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Abstract: Oil spills are a global phenomenon with impacts that cut across socio-economic, health, 
and environmental dimensions of the coastal ecosystem. However, comprehensive assessment of 
oil spill impacts and selection of appropriate remediation approaches have been restricted due to 
reliance on laboratory experiments which offer limited area coverage and classification accuracy. 
Thus, this study utilizes multispectral Landsat 8-OLI remote sensing imagery and machine 
learning models to assess the impacts of oil spills on coastal vegetation and wetland and monitor 
the recovery pattern of polluted vegetation and wetland in a coastal city. The spatial extent of 
polluted areas was also precisely quantified for effective management of the coastal ecosystem. 
Using Johor, a coastal city in Malaysia as a case study, a total of 49 oil spill (ground truth) locations, 
54 non-oil-spill locations and Landsat 8-OLI data were utilized for the study. The ground truth 
points were divided into 70% training and 30% validation parts for the classification of polluted 
vegetation and wetland. Sixteen different indices that have been used to monitor vegetation and 
wetland stress in literature were adopted for impact and recovery analysis. To eliminate 
similarities in spectral appearance of oil-spill-affected vegetation, wetland and other elements like 
burnt and dead vegetation, Support Vector Machine (SVM) and Random Forest (RF) machine 
learning models were used for the classification of polluted and nonpolluted vegetation and 
wetlands. Model optimization was performed using a random search method to improve the 
models’ performance, and accuracy assessments confirmed the effectiveness of the two machine 
learning models to identify, classify and quantify the area extent of oil pollution on coastal 
vegetation and wetland. Considering the harmonic mean (F1), overall accuracy (OA), User’s 
accuracy (UA), and producers’ accuracy (PA), both models have high accuracies. However, the RF 
outperformed the SVM with F1, OA, PA and UA values of 95.32%, 96.80%, 98.82% and 95.11%, 
respectively, while the SVM recorded accuracy values of F1 (80.83%), OA (92.87%), PA (95.18%) and 
UA (93.81%), respectively, highlighting 1205.98 hectares of polluted vegetation and 1205.98 
hectares of polluted wetland. Analysis of the vegetation indices revealed that spilled oil had a 
significant impact on the vegetation and wetland, although steady recovery was observed between 
2015-2018. This study concludes that Chlorophyll Vegetation Index, Modified Difference Water 
Index, Normalized Difference Vegetation Index and Green Chlorophyll Index vegetation indices 



Remote Sens. 2020, 12, 1225 2 of 25 

 

are more sensitive for impact and recovery assessment of both vegetation and wetland, in addition 
to Modified Normalized Difference Vegetation Index for wetlands. Thus, remote sensing and 
Machine Learning models are essential tools capable of providing accurate information for coastal 
oil spill impact assessment and recovery analysis for appropriate remediation initiatives. 

Keywords: coastal pollution; remote sensing; SVM; RF; oil spill; vegetation; wetland 

1. Introduction 

Globally, coastal ecosystems are the most densely populated zones [1,2], housing diverse 
elements like marine mammals, invertebrates and plants. Due to its locational interface [3], it is 
highly vulnerable to anthropogenic pollutants [4] such as plastics debris [3,5,6], metal debris, volatile 
methylsiloxanes [7] and oil spills. Oil spills are hazardous because of their long-term environmental 
impacts. Between 1907 and 2014, over 7 million tons of oil have been spilled globally [8]. The 
Deep-Water Horizon oil spill of 2010 at the Gulf of Mexico that disposed of 4,900,000 barrels of crude 
oil, costing the British Petroleum 68 billion USD in restoration costs is the largest environmental 
disaster in the history of the US [9,10]. Oil spills occur primarily during crude oil exploration, 
leakage from pipelines, vandalism of infrastructures, illegal extraction from oil wells, oil movement 
to vessels and tankers, and natural disasters like earthquakes or hurricanes [11,12]. Oil spills affect 
different elements of the coastal environments at different levels [13], with vegetation and wetlands 
being the most impacted because of their location at the intertidal zone of the marine ecosystem [14]. 
Coastal vegetation and wetland cannot survive long-term exposure to oil due to plants smothering 
and poisoning [15,16]. For instance, marine tar residues on sensitive plant surfaces affect soil 
chemistry and permeability, leading to death and sub-lethal impacts [17]. Over 238 significant 
marine oil spill incidents have occurred close to coastal vegetation and wetlands worldwide in the 
past 60 years, with over 5.5 million tons of oil released directly, affecting approximately 1.94 million 
ha of vegetation and wetland [18]. 

In the Panamanian coast, oil spill destroyed over 27km of mangrove vegetation and newly 
planted seedlings [19]. Pavanelli and Loch [20] observed deterioration in vegetation health during 
the first 40 days after oil spills in two different sites in Brazil. The study concluded that the impact of 
the oil spill on vegetation depends on the level of exposure and the chemistry of the oil. Another 
paper [21] revealed that four years after the spill of about 4200 gallons of crude oil at Phrahmite 
Australis marshes, the affected vegetation had yet to recover. The study of [15] showed that salt 
marsh vegetation along the heavily oiled shoreline has been severely affected by the Deep-Water 
Horizon (DWH) oil spill, leading to complete mortality and little recovery after 7 months. Eighteen 
months after the spill of eight million liters of crude oil in Panama Canal in 1986, only a few affected 
intertidal mangroves, seagrasses and algae showed signs of recovery [19]. These studies underscore 
the vulnerability of coastal vegetation and wetland to oil spill pollution. It is important to note that 
many of the impact assessments were based on the use of traditional field observatory and modern 
laboratory technologies [15,22,23], which have a limited area coverage and cannot give wide 
coverage assessment for proper coastal vegetation management. Hence, the use of remote sensing 
technology is essential because of its ability to cover larger areas and detect changes in vegetation 
health due to stress from different anthropogenic pollutions and other environmental effects using 
spectral indices [24]. 

Remote sensing technology’s time-saving, synoptic, multi-layer and wide coverage capabilities 
are vital for seasonal change assessment over a long period [25,26]. Geographic information systems 
(GIS) interpret the relationship between the remote sensing data and ground-based ecological data 
in meaningful ways that give better understanding for analysis and decision making, particularly 
during emergency response planning. Both optical and microwave sensors are cable of identifying 
oil-spill-affected areas. However, optical sensors are mostly used for monitoring oil-polluted 
terrestrial vegetation because of their multispectral and temporal features. Moreover, microwave 
sensors (e.g., Synthetic Aperture Radar (SAR)) are more appropriate for ocean and sea surface oil 
spill monitoring due to their high sensitivity to different elements [27,28] rather than terrestrial 
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monitoring. Nonetheless, mapping of post-spill affected vegetation areas using remote sensing is 
affected by overestimation due to similarities in spectral appearance of oil spill affected vegetation, 
wetland and other elements like burnt and dead vegetation [29,30]. To date, remote sensing 
multispectral images have been used in monitoring impacts of disasters like hurricanes [14,31] and 
oil spills [32–34] on vegetation. Previous studies such as [35–38] considered mainly terrestrial 
vegetation health indices which are only cable of assessing the impact of oil spills without giving the 
exact extent of the polluted and nonpolluted areas. More recent studies have incorporated machine 
learning models that classify affected and nonaffected terrestrial vegetation to give the exact area 
extent of polluted areas [39,40]. This process was hitherto affected by inaccuracies in classification, 
leading to spectral confusion. Further, lack of model comparison has limited the reliability of these 
approaches. Moreover, assessment of oil impacts on wetlands which constitute part of coastal zones 
has been scant, with a lot of focus on vegetation despite the variations in hydrocarbon stress for 
different coastal zones and vegetation areas [41]. Moreover, previous studies have neglected 
recovery assessment, while impact assessments were often undertaken using data covering two 
broad periods: pre- and post-oil spill. 

To address the aforementioned research gaps, this paper integrated Support Vector Machine 
(SVM) and Random Forest (RF) machine learning models due to their impressive functionalities in 
analysis and achieving local minima and generalization with a small sample size [42,43] to classify 
polluted and nonpolluted vegetation and wetland. This will be followed by a comprehensive 
assessment of the impacts and recovery trend of the polluted vegetation and wetland over an 
extended period. The empirical recovery assessment of vegetation and wetlands proposed in this 
study will provide evidence-based information to better aid decision making for sustainable 
management of coastal oil spill disasters. 

2. Materials and Methods 

2.1. Study Area 

Johor (Figure 1a) is bounded by straits of Malacca in the west, straits of Johor in the south and 
China Sea in the east. It has a total of 400 km of coastline, majorly in the east and west, which are 
predominantly habitats of mangrove, swampy wetland, grasses and Niplah forest [44]. High 
percentage of oil palm production is carried out in Johor because of its fertile land [45], and it is 
renowned for its intensive port activities, comprising domestic and international marine 
transportation. The coastal city, especially Kota Tinngi (Figure 1b), is highly vulnerable to oil spills 
because of the frequent use and movement of petroleum products that are often discharged into the 
water body [46]. Similarly, its proximity to the China sea, which experiences intense cargo vessel 
movements, exacerbates its vulnerability to oil spill pollution [47]. This frequent transportation of 
crude oil has caused different oil spills like the Jeti PML plant vessel explosion and fire (2012), 
Sungai Kapal sludge oil spill (2012), Nelayan KG diesel spill (2013), Kuantan Port ship collision oil 
spill (2014), Sungai Kampung Belungkor (2014), Kota Tinggi Johor oil spill (2014), Tg Belungkor Jetty 
and Kota Tinggi Johor medium fuel spill (2014), contaminating several beaches around Johor’s 
coastal line [48] and affecting a large expanse of vegetation and wetland (Figure 1c). 
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Figure 1. (a) Map of Peninsular Malaysia showing Johor; (b) Johor showing Kota-Tinggi Study Area; 
(c) Location of Oil Spill Sites in the Study Area. 

2.2. Data Used 

The first step in this study was the collection of oil spill data (2014) of the study area from 
Malaysia’s Ministry of Environment, which includes the location, date, time, causes and the type of 
spill. These spills, comprising mostly crude oil, heavy fuel, Tarball, medium fuel and diesel, usually 
originated from ship accidents and pipeline leakages and are subsequently washed to the coastal 
areas over time, affecting the vegetation and wetland. Within the state of Johor, Kota Tinggi 
experienced a larger portion of the oil spill, which is attributable to the presence of the Liquid 
Natural Gas (LNG) terminal at Pangarran and a major ship route at Tanjun Balau and strait of Johor. 
A total of fifteen sites (See Figure 1c) were identified to have been affected by the oil spill, with a land 
area of more than 3600 square meters (sqm). Forty-nine ground-truth points were then identified 
around these oil spill sites (Figure 2a,b), and a buffer area of 60 meters was created around the points 
(Figure 2c) for the classification exercise. As a control point, a total of 54 nonpolluted sites 
(ground-truth data) with similar 60 meters buffer as obtained for the polluted sites were also 
identified (Table 1). To classify the wetland and vegetation polluted and nonpolluted areas, the 
ground truth data of the classes were divided into 70% training and 30% validation data. 

To undertake the oil spill impact and recovery analysis, a reconnaissance survey was conducted 
for site selection using Google Earth aerial photographs, which identified Land Use Land Cover 
(LULC) changes in the study area between 2014 and 2018. Sites with significant infrastructural 
developments, land reclamation and deforestation were excluded from the analysis, and a total of 
nine sites were used for the impact and recovery analysis. 
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Table 1. Oil spill and non-oil-spill ground truth points. 

Number Class label Number of ground reference points  
1 Polluted vegetation 28 
2 Polluted wetland 21 
3 Nonpolluted vegetation 31 
4 Nonpolluted wetland 23 
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Figure 2. (a) Ground truth point of the polluted and nonpolluted vegetation and wetland. (b) 
Ground truth point for training and validation of the polluted and nonpolluted vegetation and 
wetland. (c) Examples of the 60meters buffer around ground reference points on a composite 5-4-3 
Landsat 8-OLI imagery. 

2.3. Landsat 8-OLI 

Landsat 8-OLI of row and path 59 and 125 between 2013–2018 were acquired from the NASA 
Landsat mission’s global land cover launched in 2013. Landsat 8 has improved technical features. 
The NIR band has a closer width to Moderate Resolution Imaging Spectroradiometer (MODIS) near 
infrared (NIR) band, which is widely used in detection of vegetation health status [7,19]. In addition, 
two reflectance wavelength bands have been added: the shorter wavelength blue band (0.43–0.45) 
and shortwave infrared SWIR band (1.36–1.39). The former improves the chlorophyll sensitivity 
while the latter enables cloud cirrus detection [49,50]. The acquired Landsat 8-OLI (level 2) imageries 
were from December 2013 to December 2018 during the monsoon period with lesser rainfall and 
minimal cloud cover. The images with the lowest cloud cover of 20% were acquired and subjected to 
sun angle atmospheric correction. The Landsat 8-OLI image was re-projected to Universal 
Transverse Mercator (UTM) in accordance to the study location (Johor, Malaysia). These procedures 
are pertinent to quality control and assurance since the study depends majorly on the spectral values 
from the imageries. Table 2 presents the image’s specifications. 
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Table 2. Landsat 8 OLI band specifications. 

Band  Wavelength (μm) Resolution (meters) 
Band 1 coastal (Violet–Deep Blue) 0.43-0.45 30 

Band 2 (Blue) 0.45-0.51 30 
Band 3 (Green) 0.53-0.59 30 
Band 4 (Red) 0.64-0.67 30 

Band 5 Near Infrared (NIR) 0.85-0.88 30 
Band 6 Shortwave infrared (SWIR-1) 1.57-1.65 30 
Band 7 Shortwave infrared (SWIR-2) 2.11-2.29 30 

Band 8 Panchromatic (PAN) 0.50-0.68 15 
Band 9 (Cirrus) 1.36-1.38 30 

Band 10 Thermal Infrared (TIRS) 1 10.60-11.19 100 meters resolution interpolated to 30 meters 
Band 11 Thermal Infrared (TIRS) 2 11.50-2.51 100 meters resolution interpolated to 30 meters 

2.4. Machine Learning Algorithms 

In machine learning, size, number of samples, target variable and training data determine the 
algorithm selection [39,40]. Specifically, there are mainly 2 types of modeling: supervised and 
unsupervised learning, which depend on the target availability. There are also 2 main types of 
results: regression or classification output, which depend on target type, factor or numeric. For this 
study, two supervised learning classification models (Support Vector Machine (SVM) and Random 
Forest (RF)) were used. 

2.4.1. Support Vector Machine (SVM) 

Support vector machine (SVM) is a supervised statistical learning technique developed by 
Vapnik in 1995 [51,52]. Its applications cut across areas like machine vision, handwriting digit and 
text identification and satellite imagery classification [53,54]. The model is based on user-defined 
Kernel function for mapping nonlinear decision boundaries in a dataset to linear boundaries of 
high-dimensional construct [55] with the goal of ascertaining the hyperplane that optimally 
separates different classes [56,57]. This hyperplane is determined using training data while 
validating data set are used for making inference [55]. For this study, both the training and 
validation data sets are represented by a point vector with a 60 meters buffer on the stacked 23 
spectral variables (See Table 3). In addition to being a binary classifier, SVMs are also used for 
multiple class classification through the One Against All and One Against One (OAA and OAO, 
respectively) [58]. SVM was used for the discrimination of the oil-spill- and non-oil-spill-affected 
vegetation and wetland in various studies [56,58–60]. 

2.4.2. Random Forest (RF) 

Random forest (RF) is a set of tree predictors wherein each tree relies on the value of a random 
vector sampled independently and with the same distribution for all trees in the forest [61]. Being an 
ensemble method, random forest is based on the combination of bootstrap aggregation. Individual 
trees are parameterized through random selection of samples from observations as training data, 
enabling multicollinearity reduction [62]. RF has been used for the successful classification of 
oil-spill- and non-oil-spill-affected vegetation and wetland [49,59,63]. 

2.4.3. Machine Learning Models for Pollution Classification 

The evaluation of the 2 machine learning models for the classification and extent quantification 
were conducted in 2 stages. The first stage involves the stacking of Landsat 8-OLI band 1-7 and 16 
spectral vegetation indices as presented in Table 3. The vegetation indices were all derived from the 
Landsat 8-OLI imagery of December 2014 which is a cloud-free imagery acquired from the US 
Geological Survey (USGS) website. The training of the two models was subsequently carried out by 
first conducting the parameterization of the ground truth on the stacked images. The output was 
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then used for the classification of the area into polluted, nonpolluted and others (spectral reflectance 
for built-up areas and bare land that are not of interest). Upon the completion of the training task, 
the validation data set was used to assess the reliability of the models using confusion matrix. The 
training and validation activities were performed using EnMap Box software. 

Table 3. Landsat 8-OLI Spectral Variables for Classification of Polluted Vegetation and Wetland. 

Number Spectral Variables 
1 Band 1 coastal (Violet–Deep Blue) 
2 Band 2 (Blue) 
3 Band 3 (Green) 
4 Band 4 (Red) 
5 Band 5 Near Infrared (NIR) 
6 Band 6 Shortwave infrared (SWIR-1) 
7 Band 7 Shortwave infrared (SWIR-2) 
8 Aerosol free Vegetation Index (AFRI) 
9 Chlorophyll Vegetation Index (CVI) 

10 Enhanced Vegetation Index (EVI) 
11 Enhanced Vegetation Index 2 (EVI2) 
12 Green Chlorophyll Index (GCI) 
13 Green Normalized Difference Vegetation Index (GNDVI) 
14 Modified Difference Water Index (MDWI) 
15 Modified Normalized Difference Vegetation Index (MNDVI) 
16 Moisture Stress Index (MSI) 
17 Normalized Difference Moisture Index (NDMI) 
18 Normalized Difference Vegetation Index (NDVI) 
19 Normalized Difference Water Index (NDWI) 
20 Renormalized Difference Vegetation Index (RDVI) 
21 Ration Vegetation Index (RVI) 
22 Soil and Atmospherically Resistant Vegetation (SARVI2) 
23 Soil adjusted Vegetation Index (SAVI) 

2.5. Accuracy Assessment 

Several methods have been developed and used in the assessment of machine learning models 
for thematic map classifications [64,65], but the error matrix—also referred to as confusion matrix, 
confusion table or contingency table—is mostly used [40,59,66–68]. Error matrix comprises of a 
square of array values in rows and columns, depicting the number of sampling units of a class to the 
same class of the verified (validation) ground truth [65,69]. For this study, the evaluation of the 
accuracy for each of the Machine Learning models were based on a harmonic mean of precision and 
sensitivity recall (F1 accuracy) and the number of matrices derived from the error matrix based on the 
30% validation datasets for the four different classes (polluted vegetation, polluted wetland, 
nonpolluted vegetation and nonpolluted wetland). F1 accuracy presents the harmonic mean of 
precision and sensitivity recall which ascertain the out-of-bag error of the model [39]. Equation (1) is 
used for the F1 accuracy calculation. 

F1 accuracy=  (1) 

The Precision is the division of the true positive pixels (TP) by the sum of true positive pixels 
and false positive (FP) pixels (Equation 2), while the recall is the division of true positive pixels by 
the sum of true positive pixel and false negative (FN) pixel (Equation (3)). 

Precision =  (2) 
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Recall =  (3) 

The matrix values are based on overall accuracy (OA), User’s accuracy (UA) and producers’ 
accuracy (PA). The OA indicates the percentage or proportion of the overall map which is correctly 
classified based on the validation ground truth dataset; UA connotes the proportion of a map class 
(Pixel) that is correctly classified with reference to that particular class (Pixel) on the validation 
ground truth; and PA is the proportion of a particular class on the ground that is mapped as that 
particular class, i.e., how well the assigned pixel is classified [68,70]. These are more accurate 
reliability assessment indices than the Kappa coefficient, which is an overall measure of accuracy 
based on a random allocation agreement incorporating an adjustment. Although the Kappa statistic 
is popular, it is not appropriate for accuracy comparison between different models [67,71] because of 
its inability to distinguish between elements in the confusion matrix [69]. The four accuracy 
assessment matrices for the two models were computed from the polluted and nonpolluted 
classification classes and the proportion areas of the four classes where indicated. Finally, the results 
were evaluated using the Ms Nemar’s chi-square (X2) test to compare them statistically at a 
confidence level of 95% [72] in order to achieve a marginal homogeneity between the two classes as 
adopted by [40,59]. 

2.6. Vegetation Indices 

Vegetation indices are defined based on the arithmetic combination of two or more spectral 
bands from an electromagnetic wave reflectance information acquired through satellites [73]. 
Variations in the reflectance of light spectra indicate the status of the target plant under study. The 
effect of oil spill hydrocarbon pollution on wetland and vegetation can be identified through 
changes in the rate of photosynthesis; changes in the relative and absolute concentration of 
chlorophyll a and b; changes in lead size; thickness and structure [41,74]. Previous studies have 
utilized several indices to assess vegetation health status, like eight vegetation indices used in [39], 
three indices [40], one index [75], and two indices [32]. In this study, we utilized sixteen different 
indices (Table 4) derived from existing literature to examine the effect and recovery pattern of oil 
spill polluted vegetation and wetland. The impact was ascertained by comparing the vegetation 
indices value from the polluted site before and after oil spills. Results from 2013 imagery were used 
for the pre-oil spill analysis and 2015 for the post-oil-spill assessment. 

Table 4. Vegetation Health Indices for Impact and Recovery Analysis of Polluted and Nonpolluted 
Vegetation and Wetland. 

S/N. Vegetation indices Formula Reference 

1 Aerosol free Vegetation Index AFRI  [76] 

2 Chlorophyll Vegetation Index CVI 
 

[77] 

3 Enhanced Vegetation Index EVI  [78] 

4 Enhanced Vegetation Index 2 EVI2 
 

[79] 

5 Green Chlorophyll Index GCI 
 

[80] 

6 
Green Normalized Difference 

Vegetation Index 
GNDVI 

 
[81] 
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7 Modified Difference Water Index MDWI 
 

[82] 

8 
Modified Normalized Difference 

Vegetation Index 
MNDVI 

 
[83] 

9 Moisture Stress Index MSI 
 

[84] 

10 
Normalized Difference Moisture 

Index 
NDMI 

 
[85] 

11 
Normalized Difference 

Vegetation Index 
NDVI 

 
[86] 

12 
Normalized Difference Water 

Index 
NDWI 

 
[87] 

13 
Renormalized Difference 

Vegetation Index 
RDVI 

 
[88] 

14 RATION Vegetation Index RVI 
 

[89] 

15 
Soil and Atmospherically 

Resistant Vegetation 
SARVI2 

 
[90] 

16 Soil Adjusted Vegetation Index SAVI 
 

[85] 

L represents the canopy background adjustment factors, which is usually 0.5. C1 and C2 represent 
coefficients of atmospheric resistance, which are always 6 and 7.5, respectively. RED, GREEN, BLUE, 
etc. are Landsat 8 band as explained in Table 2. 

2.7. Model Hyper-Parameter Optimization 

The models were trained and validated using EnMap software [91]. Hyper-parameters’ 
optimization entails using a set of optimal values as parameters to improve the learning rate, 
forming an integral part of the general model training. Similar to the approach adopted by [59], the 
two models were optimized using k-fold (where k = 10) cross-validation by randomized sampling to 
a certain iteration on the training dataset (Table 5). For SVM, the Gaussian radial basis function 
(RBF) kernel, which is a multidimensional distribution describing the distance between the input 
vector and the predefined center vector, has a value of 10; regularization parameter (C) has a value 
of 10 while the sigma, which represents the weight of the RBF kernel, has a value of 0.001000 on a 
variable/class number of four. On the other hand, the RF model’s variable/class was four with a tree 
of 500 and an impurity function of Gini Coefficient. 

Table 5. Model hyper-parameter optimization. 

Model Hyper-parameter Value 

SVM 
Gaussian radial basis function (RBF) 10.0000 

regularization parameters (C) 10.0000 
Sigma 0.00100000 

RF 
Classes 4 

Impurity function Gini Coefficient 
Trees 500 
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Randomly Selected Features 2 

2.8. Land Use Land Cover (LULC) of the study area 

The LULC analysis gives information of the spatial distribution of different land use in a 
particular area at a point in time [92]. This is important to identify the land use type in the study 
area, especially the vegetation and wetland. In this study, the land use distribution of the study area 
for 2014 was analyzed using Random Forest machine learning model and Landsat 8 OLI satellite 
multispectral imagery of December 2014 because of its low cloud cover. The area is surrounded by 
water bodies that include the South China Sea, Strait of Johor and some parts of Malacca. Based on 
the Malaysia Land Area Boundary Administration Map Shape file from (diva-gis.org), the subject 
site is predominantly made up of four major land uses: vegetation, bare land, built-up area and 
waterbody. The vegetation is divided into terrestrial vegetation and wetland (swampy area). From 
Figure 3a and b, a higher percentage of the area (80.74%; 275,681.25 hectares) is made up of 
vegetation. Next to that is bareland, with 10.92% (7115.22 hectares), wetland 3.72% (12,694.50 
hectares) and builtup area 2.54% (8656.29 Hectares). The overall accuracy from the model 
classification and validation was 99.83%, with a standard error of 0.03%, confirming the model’s 
high accuracy. 

 

(a) 
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Figure 3. (a) 2014 Land Use Land Cover (LULC) map of the study area. b) Area quantification of the 
2014 LULC. 

 

3. Results and Discussion 

3.1. Accuracy Assessment 

The F1, OA, PA and UA error matrix values for the four categories (polluted vegetation, 
polluted wetland, nonpolluted vegetation, nonpolluted wetland) classification from SVM and RF 
were used for the accuracy assessment as shown in Table 6 and 7. While the former represents the 
result for the study area alone, the latter shows the performance of similar training and validation 
data set in classifying larger areas by including Pontian, Johor Baharu and part of Keluang. All the 
training and validation datasets for this study were the same for both models. The assessment 
results for the study area reveal that RF outperforms SVM, with F1 (95.32%), OA (96.80%), UA 
(98.82%) and PA (95.11%) as against the SVM’s accuracy values of F1 (80.83%), OA (92.87%), PA 
(95.18%) and UA (93.81%), respectively. 

It can also be seen from the PA that the classification of nonpolluted vegetation has a high 
accuracy for both SVM and RF. For the UA, nonpolluted vegetation has a higher accuracy in SVM, 
while the polluted wetland has the highest for RF. Assessing the models’ performance on a larger 
area, the RF outperformed the SVM with F1 (85.56%), OA (86.31%), PA (88.29%), and UA (95.45%) 
compared to the SVM’s 80.31%, 83.61%, 89.17% and 90.67%, respectively. This reveals a similar 
performance pattern irrespective of the size of the study area. However, the models’ accuracies in 
the larger area were lower than those of the smaller study area. This is likely due to the smaller 
number of the data sets used in this regard [39]. Analysis of the McNemar’s chi-squared (X2) (Table 
8) indicates significant statistical differences across the four classification groups in the two models 
for the study area. (p < 0.05) implies significant statistical difference in the area classification of each 
of the categories. 

Table 6. Accuracy matrix value for SVM and RF for the pollution and other categories classification 
for the study area (Kota-Tinggi). 

Model  Category F1  

Overall Accuracy 
(OA) 
(%) 

Producer’s Accuracy 
(PA) 
(%) 

User’s Accuracy 
(UA)  
(%) 

SVM 

Nonpolluted 
vegetation 

80.83 92.87 

95.18 93.81 

Nonpolluted wetland 94.38 92.25 
Polluted Vegetation 81.04 86.05 

Polluted Wetland 84.10 91.78 

(b) 
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RF 

Nonpolluted 
vegetation 

95.32 96.80 

98.82 95.11 

Nonpolluted wetland 95.78 98.17 
Polluted Vegetation 82.14 96.84 

Polluted Wetland 97.07 99.18 

Table 7. Accuracy matrix value for SVM and RF for the pollution and other categories classification 
for a larger land area (Kota-Tinggi, Pontian, Johor Baharu and part of Keluang). 

Model  Category F1  

Overall Accuracy 
(OA) 
(%) 

Producer’s Accuracy 
(PA) 
(%) 

User’s Accuracy 
(UA)  
(%) 

SVM 

Nonpolluted 
vegetation 

80.31 83.61 

89.17 90.67 

Nonpolluted wetland 86.81 70.53 
Polluted Vegetation 83.15 82.22 

Polluted Wetland 75.23 92.13 

RF 

Nonpolluted 
vegetation 

85.56 86.31 

85.36 95.45 

Nonpolluted wetland 88.29 72.81 
Polluted Vegetation 84.27 90.36 

Polluted Wetland 87.38 88.23 

Table 8. McNemar’s Chi-Squared (X2) Test Value with Associated Probability Value (p-value) for the 
Study Area. 

SVM * RF McNemar’s chi-squared (X2) p-value  
Nonpolluted vegetation 8.73 0.030 

Nonpolluted wetland 9.67 0.025 
Polluted Vegetation 3.94 0.001 

Polluted Wetland 6.21 0.003 

3.2. Classification and Mapping of Polluted Coastal Areas (Vegetation and Wetland) 

Figure 4a–i shows the models’ classification outcomes. The SVM classification for the four 
classes (polluted vegetation, polluted wetland, nonpolluted vegetation, nonpolluted wetland) are 
presented in Figure 4a,b while Figure 4c,d shows the classification maps from the RF model for the 
main study area. Figure 4i indicates variations in the models’ area classification. For instance, slight 
differences in the output area for similar classes in the two models exist across the four classes. The 
areas of polluted vegetation and polluted wetland in SVM are higher than those of RF, while 
nonpolluted vegetation and nonpolluted wetland areas are higher for RF than SVM. Based on the RF 
model, the polluted vegetation and the nonpolluted vegetation areas are 2949.79 hectares and 
272,731.46 hectares, respectively, while the SVM classified the polluted vegetation and nonpolluted 
vegetation at 3004.93 hectares and 272,676.32 hectares, respectively, revealing a difference of 55.14 
hectares each for the polluted and nonpolluted vegetation areas. It can be inferred that the lower 
accuracy of the SVM model affects its ability to adequately classify the entire area [39,59]. Similarly, 
in the classification of wetlands (polluted and nonpolluted), the polluted wetland areas are 1205.98 
hectares and 1,209.79 hectares from the RF and SVM models respectively. For nonpolluted wetland, 
RF classification is 11,488.52 hectares, and SVM classification is 11,484.71 hectares, revealing a 
difference of 3.81 hectares in both instances. Field observations using some purposively selected 
sites show that RF models have a high true positive accuracy for the four classification categories 
than SVM, which is reflected in the higher classification accuracy of RF polluted and nonpolluted 
area extents in comparison to the SVM’s. 
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Figure 4. (a) Support Vector Machine (SVM)-classified polluted vegetation; (b) SVM-classified 
polluted wetland; (c) Random Forest (RF)-classified polluted vegetation; (d) RF-classified polluted 
wetland; (e) SVM-classified polluted vegetation for a larger area; (f) SVM-classified polluted wetland 
for a larger area; (g) RF-classified polluted vegetation for a larger area; (h) RF-classified polluted 
wetland for a larger area; (i) Quantified area of polluted and nonpolluted vegetation and wetland 
from SVM and RF of the study area. 

3.3. Oil Spill Pollution Impact Assessment on Vegetation and Wetland 

The impact of oil spill on affected vegetation and wetland was examined using the sixteen 
vegetation indices presented in Table 4. These indices can provide information on the wetland and 
vegetation health stress due to the oil spill [32,33,39]. The vegetation indices of 2013 were used for 
pre-oil-spill assessment, while 2015 indices were used for post-oil-spill assessment of the polluted 
vegetation and wetlands. As depicted in Figure 5a, the comparison of the pre- and post-oil-spill 
status of the vegetation area showed a general decrease in vegetation health with respect to 15 of the 
indices. However, the NDWI after oil pollution shows an increase in value, which is likely due to the 
high absorption and presence of surface water that changed over time [63,93]. Further analysis with 
the use of paired T-Test (Table 9) indicated that nine of the fifteen indices that reflect deterioration in 
post oil spill vegetation health (RVI, CVI, GCI, GNDVI, NDVI, MSI, MDWI, SARVI2 and SAVI) were 
statistically significant with p-value < 0.05. Similarly, from Figure 5b, which represents differences 
between the pre- and post-oil-spill impact on wetland, a general reduction in the values of all the 
wetland assessment indices was observed. However, MSI and RVI increased in 2015, two years after 
contact with oil hydrocarbons. Figure 6 shows the weight of the indices in classifying oil spill 
impacts in the study area. For the SVM model, a high percentage of the indices (variables) showed 
significant contributions, with the first five variables, SARVI2, AFRI, NIR, NDVI and MSI, being the 
most sensitive to oil spills in the study area. In contrast, CVI, Blue, Green, SWIR-1 and GCI, showed 
more sensitivity in the RF model. 

Analysis of these outcomes indicates that an overwhelming majority of the assessment indices 
respond negatively to exposure to hydrocarbon, with a T-test statistical significance level (p-value) < 
0.05. Further, it is observable that wetlands are more impacted by oil spills than vegetation due to 
their closeness to the waterbody. A higher percentage of the polluted sites are located at the south, 
southeast and southwest regions of the study area. However, some polluted sites were equally 
identified towards the eastern and northern parts of the area. The concentration of the polluted sites 
in these regions is due to the higher number of oil spills recorded along this area. Moreover, the 
limited detection of polluted sites in the eastern and northern regions is likely due to the 
undocumented terrestrial oil spill incidents that have occurred along that axis, which has limited the 
scope of this study. To date, a significant number of oil spill incidents are not well-documented [94]. 

(i) 
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Based on the foregoing, we conclude that vegetation indices are suitable proxies for estimating 
the effects of hydrocarbon spill on vegetation as well as wetland. This is similar to the findings of 
[32,33,35,39,40] wherein vegetation indices were used to examine the effect of the oil spill on 
vegetation. Although the focus of those studies was terrestrial vegetation, this present study has 
shown that the approach can also be extended to wetland assessment. Moreover, aside from the 
common indices (CVI, GCI, GNDVI, NDVI, MDWI, SARVI2 and SAVI), which show a significant 
deterioration in both polluted vegetation and wetland, EVI, EVI 2, MNDVI, NDMI, NDWI and RDVI 
can also be used for detecting the effect of the oil spill on wetland. From evaluating the p-value 
(Table 9), it is evident that CVI, MDWI, NDVI and GCI are more significant in the assessment of both 
vegetation and wetland oil spill impacts, in addition to MNDVI for wetland assessment. 

 

 

 
Figure 5. (a) Vegetation before and after pollution; (b) wetland before and after pollution. 

(a) (b) 

(b) 
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Figure 6. (a) RF normalized importance value; (b) SVM normalized importance value. 

Table 9. Significance value of the different indices before and after oil spill across the two classes 
(vegetation and wetland) using Pair T-test. 

Numbe
r 

Indices Vegetation (P-Value) Wetland (P-Value) 

1 AFRI 0.077 0.028 
2 CVI 0.001 0.001 
3 EVI 0.061 0.011 
4 EVI2 0.085 0.019 
5 GCI 0.008 0.001 
6 GNDVI 0.024 0.015 
7 MDWI 0.001 0.001 
8 MNDVI 0.092 0.001 
9 MSI 0.047 0.028 

10 NDMI 0.058 0.005 
11 NDVI 0.001 0.001 
12 NDWI 0.021 0.014 
13 RDVI 0.069 0.038 
14 RVI 0.001 0.020 
15 SARVI2 0.037 0.039 
16 SAVI 0.042 0.047 

(a) (b) 
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3.4. Polluted Vegetation and Wetland Recovery Assessment 

The effects of oil spills cover the broad range of vegetation loss caused by reduction of plant 
chlorosis, loss of water and soil moisture level reduction, among others [95]. Over the years, this has 
been the scenario of the affected oil spill sites in the study area. The recovery assessment of the 
affected vegetation and wetland areas was based on the comparison with nonaffected areas from 
2015 to 2018. Figure 7a shows the vegetation recovery pattern which is based on all the sixteen 
indices, with emphasis on nine of the vegetation indices (RVI, CVI, GSI, GNDVI, NDVI, MSI, MDWI, 
SARVI2 and SAVI). The choice of these indices is premised on their ability to depict the effect of the 
oil spill on vegetation, as discussed in Section 3.3. Figure 7a highlights the significant improvement 
in the vegetation health exemplified by enhanced greenness through chlorosis, leaf water retention 
and soil moisture level increment. This is represented by the increase in the values of most of the 
indices after the oil spill, which is attributable to the various treatment that the vegetation was 
subjected to during this period. Similarly, the recovery of the wetland (Figure 7b) was assessed 
based on the fourteen vegetation indices discussed in Section 3.3. The observed recovery across all 
the vegetation indices aligns with the findings of [15,19] that depicted vegetation recovery sometime 
after exposure to the oil spill. 

For further insights, the status of the nonpolluted vegetation and nonpolluted wetland was also 
evaluated over a similar period (Figure 7c,d). Comparing Figure 7a (polluted vegetation) and Figure 
7c (nonpolluted vegetation), it is seen that the indices in the nonpolluted area have higher values 
than the polluted area, reflecting noticeable changes in the status of the polluted vegetation. A 
similar pattern is seen in the polluted wetland and nonpolluted wetland in Figure 7b,d. 
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Figure 7. (a) Polluted vegetation recovery 2015-2018; (b) Polluted wetland recovery 2015-2018; (c) 
Nonpolluted vegetation status 2015-2018; d) Nonpolluted wetland status 2015-2018. 

4. Conclusion 

This study has evaluated the potential of multispectral Landsat 8-OLI remote sensing satellite 
imagery and machine learning models in the quantification of pollution extent through the 
classification of oil-spill-polluted vegetation and wetland. Advancing previous studies that have 
focused on monitoring terrestrial vegetation, we evaluated oil spill impacts on wetlands in addition 
to vegetation. Further, we undertook a systematic assessment of the recovery of the affected zones, 
which has been sparsely addressed in earlier studies. Support Vector Machine (SVM) and Random 
Forest (RF) machine learning models were used in the discrimination of the polluted and 
nonpolluted vegetation and wetland. The accuracies of the two models were validated using four 
parameters: F1, OA, UA and PA, with the RF outperforming the SVM across the board. McNemar’s 
chi-squared (X2) analysis indicated a statistically significant difference in the proportion of land area 
classification covered by the four (polluted wetland and vegetation, nonpolluted wetland and 
vegetation as represented in Figure 4i) with p-value < 0.05 from the two models. 

Sixteen vegetation health indices were used for the assessment of the impacts of oil spills on 
vegetation and wetland over a two-year period (2013–2015) which represent pre-oil-spill (2013) and 
post-oil-spill (2015). Analysis of the results indicates significant vegetation and wetland stress. As 
observed from the result of the vegetation, 93% of the indices reflected a reduction in value but only 
56% were statistically significant at p-value < 0.05. For the wetland, 87.5% of the indices showed a 
reduction in value of pre- and post-oil-spill sites and are all statistically significant at p-value < 0.05. 

(c) (d) 

(a) (b) 
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CVI, MDWI, NDVI, GCI, GNDVI, SARVI2 and SAVI are appropriate for both vegetation and 
wetland impact assessment, with the first four being the most suitable because of their higher 
significance level in indicating plant stress in comparison to other indices. In addition to these seven 
homogenous indices, EVI, EVI 2, MNDVI, NDMI, NDWI and RDVI can also be used to examine 
wetland hydrocarbon oil spill impact since the greenness of vegetation and sensitivity to high 
biomass region are most represented by the NIR, SWIR and RED bands which are the basis of the 
indices. 

In addition, the comparison of the nonpolluted and polluted areas over a similar period 
confirmed the healthier status of the former, although signs of recovery were observed in the latter, 
which is likely due to treatment interventions by the government. However, more initiatives are 
required to improve the recovery process. In conclusion, it can be inferred that remote sensing 
technology and machine learning models are powerful and reliable tools for the impact and recovery 
assessment of oil-spill-affected vegetation and wetland. 
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