remote sensin N
%‘ g @:\Py

Article

Establishing an Empirical Model for Surface Soil
Moisture Retrieval at the U.S. Climate Reference
Network Using Sentinel-1 Backscatter and
Ancillary Data

Sumanta Chatterjee'”, Jingyi Huang *'* and Alfred E. Hartemink

Department of Soil Science, University of Wisconsin-Madison, 1525 Observatory Drive,
Madison, WI 53706, USA; schatterje22@wisc.edu (S.C.); alfred. hartemink@wisc.edu (A.E.H.)
* Correspondence: jhuang426@wisc.edu; Tel.: +1-608-262-0221

check for
Received: 17 February 2020; Accepted: 10 April 2020; Published: 13 April 2020 updates

Abstract: Progress in sensor technologies has allowed real-time monitoring of soil water. It is a
challenge to model soil water content based on remote sensing data. Here, we retrieved and modeled
surface soil moisture (SSM) at the U.S. Climate Reference Network (USCRN) stations using Sentinel-1
backscatter data from 2016 to 2018 and ancillary data. Empirical machine learning models were
established between soil water content measured at the USCRN stations with Sentinel-1 data from
2016 to 2017, the National Land Cover Dataset, terrain parameters, and Polaris soil data, and were
evaluated in 2018 at the same USCRN stations. The Cubist model performed better than the multiple
linear regression (MLR) and Random Forest (RF) model (R% = 0.68 and RMSE = 0.06 m® m™ for
validation). The Cubist model performed best in Shrub/Scrub, followed by Herbaceous and Cultivated
Crops but poorly in Hay/Pasture. The success of SSM retrieval was mostly attributed to soil properties,
followed by Sentinel-1 backscatter data, terrain parameters, and land cover. The approach shows
the potential for retrieving SSM using Sentinel-1 data in a combination of high-resolution ancillary
data across the conterminous United States (CONUS). Future work is required to improve the model
performance by including more SSM network measurements, assimilating Sentinel-1 data with
other microwave, optical and thermal remote sensing products. There is also a need to improve the
spatial resolution and accuracy of land surface parameter products (e.g., soil properties and terrain
parameters) at the regional and global scales.

Keywords: remote sensing; soil moisture network; sensor synergy; data fusion; soil water
conservation; ecological monitoring

1. Introduction

Soil moisture serves an important role in regulating water and energy transport [1-4]. It is
considered as a key variable in agriculture, hydrology, atmospheric and climate sciences [5,6].
To improve understanding of the hydrological cycle and enhance water resources management,
many studies have attempted to monitor and map soil moisture at different spatial and temporal
scales [7].

Advances in sensor technologies have shown success in soil moisture monitoring across scales.
These include several in-situ soil moisture monitoring stations in the USA [8] and international [9]
monitoring networks. Real-time soil moisture monitoring enables validation of satellite soil
moisture monitoring missions across the globe [10] and creating gridded soil moisture maps at
the regional-scale [11]. However, both these studies often have a coarse spatial resolution, which
does not apply to the field scale. Furthermore, soil hydrological processes are complexed by the
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diverse effects of soil, climate, vegetation, and topography [12]. Characterizing soil moisture dynamics
and distribution at large spatial and temporal scales is not easy, as it is affected by various physical
processes (e.g., precipitation, evapotranspiration, runoff, drainage) and environmental controlling
factors (e.g., meteorological forcing, soil texture, vegetation, topography) [7].

Satellite remote sensing measurements have provided soil moisture monitoring over large
scales [13] compared to ground observations, which are mostly point-based [14]. Optical and thermal
infrared sensors often suffer from cloud contamination, while microwave sensors are less affected by
atmospheric conditions [15]. Passive microwave satellites measure the ground surface within a short
time interval but at a coarse spatial resolution. Examples include the Soil Moisture Active Passive
(SMAP) [16], Soil Moisture and Ocean Salinity [17] and Advanced Microwave Scanning Radiometer 2
(AMSR?2) [18]. An active microwave system often has a fine spatial resolution but a long revisit time.
For instance, Sentinel-1 satellites have been used to map relative soil moisture across Europe at a 1-km
resolution every 1.5 and 4 days [19]. Metop Advanced SCATterometer is another active system [20].

Different models have been built for soil moisture retrieval with microwave remote sensing data.
Physical models describe interactions of vegetation and ground roughness with radar signals to retrieve
soil moisture [21]. Therefore, several parameters, such as emissivity and albedo, need to be estimated
from soil properties and land cover characteristics, which is often difficult to quantify at a fine spatial
resolution [16,21].

Compared to physical models, empirical models have also been used to retrieve soil moisture that
capture relationships between soil moisture and geophysical variables measured by microwave sensors.
The most widely used models include the Change Detection method (e.g., [22]) and machine learning
algorithms (e.g., [23]). For example, Bauer-Marschallinger et al. reported that surface properties
such as geometry, roughness, and vegetation structure are static parameters that affect the changes
in backscatter data and need to be included in the model [19]. However, empirical models can be
data-driven and location-specific and cannot estimate soil moisture in different soil types (e.g., sands,
loamy soils) and land cover (e.g., Cultivated Crops, Pasture) conditions [24].

More recently, physical and empirical models have been developed to assimilate datasets from
different remote sensing platforms (e.g., [25]). In terms of soil moisture mapping, Lievens et al. combined
SMAP and Sentinel-1 to improve soil moisture estimates using a physical-based model [26] while Santi
et al. used an empirical model (an artificial neural network) to merge SMAP, Sentinel-1, and AMSR2
satellite data [27]. Recently Bauer-Marschallinger et al. fused Sentinel-1 with ASCAT observations to
improve the spatial and temporal resolution of SSM [28]. Das et al. applied a joint SMAP-Sentinel
algorithm to retrieve SSM at 1-km and 3-km resolutions [29]. To the best of our knowledge, little
research has been done to develop data fusion algorithms by combining remote sensing data with
multiple ancillary data such as digital elevation model, land cover and soil properties.

In this study, the U.S. Climate Reference Network (USCRN, [30]) was used to develop an
empirical soil moisture retrieval model by combining Sentinel-1 data with multiple ancillary datasets.
The USCRN consists of soil moisture measurements across the entire USA, with distinct vegetation
and soil conditions. The objectives of our study are two-fold:

(1) To retrieve surface soil moisture (SSM) (at the depth of 0-0.05 m) at the USCRN stations using
Sentinel-1 data collected from 2016 to 2017 combined with ancillary data (e.g., terrain, land cover,
soil properties), and to evaluate the model performance in 2018 for different land cover types and
with different algorithms.

(2) To evaluate the contribution of different ancillary variables for predicting soil moisture dynamics
for future SSM retrieval across larger spatial extents.

Two hypotheses will be tested in the study: (1) SSM can be empirically retrieved at the USCRN
stations in different land cover by combining Sentinel-1 with other ancillary data, and; (2) Sentinel-1
backscatter and ancillary data have different influences on the SSM model performance.
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2. Materials and Methods

In this study, SSM retrieval models were established between the in-situ soil sensor SSM
measurements (used as the model response), Sentinel-1 data, and various ancillary data (used
as covariates). We describe these in turn below. Note that the acronyms are listed in Table Al.

2.1. U.S. Climate Reference Network SSM Database

In total, 66 USCRN sites were included for building the SSM retrieval models (Figure 1).
Soil moisture sensors at the USCRN sites measure soil volumetric water content (VWC) at five
depths (i.e., 0-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.50, 0.50-1.00 m) every 30 min. We used the daily average
VWC measured at 0-0.05 m to generate models of SSM, as the C-band SAR signal cannot penetrate
deeper into the surface of the soil except when there is a very dry soil surface [31].

e USCRN sites
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|:| Hay/Pasture

s Kilometers
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0 250 500 1,000
- Cultivated Crops

Figure 1. The U.S. Climate Reference Network (USCRN) stations used to retrieve surface soil moisture.

The land cover map is obtained from the National Land Cover Database (https://www.mrlc.gov/data/
type/land-cover). The red data points are the four USCRN stations of interest in this study.

2.2. Sentinel-1 Data

The Sentinel-1 satellites are C-band dual-polarization Synthetic Aperture Radars (SAR).
The Sentinel-1 mission comprises two identical spacecraft, Sentinel-1A (S-1A) and Sentinel-1B (S-1B)
launched in 2014 and 2016, respectively. Depending on the number of satellites, the revisit time is
every 6 (single satellite) or 12 (double satellites) days. The Sentinel-1 data used in this study were
obtained from mid-March to mid-November across the USCRN from 2016 to 2018 to minimize the
frozen ground period because of the insensitivity of radar backscatter data to soil moisture in frozen
soil. Backscatter measurements were used that were available at two polarizations, VV (vertical
transmit/vertical receive) and VV+VH (vertical transmit/horizontal receive). For brevity, we refer them
to VV and VH modes. Both VV and VH data were used in the model because they have different
sensitivity to SSM under different vegetation and land surface conditions [19].

The data used in this study were the Sentinel-1 Ground Range Detected (GRD) scenes in
interferometric wide (IW) swath mode. The backscatter data were preprocessed using Google Earth
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Engine with thermal noise removal, radiometric calibration, and terrain correction [32]. Terrain
correction was done using a 30-m SRTM digital elevation model. The processed backscatter data were
available at a 10-m scale.

To remove the speckle effect of the backscatter data, we used an aggregation approach following [19]
to resample the 10-m backscatter images to the 30-m scale. We describe this briefly here: First, dynamic
masks were applied to the raw images to exclude the backscatter values larger than -5 dB and
smaller than —20 dB for the VV mode and to exclude the backscatter values larger than —10 dB and
smaller than -30 dB for the VH mode. The upper limits of the masks were determined according
to Bauer-Marschallinger et al. and represented urban features [19]; the lower limits of the masks
were determined empirically based on the distribution of backscatter data over the three years and
represented the sensor’s noises. Second, the processed images were passed through a Gaussian filter

1 21
with a 3 X 3 kernel (% 2 4 2 |). Third, the filtered images at the 10-m scale were aggregated to the
1 21

30-m scale by the arithmetic mean. The aggregated backscatter will be used in this study for building
the retrieval model for SSM across the USCRN stations.

We derived a number of indices from the aggregated backscatter data such as temporal mean
and standard deviation (SD) of VV and VH backscatter and the ratios of the temporal SD to temporal
mean. The VV and VH backscatter data were calculated pixel-wise at the 30-m sampling-scale from
2016 to 2018.

2.3. Ancillary Data

Different ancillary data were used to retrieve SSM in combination with Sentinel-1 data.
These include land cover, terrain parameters, and soil properties. These datasets are shown in
Table 1 and described below. Precipitation data were not used as covariates as they did not directly
affect the relationship between SSM and backscatter data. Conventionally, precipitation measurements
are used as quality control flags for the retrieving algorithms [16].

Table 1. Remote sensing and environmental covariates used to retrieve soil moisture across the US.

Datasets Spatial Resolution =~ Temporal Resolution ~ Depth (m) Comments
Soil water content measurements at the -
USCRN N.A. 1-day 0-0.05 Empirical model response
ESA - Sentinel-1 backscatter measured at two
polarizations (VV and VH) and incidence 10 m 6-12 days 0-0.05 Empirical model covariates
angle
Land cover map from National Land Cover 30m NA. B Empirical model covariate
Dataset
Terrain parameters from the USGS 10 m N.A. - Empirical model covariates
Soil property maps of the US (Polaris) 30 m N.A. 0-0.05 Empirical model covariates
NASA-SMAP Level 3 radiometer-based 36 km 1-day 0-0.05 Independent validation dataset

surface soil moisture product

2.3.1. Land Cover

Land cover (LC) affects soil moisture [33]. The LC information was derived from the National
Land Cover Database (https://www.mrlc.gov/data/type/land-cover) which provides 30-m land cover
across the USA in the year of 2016 [34]. The land cover types include Developed, Water, Wetland,
Shrub/Scrub, Herbaceous, Hay/Pasture, Forest and Cultivated Crops. We combined Shrub/Scrub and
Dwarf scrub into Shrub/Scrub, and Deciduous Forest, Evergreen Forest, and Mixed Forest into Forest.
We excluded Developed and Water, and Forest because the C-band Sentinel-1 data cannot penetrate
the dense vegetation cover [35]. Wetland was also excluded. Four merged LC types were used as
covariates: Cultivated Crops, Hay/Pasture, Herbaceous, and Shrub/Scrub. The final LC types are
shown in Figure 1.
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2.3.2. Terrain Parameters

The interaction between SSM and SAR backscatter measurements is affected by topography
characteristics [36] and soil conditions such as ground roughness [16,21,37]. We used terrain parameters
to model this relationship. The 10-m U.S. Geological Survey (USGS) National Digital Elevation Model
(DEM) was used (www.nd.gov/gis). Slope, aspect, terrain ruggedness index (TRI), and topographic
wetness index (TWI) were computed using the DEM data with the “terrain” function from the “raster”
R package [38]. TRI and TWI are geo-morphometric parameters and have an impact on soil moisture
distribution and dynamics [39,40]. Although these large-scale terrain parameters do not directly affect
the backscattering behavior of the ground surface, we used them to model the spatial and temporal
variations of soil VWC that were measured at the USCRN stations and were averaged daily assuming
that surface soil water redistribution occurs due to topographic differences over this period.

2.3.3. Soil Properties

Soil properties influence soil moisture dynamics across the spatial and temporal scale.
The Probabilistic Remapping of Soil Survey Geographic (POLARIS) dataset was used [41]. The POLARIS
provides a 30-m probabilistic estimation of soil properties at six different depths across the USA,
which are spatially continuous and internally consistent. The mean values of estimated properties
at 0-0.05 m, including bulk density (BD), sand, silt and clay contents, and soil organic matter (SOM)
content were used as covariates in the empirical models given their role in controlling of soil moisture
storage [42].

To extract the Sentinel-1 and ancillary data to the USCRN stations for establishing SSM retrieval
models and for mapping the SSM across the field, approximately 10 x 10 km regions of interest (ROIs)
were selected for all USCRN stations with the USCRN sensors located in the center of the ROIs as
they were large enough to observe the soil water variation in different vegetation, terrain, and soil
conditions. We cannot choose an ROI that is too large because the Sentinel-1 sensor cannot capture
the regions within one day and the composite Sentinel-1 image does not represent SSM within a
specific day. Sentinel-1 data, LC types, terrain parameters, and soil properties were extracted within
these ROIs onto 30 x 30 m grids. Sentinel-1 data were aggregated onto the 30-m using the method
described earlier. LC types and soil properties data had 30-m resolutions and did not require further
manipulation. Terrain parameters were extracted onto the 30-m grid using the bilinear interpolation
algorithm. Along with the measured soil VWC from the USCRN sensors, these ancillary data were
compiled, extracted onto the USCRN measuring stations and used for establishing empirical models to
retrieve SSM at the USCRN stations over three years.

2.4. Establishing Empirical SSM Retrieval Models

Once the SSM data were collected and Sentinel-1 and ancillary data were extracted onto the
USCRN stations, three models were explored to establish SSM retrieval algorithms, including multiple
linear regression, Cubist and the Random Forest models. The covariates of the models included the
backscatter data (VV, VH, and angle) and temporal statistics (e.g., temporal mean and SD) of VV
and VH, as well as other ancillary data such as terrain parameters, land cover, and soil properties
(e.g., clay, silt, bulk density). We describe each of the models in turn. The overall flow chart of the
methodology used in this study is shown in Figure 2.
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Figure 2. Block diagram of the method used in this study.
2.4.1. MLR Model

A multiple linear regression (MLR) was built with data listed in Table 1. In brief, the model response
was the SSM measured at the USCRN stations and the predictors included Sentinel-1 backscatter
and incidence angle, soil properties (e.g., sand content), terrain parameters (e.g., slope), and land
cover types. In this study, the Sentinel-1 data varied in space and time while soil properties, terrain
parameters, and land cover types only varied in space. Here, we used backward elimination to select
the predictors. Afterward, we fitted the model parameters using the ordinary least square algorithm.

2.4.2. Cubist Model

The cubist model is an M5 regression tree algorithm [43]. Regression tree algorithm yields
rule-based models comprising one or more rules. For each rule there is a set of conditions related to a
linear sub-model. It can explain the nonlinear relationship between target variables and independent
variables [44,45]. Cubist models have been used previously for the estimation of soil moisture [46],
precipitation [47], net ecosystem carbon exchange [48], percent land cover [45], and soil properties
e.g., pH, organic carbon, total nitrogen and phosphorus, texture, depth, and clay content [49].

Similar to the MLR, a Cubist model was constructed to predict SSM measured at the USCRN
using Sentinel-1 and other ancillary data as predictors (Table 1). We fitted 20 committee models for the
optimal Cubist model to predict soil VWC. The mean values of the predictions from all the committee
models were used to represent the final VWC. To fit the Cubist model, the “train” function from the R
“caret” package was used to find the optimal model parameters [50].

2.4.3. Random Forest Model

Random Forest is a nonparametric algorithm based on similarities among observations to fit
decision trees. To build a tree, a bootstrap sample (a random sample with replacement) is taken from
observations. To determine a split at a node in a tree, a random subsample of predictor variables is
taken to select the predictor that minimizes the regression error [51]. Nodes continue to be split until
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no further improvement in error is achieved. Omitted observations, termed the “out-of-bag” samples,
are used to compute the regression errors for trees [51]. Random Forest has recently been widely
applied to map various soil properties and water dynamics using remote sensing data (e.g., [52,53]).
Similar to MLR and Cubist, the Random Forest algorithm was used to fit SSM at the USCRN from
a combination of Sentinel-1 data and other environmental covariates as predictors. The “train” function
in the “caret” package in R software [50] was used to fit the Random Forest parameters. The number
of resampling iterations, number of variables tried at each split, and number of trees were selected as
10, 11, and 500, respectively, for the optimum model selection after repeated 10-fold cross-validation.

2.4.4. Model Performance Analysis

To evaluate the model performance and the contribution of different controlling factors on SSM
retrieval, we used the USCRN VWC measurements from 2016 to 2017 as the calibration dataset
and VWC measurements in 2018 as the validation dataset. The coefficient of determination (R?),
mean error (ME), and root mean square error (RMSE) were calculated for both calibration and validation
datasets using the measured VWC at the USCRN stations and predicted VWC from different empirical
SSM models.

2.4.5. SMAP Soil Moisture Product

To validate and compare the performance of three empirical SSM models, the NASA SMAP L3
SSM product was used (accessed from https://nsidc.org/data/smap/spl3smp/data-fields). The dataset
was developed using physical models and was available at 36 km every 2-3 days. SMAP SSM data
were extracted onto four selected locations representing different LC types (Figure 1).

3. Results
3.1. Performance of Different Models

3.1.1. Multiple Linear Regression

As shown in Table 2, the covariates selected in the MLR model can be divided into four categories,
including backscatter and their temporal statistics (VV, VH, Mean of VV, Mean of VH, SD/Mean of VV),
terrain parameters (slope, aspect, TPI, TRI, TWI), soil properties (BD, clay, silt), and LC types. It can be
interpreted from Table 2 that all the covariates listed were significant at the 5% level of significance
(p < 0.05) except for the Shrub/Scrub LC type. The overall MLR model was significant at the 5% level
of significance. The MLR was moderately accurate (R?> = 0.556 and RMSE = 0.058 m® m~3) for the
calibration data (from 2016 to 2017). In terms of the validation datasets in 2018, the model had a
moderate performance (R? = 0.551 and RMSE = 0.059 m® m~3) (Figure 3).

In the MLR model, the importance of different covariates can be evaluated based on the P values.
As shown in Table 2, VV was the most significant covariate, followed by soil properties such as silt,
clay, and LC type. By comparison, terrain parameters (e.g., aspect, TPI) were less important and angle
was the least important covariate in the MLR model.
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Table 2. Multiple linear regression (MLR) model for retrieving soil volumetric water content (VWC,

m3

m‘3) at 0-0.05 m depth. Note: coefficient of determination, R?; VH, backscatter in vertical
transmit/horizontal receive mode; VV, backscatter in vertical transmit/vertical receive mode; Mean of
VV and VH refer to the temporal mean values of VV and VH backscatter measurements during the

2016-2018; TPI, topographic position index; BD, bulk density; and LC, land cover.

(a) Summary of fit

R? 0.556
R? Adjusted 0.554
Root mean square error 0.078
No. of observations 2,882

(b) Parameter estimates

Covariates Estimate Standard Error  t Ratio Probability > [t]
Intercept 0.156 0.022 7.07 2.0x10712
\aY% 0.015 0.001 15.38 2.0x107°1
angle 0.001 0.000 2.62 8.8x1073
Mean of VV -0.023 0.002 -1132  40x107%
Mean of VH 0.001 0.001 5.83 6.3x1077
aspect 0.000 0.010 8.32 1.0x10716
TPI 0.054 0.014 3.96 7.6x107°
BD —-0.063 0.010 -5.99 2.4x107°
clay 0.004 0.000 13.45 5x10740
silt 0.002 0.000 14.01 4x1074
LC == Cultivated Crops 0.049 0.004 12.33 4x1073#
LC == Herbaceous —-0.020 0.003 -5.59 2.5x1078
LC == Hay/Pasture 0.030 0.003 8.95 6x10717
LC == Shrub/Scrub —0.061 - - -

(c) Analysis of variance

Source Degree of freedom Sum of squares
Model 12 21.91
Error 2,869 17.50
Corrected total 2,881 39.41

F ratio 299.40

Probability > F <0.0001

a) c) €)

R*=0.556 i R?=0.810 i R2=0.941
03 ME =0.000 m* m™* g ME =-0.001 m* m** N ME =-0.000 m* m*
RMSE = 0.058 m* m* RMSE =0.051 m’ m* RMSE = 0.029 m’ m”*

Predicted VWC (m® m)
Predicted VWC (m® m3)

Predicted VWC (m® m)

0 01 05 06 0 o1 04 05 06 0 o1 03 04 05 06

02 03 04 02 o. 02
Measured VWC (m* m*?) Measured VWC (m* m*?) Measured VWC (m* m*)

b) ] 1)
R*=0.551 R*=0.682 R*=0.676
05 ME =-0.001 m* m* 05 ME =-0.001 m* m* 0s ME = 0.001 m* m*

RMSE = 0.059 m* m™ RMSE = 0.064 m* m™

Predicted VWC (m’ m*)
Predicted VWC (m® m*)

0 o1 02 03 04 05 06 0 01 02 03 04 05 06 0 01 02 03 04 05 06
Measured VWC (m* m) Measured VWC (m* m) Measured VWC (m* m)

Figure 3. Comparison of model performance based on the 66 U.S. Climate Reference Network stations
over 2016-2018 for different machine learning algorithms including multiple linear regression model
(a), Cubist model (c), and Random Forest (e) for the calibration dataset and multiple linear regression
model (b), Cubist model (d), and Random Forest (f) for the validation dataset. Abbreviations: R2,
coefficient of determination; RMSE, root mean square error (m® m~3); ME, mean error (m® m™3).

8 of 19
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3.1.2. Cubist

In the Cubist model, four categories of covariates were used, including backscatter and their
temporal statistics (VV, VH, Mean of VV, Mean of VH, SD/Mean of VV), terrain parameters (slope,
aspect, TPI, TRI, TWI), soil properties (BD, clay, silt), and LC types. In total, 20 committees were
fitted for the optimal Cubist model and each of the committees had several rule-based sub-models.
For example, the first, second, and third committee had 27, 10, and 21 number of rules that were
chosen for optimum model building inside the “caret” package in R. Each rule fitted a regression
equation between VWC and other covariates based on the mean, range, and estimated error of selected
covariates (e.g., sand, SOM, VV, VH). The coefficents of the regression equations were selected based
on the weightage decided by the optimum model build inside the “caret” package in R. The summary
of the Cubist model formula is shown in Appendix A (Figure Al).

In the Cubist model, different conditions and predictors were determined and indicate the
covariate usage in the model. As shown in Table 3, SOM (57% of usage), silt (39%), sand (34%),
clay (26%), SD of VV (18%), aspect (18%), VV (18%), VH (17%) and other covariates were used as the
conditions for selecting the rules of the Cubist model, whereas VV (90% of usage), silt (76%), sand (68%),
VH (58%), SOM (55%) and others were used as the optimum model predictors. The weightages of
the conditions and optimum model predictors were decided by the optimum model build inside the
“caret” package in R. In terms of the model performance, it was improved compared to the MLR
with R? = 0.810 and 0.682, and RMSE = 0.051 and 0.064 m® m™ for the calibration and validation,
respectively (Figure 3).

Table 3. Covariates usage in the Cubist model. Abbreviations: VH, backscatter measured in vertical
transmit/horizontal receive mode; VV, backscatter measured in vertical transmit/vertical receive mode;
Mean and SD of VV and VH refer to the temporal mean and temporal standard deviation values
of VV and VH backscatter measurements during 2016-2018; TPI, topographic position index; TRI,
terrain ruggedness index; TWI, topographic wetness index; BD, bulk density; SOM, soil organic matter;
and LC, land cover.

Covariates Conditions Model
SOM 57% 55%
Sﬂt 39% 76%
sand 34% 68%
clay 260/0 44%
SD of VV 18% 47%
aspect 18% 30%
\'AY 18% 90%
VH 17% 58%
TPI 15% 25%
TWI 11% 28%
SD of VH 10% 45%
SD/Mean (VV) 8% 51%
Mean of VV 8% 39%
angle 6% 32%
slope 5% 38%
TRI 3% 29%
BD 3% 47%
Mean of VH 3% 31%
SD/Mean (VH) 3% 47%

3.1.3. Random Forest

The Random Forest was established with the same four categories of covariates as the MLR and
Cubist model. The importance of the covariates is shown in Table 4. The most important covariates
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were silt (%IncNodePurity = 9.3%) and sand (6.2%), followed by VV backscatter measurements (4.2%),
SOM (3.5%), VH (3.4%), incidence angle (2.9%), and other covariates.

Table 4. Covariates importance in the Random Forest model. Abbreviations: %IncNodePurity
means a total decrease in node impurities from splitting on the variable, averaged over all trees; VH,
backscatter measured in vertical transmit/horizontal receive mode; VV, backscatter measured in vertical
transmit/vertical receive mode; Mean and SD of VV and VH refer to the temporal mean and temporal
standard deviation values of VV and VH backscatter measurements during 2016-2018; TPI, topographic
position index; TRI, terrain ruggedness index; TWI, topographic wetness index; BD, bulk density; SOM,
soil organic matter; and LC, land cover.

Covariates %IncNodePurity
silt 9.3
sand 6.2
\A% 4.2
SOM 3.5
VH 3.4
angle 2.9
LC 1.6
clay 1.0
aspect 0.8
SD/Mean (VH) 0.7
TPI 0.7
BD 0.5
Mean of VV 0.4
SD of VV 0.4
SD of VH 0.4
SD/Mean (VV) 0.4
slope 0.4
Mean of VH 0.3
TRI 0.3
TWI 0.3

In terms of the model performance, the Random Forest model had the largest R? (0.941) and the
smallest RMSE (0.029 m® m~3) for the calibration data as compared to the MLR and Cubist model.
In terms of the validation data, the model was not good compared to the Cubist (R? = 0.676 and RMSE
= 0.065 m® m~3) (Figure 3). In this study, the optimal numbers of trees and other hyperparameters
were chosen by the “train” function in the R “caret” package and the final optimal model had 500 trees.
This suggested that the Random Forest model was over-fitted to the calibration data compared to the
Cubist model.

3.2. Model Performance within Different LC Types

The SSM retrieval models had different performance within different LC types (Table 5). In terms of
the MLR model, the coefficient of determination (R?) calculated between measured VWC and predicted
VWLC for calibration datasets was largest in Herbaceous areas (0.503), followed by Shrub/Scrub (0.351),
Cultivated Crops (0.264), and Hay/Pasture (0.230). In terms of the validation dataset, the patterns were
slightly different, whereby Cultivated Crops had the largest R? (0.451), followed by Herbaceous (0.351),
Shrub/Scrub (0.314), and Hay/Pasture (0.104). Note that Cultivated Crops and Herbaceous land cover
types always outperformed the Shrub/Scrub and Hay/Pasture.
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Table 5. Model performance for different methods within different land cover types calculated
for calibration and validation datasets. Abbreviations: N, number of samples; R?, coefficient of
determination; RMSE, root mean square error (m3 m_3); ME, mean error (m3 m_3); RF, Random Forest.

Calibration Validation

Cultivated Crops Hay/Pasture =~ Herbaceous Shrub/Scrub  Cultivated Crops Hay/Pasture ~ Herbaceous Shrub/Scrub

N 303 730 934 986 210 502 550 842

R2

MLR  0.264 0.230 0.503 0.351 0.451 0.104 0.351 0.314
Cubist 0.567 0.671 0.809 0.723 0.512 0.457 0.513 0.522
RF 0.895 0.903 0.943 0.916 0.509 0.398 0.523 0.543
RMSE

MLR  0.084 0.092 0.080 0.059 0.071 0.098 0.079 0.057
Cubist  0.062 0.061 0.049 0.039 0.067 0.076 0.072 0.048
RF 0.034 0.036 0.028 0.023 0.068 0.080 0.073 0.046
ME

MLR  0.000 0.000 0.000 0.000 0.005 -0.008 0.005 -0.000
Cubist —0.001 0.001 -0.001 -0.003 -0.000 -0.001 0.003 —-0.004
RF 0.000 0.045 -0.000 -0.000 0.002 -0.001 0.005 0.000

This was not the case for Cubist and Random Forest models. When these two models were
used, the model performance was best within the Herbaceous, followed by Shrub/Scrub, Hay/Pasture,
and Cultivated Crops, for calibration datasets and within Shrub/Scrub, followed by Herbaceous,
Cultivated Crops, and Hay/Pasture for validation datasets.

In terms of the importance of the covariates, the temporal Mean of VV and VH backscatter data
(Mean of VV, Mean of VH), soil texture, and aspect were important in all three models (Tables 2—4).
This indicated that these factors had strong influences on SSM. The land cover type was only important
in the MLR and Random Forest model. This was possible because the Cubist model used other
continuous covariates (e.g. SOM, sand, silt, clay content, SD of VV, aspect) to define the conditions that
performed better than the land cover type (Table 3).

The temporal variations of measured and predicted SSM using the Cubist model are plotted
for different LC types at four USCRN stations over 20162018 (Figure 4). The measured SSM was
collected from the ground soil moisture probes at the measuring stations. The predicted SSM values
were extracted from the Cubist model on to the measuring stations. This type of comparison was
similarly used by Bauer-Marschallinger et al. [19] and Das et al. [29] to evaluate the performance of
the SSM retrieval models. The performance of the SSM retrieval models varied with the stations.
In general, soil VWC was well predicted in 2018 using historical (2016-2017) Sentinel-1 data with
ancillary data in stations with Shrub/Scrub (MS_Newton), Herbaceous (SD_Pierre), and Cultivated
Crops (MO_Chillicothe). Soil VWC was poorly retrieved in Hay/Pasture (KY_Versailles).

To compare the empirical model with the SMAP products, SMAP L3 Radiometer SSM estimates
were also extracted on to the USCRN stations assuming the 36-km pixel values represent SSM measured
at the stations (Figure 4). In general, the SMAP products have a larger model error compared to the
empirical model established using Sentinel-1 data at these four locations.
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Figure 4. Measured (black line) and predicted soil volumetric water content (VWC, m® m™3) using the
empirical model (red dots) and SMAP-L3-SM-P (blue dots) at four USCRN stations representing
Cultivated Crops (MO_Chillicothe), Herbaceous (SD_Pierre), Hay/Pasture (KY_Versailles), and

Shrub/Scrub (MS_Newton) during 2016-2018.
4. Discussion

4.1. Importance of Covariates on SSM Retrieval at USCRN Stations

Compared with other “black-box” models such as artificial neural networks used to retrieve
SSM (e.g., [27]), the use of MLR, Cubist and Random Forest algorithms makes the empirical models
relatively easy to interpret. They also illustrate the relative importance of the covariates for retrieving
SSM. As shown in Tables 2—4, the SSM dynamics at the USCRN stations are influenced by backscatter
data and environmental variables, including soil properties, LC, terrain parameters. Among the three
models, backscatter data and soil properties are most important in retrieving SSM, followed by several
terrain parameters, and then LC types.

This highlights the need for measurement of high-resolution backscatter data from SAR sensors,
as well as the development of high-resolution maps of soil properties for the future improvement of
SSM empirical or physical retrieval models. Besides, high-resolution digital elevation models are also
important as aspect, TPI, and TRI were used in the conditions and model of the Cubist model and
found to be significant in the MLR and Random Forest model.

4.2. Implications of the Empirical SSM Retrieval Models

The empirical models established in this study have several advantages. First, the Cubist model
is more accurate than the SMAP Level 3 radiometer-based SSM product (a resolution of 36 km) at
the selected USCRN stations, particularly within Shrub/Scrub, Herbaceous, and Cultivated Crops
(Figure 4). This was most likely due to the use of fine-resolution environmental covariates as compared
to the SMAP model [16].

Second, the MLR model was worse than the Cubist and Random Forest models because the
simplicity of the MLR model cannot account for the complex relationship between VWC and microwave
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data. This suggests that non-linear models should be used to retrieve SSM using Sentinel-1 data and
is consistent with the previous studies that use non-linear models for predicting SSM (e.g., [54-56]).
The Random Forest model over-fits the calibration dataset, so it should be used with caution for the
future development of SSM retrieval models.

Third, the Cubist model is simple as no detailed information such as the ground roughness,
emissivity, and opacity of the vegetation are required unlike those used in the physical models
(e.g., [16,21]). Instead, we only used environmental covariates (soil properties, land cover, terrain
parameters) that have become available across large spatial extents from various sources of remote
sensing and ancillary data. When historical SSM measurements are available from the ground
monitoring networks, SSM dynamics can be retrieved using a combination of Sentinel-1 and ancillary
data in the future under similar land surface conditions. Because these environmental covariates are
widely available across the US and the world [57-59], it is worth further exploring this approach to a
large spatial extent (across the US or globally) by including more SSM network measurements [9].

4.3. Limitations of the Empirical SSM Retrieval Models

There are a few limitations of the empirical models. First, the empirical model established in this
study can only retrieve SSM well in three LC types (Shrub/Scrub, Herbaceous, and Cultivated Crops).
Future work is required to establish SSM retrieval models in other LC types, such as Hay/Pasture and
Forest. The effective measuring depth of C-band SAR is around 0.05 m, so it is possible to combine
Sentinel-1 data with other microwave data, such as the radiometer of the SMAP mission [29] and
AMSR2. In a similar study, Alexakis et al. showed that Sentinel-1 backscatter data can be combined
with vegetation indices (e.g., NDVI) to estimate SSM using a non-linear approach such as an artificial
neural network (ANN) [56].

Alternatively, active and passive remote sensing data could be used to retrieve soil moisture
coupled with statistical, empirical, and backscattering models [60]. It is also possible to assimilate
these microwave data with other remote sensing satellite products, including optical and thermal
bands, such as LANDSAT and Sentinel-2 (e.g., [61]) and ECOSTRESS [62] satellites to better account
for the differences in leaf area and land surface radiance due to the spatial-temporal variations in SSM.
Alternatively, a physical model such as Water Cloud Model could be effectively used for SSM retrieval
from Synthetic Aperture Radar (SAR) imagery [63]. It is also feasible to combine multi-sensor satellite
data from microwave and optical sensors to retrieve SSM using a hybrid approach [64].

Second, to implement this SSM model for irrigation scheduling whereby SSM measurements from
sparse soil moisture measurements are available in the field (e.g., [65]), process models are required to
forecast soil water storage and movement within the root-zone (e.g., [66,67]). This can be achieved by
assimilating VWC measurements at multiple depths from soil moisture probes with mechanistic models
using ensemble Kalman filtering (e.g., [68,69]). Alternatively, empirical and mechanistic models may
be used to obtain deeper-layer soil water content from the satellite-derived SSM measurements [70-72].

Lastly, the small-scale roughness element is often used to model the backscatter signal from
microwave radar [21,37,73]. Because most DEM data has a limited resolution (10 m), it is also possible
to include high-resolution tomography radar imaging for improved terrain delineation under certain
regions [74]. To apply the SSM model across a larger spatial extent, it is worth exploring how to
downscale the roughness parameters from coarse-resolution DEM for developing the soil water
retrieval model.

5. Conclusions

Empirical models are established for predicting surface soil moisture (S55M, 0-0.05 m) in 2018
based on historical (2016-2017) Sentinel-1 and ancillary data at the U.S. Climate Reference Network
soil moisture. Multiple linear regression (MLR), Cubist, and Random Forest models are compared to
fit the models using 30-m Sentinel-1 data, a 10-m digital elevation model, 30-m Polaris soil property
maps, and 30-m land cover maps of the USA.
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The Cubist model is better than the MLR and Random Forest (R? = 0.68 and RMSE = 0.06 m?
m~3 for validation). The Cubist model performs best in Shrub/Scrub, followed by Herbaceous and
Cultivated Crops but poorly in Hay/Pasture and shows better performance than the SSM retrieved by
SMAP Radiometer at the 36-km resolution at several USCRN stations due to the use of fine-resolution
environmental covariates. The SSM model performance is mostly affected by backscatter data,
soil properties and terrain parameters, followed by land cover types. This indicates the need to
improve the spatial resolution and accuracy of these land surface parameter products at the regional
and global scales.

Future work is required to improve the model performance by including more SSM measurements,
assimilating Sentinel-1 data with other remote sensing products such as microwave (SMAP, AMSR?2),
optical and thermal (LANDSAT, Sentinel-2, ECOSTRESS) satellites as well as developing high-resolution
topography maps.
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Appendix A

Table A1l. List of acronyms used in the paper.

Acronyms Full Form
USCRN U.S. Climate Reference Network
S-1 Sentinel-1
SAR Synthetic Aperture Radar
\'A% Vertical transmit/vertical receive
VH Vertical transmit/horizontal receive
SMAP Soil Moisture Active Passive
AMSR2 Advanced Microwave Scanning Radiometer 2
SSM Surface Soil Moisture
VWC Volumetric Water Content
LC Land Cover
ROI Region of Interest
GRD Ground Range Detected
SRTM Shuttle Radar Topography Mission
DEM Digital Elevation Model
USGS U.S. Geological Survey
TRI Terrain Ruggedness Index
TWI Topographic Wetness Index
TPI Topographic Position Index
NDVI Normalized Difference Vegetation Index
POLARIS Probabilistic Remapping of Soil Survey Geographic
SOM Soil Organic Matter
BD Bulk Density
MLR Multiple Linear Regression
RF Random Forest
ANN Artificial Neural Netwrok
SD Standard Deviation
ME Mean Error
RMSE Root Mean Square Error

R? Coefficient of Determination
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Model 1:

Rule 1/1: [309 cases, mean 0.0440, range 0.007 to 0.156, estimated error 0.0198]If (sand >
63.69472, and SOM <= 0.7881013)

then

VWC =-0.538 + 0.00634 sand + 0.00536 silt + 0.0054 VV - 0.0042 VH

Rule 1/2: [77 cases, mean 0.0679, range 0.003 to 0.32, estimated error 0.0492]

If (sand > (65.69472, and SOM > 7.358795)

then

VWC =-0.3651 -0.03 VH + 0.0106 VV

Rule 1/27: [45 cases, mean 0.3613, range 0.148 to 0.54, estimated error 0.0835]
If (VH = -16.01418, TWI == 5.761539, and silt = 52.077)

then]

VWC =-0.0388 + 0.0584 TWI + 0.0103 clay + 0.0105 VV - 0.117 ED - 0.0034 VH

Model 2:

Rule 2/1: [808 cases, mean 0.0701, range 0.007 to 0.32, estimated error 0.0299]

If (sand = 24.31073, and SOM <= 0.9571035)

then

VWC =-0.488 + 0.00528 sand + 0.0387 50OM + 0.0154 clay + 0.008% VV + 0.00019 aspect -
0.0053 VH

Model 20:

Rule 20/1: [370 cases, mean 0.0552, range 0.003 to 0.211, estimated error 0.0302]
If [clay = 4.507805, and clay <=9.258789 Land_cover in {Grassland, Shrub}]
then

VWC =0.059 - 0.00554 silt - 0.0065 VH + 0.0069 SOM - 0.0058 VV - 0.0019 angle

Rule 20/15: [398 cases, mean 0.3020, range 0.102 to 0.551, estimated error 0.0755]
If (sand == 24.31073, and silt = 51.46866)
then
VWC =0.7815-0.00511 silt + 0.0192 VV - 0.0085 VH - 0.0024 clay - 0.0008 SOM + 0.004 tri - 0.008

BD -0.0004 slope

Figure A1. Summary of Cubist rules.
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