introduce
the evaluation method and metrics.

The remainder of the manuscript is organized as follows: Section 2 provides a description of the
data collection and annotation process. Section 3 provides an overview of the dataset content. Section 4
provides a description and results from the baseline experiments. Section 5 and 6 provides discussion
and conclusion.

The full dataset are available at: https://vision.eng.au.dk/open-plant-phenotyping-database/.

https://vision.eng.au.dk/open-plant-phenotyping-database/
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Related Work

Most closely related to this work is the Plant Phenotyping Datasets (PPD) by Minervini et al.
[29,30] and the Plant Seedlings Dataset (PSD) by Giselsson et al. [31]. Both datasets consist of RGB
images representing plant seedlings cultivated in an indoor environment. PPD provides samples
from 123 individual plants representing two rosette species, which are annotated with segmentation
masks and bounding boxes for full plants and individual leaves. PSD provides samples from ∼960
individual plants representing twelve different species, which are annotated with bounding boxes
and segmentation mask. In both datasets, the plants have been tracked temporally over the course of
several weeks to monitor the temporal changes in appearance. For PPD, different growth conditions
were applied to a limited degree, as a subset of the plants also were part of a watering experiment.

Other datasets are collected in a real field environment, where the data represents natural growing
plants. Examples of this are the Sugar Beets Dataset (SBD) by Chebrolu et al. [32], the DeepWeed
dataset by Olses et al. [33], and the Leaf Counting Dataset (LCD) by Teimouri et al. [34]. SBD is a
multi-modal dataset consisting of multi-spectral and RBG-D images and laser scans, collected 2–3 times
a week for three months. The SBD provides ∼300 images, that have been pixel-wise annotated as
vegetation, belonging to 10 different plant species (Sugar beets and nine weeds) or as non-vegetation.
The DeepWeeds dataset consists of ∼17, 500 RGB images of eight significant weed species in the
north–east Australia. The images are collected in-situ under natural light including several factors
of variation, namely: illumination, rotation, scale, focus, occlusion, dynamic backgrounds; as well as
geographical (Australia) and seasonal variation. LCD consists of ∼12, 000 individual plant cut-outs
representing 18 different weed species. The images of LCD are collected in various fields around
Denmark, thus representing several different growth conditions and growth stages.

2. Methodology

2.1. Data Collection

The data collection was performed at Research Centre Flakkebjerg, Aarhus University
(N55◦19’28.4736”, E11◦23’24.0144”), where several plant species were cultivated in a semi-field setting
to mimic natural growth conditions. The plant species were selected to represent the 46 most common
monocotyledon (grass) and dicotyledon (broadleaved) weeds species in arable crops in Denmark.

At the vegetative stages, the main characteristics used for identification of the plant species are the
size, leaf count and shape of the cotyledons and true leaves. Other characteristics are the leaf color, leaf
surface (waxy, hairy) and leaf position (angle-to-stem). However, it is well known that several of these
traits are affected by environmental factors. For example at growth conditions with low soil moisture,
the leaves are smaller and more dark green with a more developed wax layer on the surface, while
low nutrient availability often pose leaves and stems to turn yellow or red and cause necrotic spots on
the leaves [15,19,20]. In order to provide a broad spectrum of the plant appearances, our plant species
were cultivated in polystyrene boxes (0.40× 0.40× 0.15 m) under three different controlled growth
conditions (partly inducing stress). The different growth conditions were, G1: a potting mixture
consisting of a sandy loam soil, sand and peat (2 : 1 : 1 w/w) including all necessary micro- and
macro-nutrients, optimum soil moisture, G2: a sandy loam soil with optimum fertilizer supply and
sub-optimum watering and G3: a sandy soil with low nutrient content and optimum soil moisture.
The growth boxes were initially watered to field capacity and seeds were placed at the soil surface
and covered with ∼1 cm soil. Subsequently, the boxes were placed on outdoor tables (see Figure 1a)
and watered from below three times a day; occasionally a light shower was applied on top to keep
the surface moist. After seedling emergence, the plants were thinned to minimize overlapping plant
leaves. For the sandy loam soil (condition G2) drought stress was induced in the plants by stopping
the watering when the seedling had 2 true leaves. Natural rain was avoided using an automated rain
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cover that only was activated when rain was detected by nearby rain sensors. All seeds applied in the
experiments were provided by the seed bank at Research Centre Flakkebjerg, Aarhus University.

2.1.1. Imaging Acquisition Setup

Image acquisition was performed by the setup described in Madsen et al. [35]. The setup
comprised of an imaging system, which was mounted on a railing system above the seedbeds to
provide a top-down image of the plants. Figure 1 shows the full data acquisition setup.

(a)

(b)
Figure 1. Data acquisition setup. (a) Bird’s-eye view of the data acquisition setup. The image shows
the polystyrene boxes placed on the outdoor test tables, while the imaging system mounted on the
railing system during a test of the system. The test tables rain covers are stored away under the tables
when rain is absent. (b) Frog’s-eye view of the imaging system.

The imaging system itself was an updated version of the one applied for in-situ data acquisition by
Laursen et al. [14]. The imaging system is shown in Figure 1b The system consisted of a 12.3 Mpix global
shutter camera (Flir GS3-U3-123S6C) and a 38mm lens at F/4 (Schneider Kreuznach Xenon-Topaz XN
2,0/38-0901). The images were illuminated by a Xenon ring flash (Paul C. Buff, AlienBee ABR800)
with the lens mounted in the center of the ring. This setup was used to provide well illuminated,
high-resolution images. The imaging system was mounted 1.7 m above the seedbeds to provide
a ground field of view of 0.62× 0.45 m, which resulted in a ground resolution of ∼6.6 px mm−1.
The imaging acquisition system was controlled by an Nvidia TX2 based computer with a 500 GB SSD
for data storage. The image acquisition was triggered for every 0.15 m displacement along the railing
system, which was measured by a laser distance sensor (Lightware SF11/C).
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2.1.2. Recording Procedure and Image Development

Recording was performed by traversing the imaging system above each of the polystyrene
boxes 1–3 times a day, dependent on the season of the trial. The plants from each trial were tracked
over a development period from seedling emergence to the 6 to 8 leaf stage (from 36 to 60 days)
representing the relevant stages for weed control in the field. Data collection was performed over
four trial seasons: 2017spring, 2017autumn, 2018summer and 2019summer. The collected images
were stored in a 16 bits/px Bayer format, to save space on the acquisition computer and avoid
compression/interpolation caused data loss. The raw images were converted to RGB by applying the
Malvar He Cutler debayer algorithm [36] post data collection. Additionally, the RGB images were
preprocessed by applying corrections to white-balance and gamma, to achieve natural appearing
colours in the images.

2.2. Data Annotation

Each image showed ∼1.5 full polystyrene boxes as the camera field of view was slightly larger
than the area of a single polystyrene box (0.40× 0.40 m). Thus, each image was annotated with plant
species and growth conditions according to the polystyrene box that was most visible within the
field of view of the corresponding image. Additionally, the corners of this primary polystyrene box
are annotated, by applying a square detection algorithm that found for the best fitting square in the
image with an area similar to the inside of the box, see Figure 2a. Due to the camera’s trigger rate
several images from the same data collection run, could represent the same primary polystyrene box.
To remove these “duplicates” in the dataset, only the image where most of the polystyrene box is
visible, was selected for further processing. Only the visual content within each primary polystyrene
box was of interest for each image, as potential neighboring boxes will be the primary box in another
image. Thus, all image content outside the primary box was considered noise and removed from the
images, see Figure 2b.

(a) (b)
Figure 2. Annotation of images. (a) Annotation of primary polystyrene box in full RGB image.
(b) Annotation of individual plants in the RGB image after removing all content outside the primary
polystyrene box. The bounding boxes are annotated in RoboWeedMaPS’s online annotation tool. The
rectangular annotation corresponds to the assisting annotation algorithm’s region proposals, while the
three hand drawn annotations corresponds to manual corrections performed by a human annotator.
The colours of the bounding boxes corresponds to different plant species.

The individual plants in each image were annotated using the RoboWeedMaPS online tool (I·GIS
A/S, Risskov, Denmark), which provided a machine learning assisted annotation framework for
bounding box and species annotation of plants based on [22]. The RoboWeedMaPS annotation tool
provided region proposals and preliminary classification into either monocotyledon or dicotyledon for
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all plants in a given image. Thus, the manual annotator only needed to validate the proposals and
correct potential errors. An example of the annotated bounding boxes can be seen in Figure 2b.

Additionally, the bounding boxes were labeled with plant species by using the European and
Mediterranean Plant Protection Organization (EPPO) encoding system, which provides support for
labels at multiple taxonomic levels (https://gd.eppo.int/). The individual bounding boxes were
labeled at the highest recognizable taxonomic level by using the RoboWeedMaPS’s correction tool
feature, which allowed the annotator to inspect all annotated plants across multiple images and group
these together by species. This feature also enabled the annotator to easily recognize outliers from other
species. In several instances, the plants grew beyond the box and became visible in the neighboring box.
In these cases, the objects were also bounding box annotated, but only labeled as either monocotyledon
or dicotyledon. The same applied to all plant objects which clearly were not the sown species and are
hence a weed within the sown species as illustrated in Figure 3.

Figure 3. RoboWeedMaps’s correction tool feature used to manually verify the classification of POLPE
(Persicaria maculosa, Redshank). The object with a white cross in a blue circle icon is being relabeled as
PPPDD (dicotyledonous plants) class. Notice some objects are shaded as these are manually annotated,
to correct for lacking or incorrect automatic bounding box annotation.

An automated algorithm was used to track the individual plant/bounding box annotations
temporarily. For each image, the polystyrene box corners was used to calculate an affine transformation
into a common coordinate system (axis-aligned with a fixed size of 1000× 1000 pixels). Bounding
boxes in two temporally succeeding images was treated as a match if the Intersection over Union
(IoU) between them in the common coordinate system is >0.3, which corresponds to 50% overlap
(this threshold value was determined empirically). The steps of the algorithm are visualized in
Figure 4. In the case of multiple potential matches, the best pairwise matching was computed using
the Hungarian algorithm Kuhn [37] with 1− IoU as the cost matrix.

https://gd.eppo.int/
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Time: t Time: t + 1

Calculate and apply affine transformation Calculate and apply affine transformation

Compare IoU

Figure 4. Matching bounding boxes example. For each image, an affine transformation was calculated
to map the boxes into a common coordinate system. The bounding boxes in two temporal succeeding
frames was matched if the Intersection over Union (IoU) between them were >0.3.

3. Dataset Content

The OPPD consists of 7590 images with 315, 041 plant objects, representing 64, 292 individual
plants from 47 different species. (Note: only 46, species were sown, but the seeds from SONOL had
been mixed with SONAS seeds, resulting in a total of 47 species.)

The content of the dataset is divided into two parts: Full box images and individual plant cut-outs
(plant objects). Both parts are described in the following subsections.

3.1. Full Box Images

The full box images represent individual polystyrene boxes. The distribution of images and
bounding boxes for each sown species are summarised in Table A1. Each full box image is annotated
with the following general information:

• Date: When the image was recorded
• Trial id: Trial the image belongs to
• Box id: Identifier for the polystyrene box in the specific trial
• Growth condition: Applied growth condition
• Image id: Unique identifier for the image

Additionally, any plants in the full box image are annotated with:

• EPPO code: Class of the plant, annotated at the highest recognizable taxonomic level.
• Bounding box: Pixel coordinates for location (xmin, ymin, xmax, ymax)
• Bounding box id: Unique identifier for the bounding box
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• Plant id: Unique identifier for the plant, assigned using the automated plant tracking

3.2. Individual Plant Cut-Outs

The individual plant cut-outs are square image cut-outs corresponding to all annotated bounding
boxes in the full images. The square crop is determined by the largest dimension of each bounding box.
The distribution of plant cut-outs and individual plants for each species are summarised in Table A2.
Each plant cut-out is annotated with the following information:

• Date: When the image was recorded
• EPPO code: Class of the plant, annotated at the highest recognizable taxonomic level.
• Trial id: Trial the image belongs to
• Box id: Identifier for the polystyrene box in the specific trial
• Growth condition: Applied growth condition
• Bounding box id: Unique identifier for the bounding box
• Plant id: Unique identifier for the plant, assigned using the automated plant tracking
• Source image id: Unique identifier for the image

4. Baseline Experiments

To introduce use cases for the dataset this section presents two experiments to form a baseline
for future comparisons. The experiments cover two tasks: a plant instance detection task and a
plant classification task. The main scope of these experiments is to introduce the expected evaluation
methods and metrics, thus the applied models are simply "out-of-the-box" implementations, so the
results can easily be replicated.

4.1. Plant Instance Detection

The goal of the plant instance detection task is to train and test an algorithm to determine the
locations of all plants in the full box images. Each plant location is to be detected with the minimum
axis-aligned bounding box, as annotated in the dataset.

As only the plant locations, and not the plant species are of interest for this task, all bounding
boxes in the full box images are relabeled to: 1PLAK (EPPO code for the kingdom of plants).

4.1.1. Evaluation Method

To validate how well the plant instance detection algorithm generalizes, a 10-fold cross-validation
scheme is applied. Thereby, the results are not biased due to a specific split of training and validation
data. The full box images are divided into ten splits, based on trail id and box id, so each polystyrene
box is only present in a single data split. Additionally, boxes from the same species are put in separate
splits. This ensures a clear separation in training and validation data for each fold.

As in the COCO object detection task [38], the results are reported using the average precision
(AP) and the average recall (AR) metrics.

AP is calculated as the interpolation of the precision-recall curve [39]. Similar to the COCO object
detection task, AP is in this instance calculated using a 101-point interpolation [38]:

AP =
1

101 ∑
r∈{0,0.01,...,1}

pinterp(r) with pinterp(r) = max
r̃:r̃≥r

p(r̃), (1)

where p(r̃) is the measured precision at recall r̃ [39]. The precision-recall curve depends on the IoU
between the ground truth bounding boxes and the predicted bounding boxes, which defines whether
a plant is detected. In this work, AP is reported as the average over multiple IoU detection thresholds
(APIoU=.50:.05:.95), with a detection threshold of IoU > 0.5 (APIoU=.50), and with a detection threshold
of IoU > 0.75 (APIoU=.75).
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AR is the maximum recall given a fixed number of detections per image as defined by
Hosang et al. [40]:

AR =
2
n

n

∑
i

max(IoU(gti)− 0.5, 0), (2)

where IoU(gti) is the IoU between the annotation gti and the closest detection proposal, and n is the
number of detections per image [40]. As in the COCO detection task, AR is reported for max 1, 10 and
100 detections per image [38].

4.1.2. Baseline

The baseline detection model is based on the TensorFlow implementation [41] of faster
RCNN [42] with ResNet50-v1 [43] as feature extractor. The model parameters are initialized with
weights pre-trained on the COCO dataset [38]. Additionally for training the model on OPPD,
the detection model is configured with the default training parameters as used in TensorFlow’s
example implementation for the COCO object detection task. The baseline model is evaluated using
the above-mentioned evaluation approach. Each model is trained for 400, 000 steps on the training
data and then evaluated on the evaluation data for each split. The number of training iterations are
determined empirically. The results for the baseline models are summarized in Table 1.

Table 1. Results from the plant instance detection baseline. The reported values are the mean and
standard deviation over all ten splits in the 10-fold cross validation scheme.

Metric Score

APIoU=.50:.05:.95 37.01± 2.43
APIoU=.50 65.53± 4.54
APIoU=.75 37.30± 2.64
ARn=1 1.97± 0.23
ARn=10 15.34± 2.15
ARn=100 44.09± 2.18

4.2. Plant Species Classification

The goal of the plant species classification task is to train and test an algorithm to classify the
individual plant cut-outs, i.e., the content of the bounding boxes. In this task, only samples that are
annotated at the species taxonomy level are considered, so samples annotated at lower taxonomy
levels do not introduce noise into the training of the model.

4.2.1. Evaluation Method

Again, a 10-fold cross-validation scheme is applied, so the results show how well the plant
species classifier generalizes and do not dependent on a specific training and validation data split.
To ensure that multiple temporal cut-outs from a single plant are not present in multiple data splits,
the individual plant cut-outs from each species are divided into ten splits based on their plant id.
The images are split into 10 folds to test the classification stability. Using these 10 folds, we report
the performance of the plant classification algorithm using the average classification accuracy and
top-5 recall.

4.2.2. Baseline

The baseline classification model is based on the TensorFlow-Slim [44] implementation of
ResNet50-v1 [43]. The model parameters are initialized with weights pre-trained on the ImageNet
dataset [45]. The model’s training parameters are set to the default values as described in TensorFlow’s
example implementation. The baseline model is evaluated using the above-mentioned evaluation
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approach. Each model is trained for 30,000 iterations with a batch-size of 32 on the training data
and then evaluated on the evaluation data for each split. The results for the baseline models are
summarized in Table 2.

Table 2. Results from the plant species classification baseline. The reported values are the mean and
standard deviation over all ten splits in the 10-fold cross-validation scheme.

Metric Score

Accuracy 77.06± 5.71
Top 5-recall 96.79± 1.80

5. Discussion

The Open Plant Phenotype Database represents a wide range of different plant species from
multiple plant families, which are cultivated under three unique growing conditions. The number of
species and the growing conditions ensures a relatively high diversity in the visual appearance of the
samples (both inter-species and intra-species), compared to other public datasets in the domain, see
Section 1. The 47 species included in the dataset, were primarily selected based on natural occurrence
and their importance for arable crop farming in Denmark. However, these species might not be
representative for the biodiversity in other countries. Additionally, the applied growing conditions do
not induce all potential visual representations of the plant species, as the visual appearance of plants
is affected by other factors, including wind, insects, and even dew on leaves. Therefore, observable
differences are to be expected when moving into the field or to other countries, since the phenotypic
variations of different species change geographically due to the differences in selection pressure and
gene pool [19,20]. Still, the three applied growing conditions provide examples of how plants appear
when cultivated in two opposite extreme settings (optimum and worst growth condition) and a single
field-realistic setting. Although all plant species have been cultivated using the same three growing
conditions, it should be noted that the plants have been cultivated over four trials/growth seasons
with different weather conditions, which also affects the visual appearance. Additionally, observed big
differences in the germination success have been observed across the different species and the different
growth conditions, which lead to high variations in number annotated samples in the different groups,
which should be taken into account when using the data, see Tables A1 and A2. Furthermore, due
to the continuous thinning of the plants during each trial, there will be more representations of early
growth stages compared to later growth stages. Thus, the majority of the 64, 292 individual plant will
only have been tracked for a few days.

Initially, the bounding box annotation required some effort, as the RoboWeedMaPS’ assisting
annotation model were only trained on in-situ images, which represent a different environmental
setting and plant species distribution. However, the assisting annotation model did in most cases
provide decent region proposals, and as more and more OPPD images were manually validated,
the robustness of the assisting annotation model was incrementally improved. The most commonly
observed challenges for the assisting annotation model were overlapping between multiple plants,
far-spaced leaves for a single plant, and tiny cotyledons. These issues were especially challenging
for yet unencountered species with unique appearances. In the RoboWeedMaPS online annotation
tool, all bounding box annotations were aligned with the image axis. However, the use of axis-aligned
annotations were not ideal, when narrow plants were orientated diagonally. Here, rotated bounding
boxes might have been a beneficial way of minimizing background clutter as demonstrated by Li et al. [46]
for detecting ships in satellite images.

RoboWeedMaPS’s correction tool made it convenient to validate and annotate species for multiple
images simultaneously. However, it could sometimes be challenging to identify outliers, if the outliers
were form the same plant family, or before the plants developed their true leaves, due to highly similar
visual traits. To overcome this, the plants were backtracked in time, as they develop more characteristic
at later growth stages. However, this approach was not always applicable as the plant continuously
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thinned during the trials. All species annotations follow the EPPO encoding (https://gd.eppo.int/),
which allows one to easily convert the annotations to other hierarchical levels (e.g., family or genus
rather than species) dependent on the application of the data.

The temporal tracking algorithm provided an efficient way link bounding box annotations in
time. However, the temporal tracking might not be 100% accurate, as it has been performed using
an automated algorithm (e.g., errors might have occurred, if the plants are placed very close to each
other). That being said, the algorithm appears quite robust and has not been observed to make any
incorrect matching.

Both baseline experiments were conducted using “out-of-the-box” model implementations.
Both models do a decent job at their respective tasks, but there are room for improvement. These
results further highlight the need for this dataset, as established model designs are insufficient to
perform well on the presented applications. The primary challenges observed for the instance detection
baseline were overlapping leaves, resulting in multiple plants getting detected as single instances,
and plants with large spacing between leaves getting detected as multiple plant instances. Similarly,
it can be challenging for the classification baseline to distinguish between different species before the
plants develop their first true leaves, or to distinguish between species from the same family or genus
(e.g., SONOL, SONAS).

Generally, other established methods for visual recognition of plants have reported higher
performance than the baseline experiments [4]. However, these methods are usually based on
human-annotated data, thus the results might not necessarily be representative of the real in the
field performance, but rather evidence of how good the method is at replicating the human ability
to classify plants. Small seedlings are especially difficult to distinguish by a person, and they are
therefore often omitted in the training and testing set as they cannot be labeled. With the present
dataset, the human ability to recognize weeds is taken out of play, which is reflected in a large number
of small plants that would normally be ignored if a person were to annotate them. This is also believed
to be one of the explanations for the above classification accuracy, which lies under the accuracy of
previous studies including [23].

It should be noted that the primary objective of the baseline experiments was to introduce
evaluation methods and metrics, which was achieved for both applications. The baseline experiments
both apply a 10-fold cross-validation scheme to make the results less dependent on a specific
training and test dataset split. Due to the annotations, it will also be possible to apply exhaustive
cross-validation schemes, such as leave-one-out cross-validation (e.g., based on unique box id),
however, it would be very computationally heavy.

The dataset is expected to be extended in the future with more plant species, to model more
inter-species diversities. Another potential future extension of the dataset is to provide pixel-wise
segmentation masks for each plant instance, which would allow for better cut-outs of the individual
plants. We would like to invite peers to collaborate and contribute to the databse, for the aim of easier
access to high-quality data, from which our field of research can only benefit. OPPD is hosted using
Git LFS (https://git-lfs.github.com/), which hopefully will make it easy for peers to contribute to the
suggested extensions and to correct any potential errors in the data.

6. Conclusions

This work introduced the Open Plant Phenotyping Database, a large-scale public dataset for
visual recognition of plants. The dataset is the largest publicly available of its kind, and is expected to
a valuable resource for future research in weed detection and plant phenotyping.

The dataset consists of 7590 RGB images, with a bounding box and species annotations for 315, 041
plant objects. The plant objects represent 64, 292 individual plants from 47 different species selected
based on natural occurrence in Denmark. The plants have been cultivated using three different growth
conditions and tracked temporarily to provide a high degree of intra-species variability with respect to
visual appearance of the plants in the collected images.

https://gd.eppo.int/
https://git-lfs.github.com/
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Finally, the paper presents two experiments/applications of the data: (1) plant instance detection, and
(2) plant species classification. The two experiment are used to propose evaluation methods and provide
a baseline for future work on the data. The performance of both baselines are non-perfect (plant instance
detection: APIoU=.50:.05:.95 = 37.01± 2.43, plant species classification: Accuracy = 77.06 ± 5.71), which
further illustrates the need for this dataset to boost research in the domain.
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Abbreviations

The following abbreviations are used in this manuscript:

OPPD Open Plant Phenotyping Database
DL Deep Learning
EPPO The European and Mediterranean Plant Protection Organization
RGB Red Green Blue image
PPD Plant Phenotyping Datasets
PSD Plant Seedlings Dataset
SBD Sugar Beets Dataset
LCD Leaf Counting Dataset
G1,G2,G3 Growth Condition 1-3
IoU Intersection over Union
AP Average Precision
AR Average Recall
GIT LFS GIT Large Files Storage
UAV Unmanned Aerial Vehicle

Appendix A. Database Content Details

Tables A1 and A2 show additional details about the distribution of data for full box images and
individual plant cut-outs respectively.
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Table A1. Database content. Number of full box images and bounding boxes for each of the
sown/primary species in the dataset. Note some species are cultivated in multiple trial seasons
or twice in a single season, to increase germination success.

Primary Plant English Name Number of Number of Trials
Species in Box Full Box Images Bounding Boxes

ALOMY Blackgrass 141 3176 2017autumn
ANGAR Scarlet pimpernel 144 13, 848 2017autumn
APESV Loose silky-bent 142 3011 2017autumn
ARTVU Common mugwort 149 5667 2017autumn
AVEFA Common wild oat 116 3434 2017autumn
BROST Barren brome 141 2146 2017autumn
BRSNN Rapeseed 140 4491 2017spring
CAPBP Shepherd’s purse 149 17, 566 2017spring
CENCY Cornflower 149 5409 2017spring
CHEAL Fat-hen 305 6736 2017spring + 2018summer
CHYSE Corn marigold 152 1371 2018summer
CIRAR Creeping Thistle 256 3467 2017spring + 2017autumn
CONAR Field bindweed 252 1379 2018summer + 2019summer
EPHHE Umbrella milkweed 319 970 2018summer + 2019summer
EPHPE Stinging milkweed 145 6186 2017autumn
EROCI Common stork’s-bill 138 4919 2017autumn
FUMOF Common fumitory 230 552 2018summer + 2019summer
GALAP Cleavers 150 1788 2017autumn
GERMO Dove’s-foot crane’s-bill 136 4771 2017spring
LAPCO Nipplewort 140 1696 2017autumn
LOLMU Italian ryegrass 142 3684 2017autumn
LYCAR Common bugloss 152 478 2018summer
MATCH Scented mayweed 154 9050 2017spring
MATIN Scentless mayweed 150 16, 060 2017spring
MELNO Night-flowering catchfly 146 6995 2017spring
MYOAR Field forget-me-not 155 5083 2017spring
PAPRH Common poppy 134 24, 713 2017spring
PLALA Narrowleaf plantain 117 4501 2017autumn
PLAMA Broadleaf plantain 153 5169 2018summer
POAAN Annual bluegrass 139 9868 2017autumn
POLAV Prostrate knotweed 230 2659 2018summer + 2019summer
POLCO Black bindweed 144 2496 2017spring
POLLA Pale smartweed 140 4034 2017spring
POLPE Redshank 120 3278 2017autumn
RUMCR Curly dock 140 6672 2017autumn
SENVU Common groundsel 152 6709 2018summer
SINAR Charlock 139 4602 2017spring
SOLNI Black nightshade 146 6823 2017spring
SONOL Common sowthistle 193 9301 2017autumn + 2019summer
STEME Common chickweed 149 10, 159 2017spring
THLAR Field penny-cress 146 6506 2018summer
URTUR Small nettle 143 14, 007 2017spring
VERAR Corn speedwell 272 37, 119 2×2017autumn
VERPE Common field speedwell 256 11, 008 2×2017spring
VICHI Common hairy tare 147 4233 2017autumn
VIOAR Field pansy 137 7251 2017spring

Total 7590 315, 038
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Table A2. Database content. Number of individual plant cut-outs and unique plants for each species in
the dataset. The monocotyledons (PPPMM) and dicotyledon (PPPDD) categories cover cut-outs only
annotated at these levels. The “Other” category cover cut-outs annotated at lower taxonomic levels
than species.

Species English Name Number of Number of
(EPPO) Image Cut-Outs Unique Plants

ALOMY Blackgrass 2583 730
ANGAR Scarlet pimpernel 10, 691 790
APESV Loose silky-bent 2709 412
ARTVU Common mugwort 5360 820
AVEFA Common wild oat 3282 1630
BROST Barren brome 1735 537
BRSNN Rapeseed 4051 576
CAPBP Shepherd’s purse 16, 411 3382
CENCY Cornflower 4145 508
CHEAL Fat-hen 6321 1433
CHYSE Corn marigold 1324 223
CIRAR Creeping Thistle 1525 97
CONAR Field bindweed 1259 71
EPHHE Umbrella milkweed 173 16
EPHPE Stinging milkweed 5758 506
EROCI Common stork’s-bill 4295 604
FUMOF Common fumitory 143 39
GALAP Cleavers 1557 217
GERMO Dove’s-foot crane’s-bill 3632 342
LAPCO Nipplewort 1349 74
LOLMU Italian ryegrass 3571 1309
LYCAR Common bugloss 381 41
MATCH Scented mayweed 7965 1385
MATIN Scentless mayweed 15, 065 3490
MELNO Night-flowering catchfly 5677 516
MYOAR Field forget-me-not 3222 323
PAPRH Common poppy 23, 302 7351
PLALA Narrowleaf plantain 3593 1065
PLAMA Broadleaf plantain 4868 677
POAAN Annual bluegrass 9329 3134
POLAV Prostrate knotweed 2411 274
POLCO Black bindweed 1608 232
POLLA Pale smartweed 3393 300
POLPE Redshank 3009 421
RUMCR Curly dock 6264 1118
SENVU Common groundsel 6571 1609
SINAR Charlock 4030 588
SOLNI Black nightshade 6230 874
SONAS Spiny sowthistle 587 59
SONOL Common sowthistle 4646 576
STEME Common chickweed 8612 1572
THLAR Field penny-cress 6369 1340
URTUR Small nettle 7753 681
VERAR Corn speedwell 28, 791 5338
VERPE Common field speedwell 9191 746
VICHI Common hairy tare 3982 489
VIOAR Field pansy 6176 382
PPPMM Monocotyledonous plants 9365 4006
PPPDD Dicotyledonous plants 37, 990 15, 366
Other 2784 787

Total 315, 038 64, 292
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