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Abstract: Soil color and mineralogy are used as diagnostic criteria to distinguish different soil types.
In the literature, 350–2500 nm spectra were successfully used to predict soil color and mineralogy,
but these attributes currently are not mapped for most Brazilian soils. In this paper, we provided the
first large-extent maps with 30 m resolution of soil color and mineralogy at three depth intervals for
850,000 km2 of Midwest Brazil. We obtained soil 350–2500 nm spectra from 1397 sites of the Brazilian
Soil Spectral Library at 0–20 cm, 20–60, and 60–100 cm depths. Spectra was used to derive Munsell
hue, value, and chroma, and also second derivative spectra of the Kubelka–Munk function, where
key spectral bands were identified and their amplitude measured for mineral quantification. Landsat
composites of topsoil and vegetation reflectance, together with relief and climate data, were used as
covariates to predict Munsell color and Fe–Al oxides, and 1:1 and 2:1 clay minerals of topsoil and
subsoil. We used random forest for soil modeling and 10-fold cross-validation. Soil spectra and
remote sensing data accurately mapped color and mineralogy at topsoil and subsoil in Midwest Brazil.
Hematite showed high prediction accuracy (R2 > 0.71), followed by Munsell value and hue. Satellite
topsoil reflectance at blue spectral region was the most relevant predictor (25% global importance) for
soil color and mineralogy. Our maps were consistent with pedological expert knowledge, legacy soil
observations, and legacy soil class map of the study region.

Keywords: reflectance spectroscopy; Munsell color system; derivative spectra; remote sensing;
Google Earth Engine; data mining; random forest; digital soil mapping; soil attributes

1. Introduction

The color is the most noticeable feature of soil that can be easily determined in field or laboratory [1].
The main factors that influence soil color are the organic matter [2] and mineralogy, especially iron
oxides [3]. Soil organic matter causes the darkness of soil by decreasing the Munsell value and
chroma [4]. The most frequent pedogenic oxides in soil are hematite (usually associated to goethite),
with hues between 10 R and 5 YR, and goethite (without hematite), with hues between 7.5 YR and
2.5 Y [3]. Goethite is common in diverse climates and parent materials, while hematite is abundant in
well-drained tropical soils with strong pigmenting effect and is absent in young soils from temperate
humid climates [1,5].
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In tropical Midwest Brazil, the surface materials are rich in Al, Si, and Fe-bearing minerals,
where most of the soils developed from these rocks tend to be low in exchangeable bases and highly
weathered [6]. The secondary minerals of these soils are frequently dominated by iron oxides, kaolinite
and gibbsite, and 2:1 clay minerals that may resist in the silt and sand fractions [7]. When iron oxides
are completely removed (after reduction processes) from soil particles under anaerobic conditions, and
if organic matter is negligible, the soil matrix achieves the background color of the minerals resulting
in shades of gray [3]. Consequently, color can be used to indicate the presence of minerals and the
redoximorphic conditions of the soil [8]. However, in tropical soils, mineralogy cannot be inferred from
color alone because hematite has a stronger pigmenting effect than the other soil minerals, including
goethite [9].

The iron oxides and soil color are effective pedoenvironmental indicators [3,10]. Various soil
classification criteria used by nonscientists, like ethnic groups and farmers across the world, frequently
are based on color [11]. Soil management zones, with different productivity potential, can be successfully
delineated using bare soil color and topography [12]. Some national [13] and international [14] soil
classification systems use the color patterns and mineral contents of soil as diagnostic criteria. Patterns
of color were also used to characterize soil parent materials [15]. The standard method to describe
color in soil science is the Munsell system [16], which allows for direct comparison of soils worldwide
based on three measurable components: Hue, value, and chroma. Soil color and mineralogy play an
important role in soil cartography, since they carry important information for pedological classification
or soil attributes prediction [17].

Reflectance spectroscopy data (350–2500 nm) was successfully used in pedometry as predictor of
the soil color and mineralogy [18–24], nevertheless, only a small set of research mapped their spatial
patterns. At the moment of this work, Viscarra Rossel et al. [25] performed one of the few studies on
soil color mapping, where the authors also mapped iron oxides of Australian soil using reflectance
spectra (350–2500 nm) and geostatistics.

Studies on soil mineralogy mapping, such as Viscarra Rossel and Chen [26], summarized the
information content of spectra (350–2500 nm) by principal components to construct linear models using
31 predictors and mapped the mineral of Australian topsoils robustly (0.69 < R2 < 0.85). Likewise,
Viscarra Rossel [27] measured the relative abundances of kaolinite, illite, and smectite at 0–20 and
60–80 cm soil depths, using continuum-removed reflectance (350–2500 nm) to derive statistical models
and map the minerals with good cross-validation (0.40 < R2 < 0.61). Malone et al. [28] also used
continuum-removed spectra (350–2500 nm) for the detection of iron oxides, kaolinite, and smectite
prior to mapping their spatial distribution (as class or categorical) in Australia, with overall accuracy
ranging from 44% to 80%. Mulder et al. [29] used reflectance spectroscopy (350–2500 nm) to derive soil
minerals and multinomial logistic regression for mapping the likelihood of “absence” or “presence” of
kaolinite, mica, and smectite with high overall accuracy (>0.74). Other studies [30–32] used enhanced
mineral mapping techniques to produce a thematic mineral map of soil using the spectral response of
Landsat imagery.

Nevertheless, the spatial patterns of soil color and mineralogy under current conditions remains
not mapped for most Brazilian soils, both qualitatively and quantitatively. The main reason for
that might be that in Brazilian repositories [33] there is a lack of mineralogical data, possibly due to
the fact that traditional methods, such as X-ray diffraction (XRD) are time consuming and resource
intensive [29]. Besides that, XRD measurements are qualitative and not conducive to quantitative
analyses [34]. Soil color in national datasets [33] also lacks or does not contain spatial referencing or
was visually approximated, which has been proven to be less consistent than modern colorimeter
measurements [19].

Soils of tropical Midwest Brazil usually present high weathering degree and tend to have relatively
homogenous profiles [5,7]. Some studies has been shown that topsoil spectral patterns are related
to the subsoil pattern variations and dynamic processes which occur within the soil profile [35–37].
In addition, bare topsoil reflectance composites produced from Landsat time series [38–40] were
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considered as reliable proxies of topsoil spatial patterns, which can be integrated with other datasets
by machine learning to better capture information from deeper layers of the Earth’s crust [30].

Machine learning emerged in the 1990s as a tool for digital soil mapping [41]. Between the
algorithms, Breiman [42] proposed “random forests” (RF) that is currently the most popular for
regression. RF combines several randomized decision trees and aggregates their predictions by their
average. RF is often used by researchers for regressing the response Y to covariates X. Scornet et al. [43]
remarked that RF’s tree aggregation models are able to estimate linear and nonlinear patterns and
seeks to minimize the chance of overfitting during the splitting of trees, by selecting a reduced subset
of covariates at each split.

Revealing the spatial patterns of the color and mineralogy in soils of Midwest Brazil may support
our understanding of soil function to improve land use and management, as well as to operate as
predictor for geological mapping, mineral exploration, and digital soil mapping.

We expect that proximal soil sensing data have potential to provide accurate information on soil
color and mineralogy, and that the use of predictors based on remote sensing data can provide accurate
representations of the topsoil and subsoil spatial patterns over a large geographical extent. Then,
proximal and remote sensing data can be coupled to accurately produce digital soil maps.

In this paper, we assessed the efficiency of proximal and remote sensing for mapping the soil
color and mineralogy with 30 m resolution at three fixed depth intervals over 850,000 km2 of Midwest
Brazil. For that, we aimed: (1) To predict the soil color in Munsell notation from laboratorial spectra
(350−2500 nm), (2) to measure and report the relative abundance of minerals in soil (hematite, goethite,
kaolinite, gibbsite, and 2:1 clay minerals) from their spectra (350−2500 nm), and (3) to map their spatial
distribution at 30 m resolution for the 0−20, 20−60, and 60−100 cm depth and verify the spatial patterns
of the predicted maps with legacy soil information.

2. Materials and Methods

2.1. Study Area and Soil Data

The study area is located in the midwest of Brazil (Figure 1) comprising near 851,000 km2.
The landscape consists of extensive plateaus covered by Cerrado vegetation and gallery forest, within
Cerrado biome (savanna). The humid tropical climate of the region exposed the highly diversified
lithologies to intense weathering [44], which reworked surface materials (Figure 1), resulting in soils
with attributes largely varying across the area [40]. Thus, rocks from domains 1 (sedimentary) and
2 (volcanic) developed clayey soils, typically redder than domains 7 and 8, which generated sandier
soils with higher hue values. Such conditions allowed the genesis of Ferralsols, Lixisols, Plinthosols,
Arenosols, and Regosols across the region [45].

We obtained soil data from 1397 sites (Figure 1) of the Brazilian Soil Spectral Library (BSSL) [46],
at 0–20 cm, 20–60, and 60–100 cm depth intervals. Those layers represent the rooting depths where soil
attributes can affect the growth of plants [47]. The location of soil observations was recorded using
GNSS (Global Navigation Satellite System) receivers with positioning accuracy greater than 10 m,
which matched the spatial resolution of covariates. The data were acquired from soil samples dried at
45 ◦C, ground and sieved to 2 mm mesh, and then homogeneously distributed in Petri dishes prior to
the measurement of the 350 to 2500 nm spectra in laboratory, using the Fieldspec 3 spectroradiometer
(Analytical Spectral Devices, ASD, Boulder, CO). Splices positioned at 1000 and 1800 nm were corrected
by linear interpolation of 10 bands using the prospectr package version 0.1.3 [48] in the R software [49].
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Figure 1. Soil observations and limits of Brazil’s states over shaded geological domains of the study
area [40]. * Soil attributes averaged from 0 to 100 cm depths, where red represents clayey soils and
yellow indicates sandy soils.

2.2. Reflectance to Soil Color

Soil scientists usually use the Munsell system to represent the soil color, resembling the natural
way that humans perceive the color [8]. The Munsell notation is a cylindrical system based on
three components, hue (the color, red, yellow, etc.), value (lightness), and chroma (purity, similar to
saturation), which can be calculated from spectra using mathematical formulas. We used spectral
reflectance data to calculate the Munsell soil color at three depth intervals (0–20 cm, 20–60, and
60–100 cm), according to Marques et al. [19] and Rizzo et al. [20]. The method used as input only the
reflectance values between 380 and 780 nm (visible spectral range), and followed the steps: (1) Spectra
were integrated using color-matching functions (x, y, z) to the XYZ color system for illuminant D65

(daylight) and 2nd standard observer [50], (2) XYZ tristimulus values were converted to the CIELAB
color system (L*a*b*), (3) coordinates a* and b* were used to calculate hue angles and chroma, while
value was estimated by L*, and (4) hue angle was converted to Munsell notation using a color
conversion table [51]. All steps were implemented within the R software [49], using the pracma [52]
and CircStats [53] packages.

For mapping purposes, Munsell hue was converted into a numerical scale of continuous values
following the arrangement of the Munsell Soil Color Book, as suggested by Hurst [15]. In this system
the hue charts of interest for our soil dataset were numbered as follow: 7.5 R was 7.5, 10 R was 10,
2.5 YR was 12.5, 5 YR was 15, 7.5 YR was 17.5, 10 YR was 20, and 2.5 Y was 22.5, at 0.1 increments.
The Munsell notation for selected hues (letter-number combination) used R (red), YR (yellow-red), and
Y (yellow) preceded by a number from 1 to 10 to indicate position around the hue circle.

2.3. Reflectance to Soil Mineralogy

2.3.1. Spectral Processing

Soils are mixtures of mineral and organic particles which partly absorb and partly scatter the
incident light. When the dimensions of the mixed particles are comparable with the wavelength of
the incident light, the absorption and scattering processes can be described by the Kubelka–Munk
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function [KM = (1−R)2/2R, where R is reflectance] [9]. KM curves (likewise, original spectra) show
broad, strongly overlapping bands at different wavelengths. Therefore, to determine the positions
of these bands, the resolution may be mathematically enhanced by calculating the derivatives of the
spectra. The second derivative (SD) of the KM function is a promising method for spectral quantitative
analysis [54], with sensibility for soil minerals’ detection slightly smaller than X-ray diffraction [10,24].
Thus, we transformed the reflectance data of soils into the KM and then calculated the SD using
Savitzky–Golay method (fitting 2nd polynomial order to 40-smoothing points), within The Unscrambler
software [55]. This combination provided well-resolved spectral features and low background noise
with little loss of spectral information for data collected at 1-nm intervals.

2.3.2. Key Spectral Bands for Mineral Quantification

The SD of the KM curve has spectral features originating from electronic transitions and
nonfundamental vibrations of minerals [24], where minimum and maximum values match with
the positions of the absorption bands in the original spectrum. The difference between derivative
values at maxima and minima determines the intensity of the “band amplitude” that is equivalent to
the amount of mineral in the soil sample [56]. Therefore, to assess the soil mineralogy we: (1) Selected
the main minerals by checking their occurrence with previous works on soil mineralogy in the study
area [57–60]; (2) defined the position of key spectral bands, at specific wavelengths (λ), for the main
soil minerals, summarized in Table 1, and; (3) calculated the band amplitudes for mineralogical
quantification [A = Maxλ −Minλ]. The intensity values of these band amplitudes were used as proxies
of the soil minerals in the study area. Ternary diagrams were obtained by calculating the proportion of
band amplitude between minerals for each plot using ggtern package in R [61].

Table 1. Position of the spectral bands in the Second Derivative (SD) of the Kubelka-Munk (KM) curve,
used to calculate the amplitude for the main minerals of soils.

Soil Mineral Minima Band
Position (nm)

Maxima Band
Position (nm) Band Amplitude Reference for

Band Positions

Goethite ~415* ~455* AGt [24,56]
Hematite 535* 580* AHt [24]

2:1 clay minerals1 1900–1925 1870–1895 A2:1 [62]
Kaolinite 2205 2225 AKt [62]
Gibbsite 2265 2295 AGb [62]

1 Illite, chlorite, vermiculite, montmorillonite. * Band positions relatively stable (lowest shift to neighboring
wavelengths) for Al-substitution in both goethite and hematite.

2.4. Environmental Covariates

We used environmental predictors as proxies of the soil formation factors described by the
scorpan model [63] for the purpose of digital soil mapping (DSM). The DSM approach assumes that
a soil attribute is a function of a spatial representation of soil forming factors: Soil (s), climate (c),
vegetation (o), relief (r), parent material (p), age of surface (a), and spatial position (n). Thus, we
acquired a set of covariates (33 layers) from Poppiel et al. [40] to act as proxies of each factor of soil
formation (Table 2). These covariates were prepared using big databases of remote sensing at multiple
spatial resolution within Google Earth Engine (GEE) [64]. Then, coarser-resolution predictors were
downscaled into a target grid resolution of 30 m. Further details on how the covariates were prepared
and quality assessed were described in [40].
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Table 2. Soil forming factor proxies from [40] used for mapping the soil color and main minerals.

Factor Covariate Description

Soil, Parent
Material and Age

SySI Synthetic Soil Image based Landsat 4, 5, 7 and 8
(7 bands), representing bare soil reflectance at
30 m resolution.

Geological Lineaments Meters of structural features per km2 from CPRM
data at 1:1,000,000 scale [65].

Organisms SyVIw and SyVId Synthetic Vegetation Image of wet (Nov-Mar)
and dry (May-Sep) seasons based Landsat 4 and 5
(7 bands), representing potential natural
vegetation reflectance at 30 m resolution.

Climate

Annual Precipitation (mm)

Bioclimatic variables obtained from the
WorldClim dataset at 1 km resolution [66].

Precipitation Seasonality (CV)
Annual Mean Temperature (◦C)
Temperature Annual Range (◦C)
Temperature Seasonality (◦C)

Relief

Elevation (m)

Terrain attributes obtained from the 30 m ALOS
digital elevation model [67]

Slope (degree)
Aspect (degree)
Topographic Position Index (m)
Horizontal Curvature (m)
Vertical Curvature (m)

CV: coefficient of variation.

2.5. Soil Modelling by Random Forest (RF)

In DSM studies [68–75], random forests [42] is increasingly being used to infer relationships
between diverse soil attributes (at single and multiple depths) and several covariates (from multiple
sources and resolutions) across landscapes. This fact relies on that RF can handle both linear and
nonlinear relationships in data. Thus, we used RF regression for DSM of the soil color (Munsell hue,
value, and chroma) and the main soil minerals (Table 1) at 0–20, 20–60, and 60–100 cm depth intervals.
For that, we used the full set of covariates (Table 2) on factors of soil formation–scorpan model [63], and
let the decision tree algorithm reveal the patterns. Therefore, a different model was adjusted to each
soil attribute, at each one of our depths, counting 24 models. RF can fit models with large numbers of
predictors [76].

2.5.1. Model Tuning

We filtered possible artifacts in the covariates (Table 2) by computing the median values within a
4 × 4 moving window. These covariates were sampled at each soil observation and the values were
used as input data for calibrating RF regressions [42] using the ranger package version 0.11.1 [77] in the
R software [49]. According to Probst et al. [78], a proper tuning of hyperparameters ensures the RF’s
consistency. For that, we performed a grid search examining a range of values, where the number of
covariates randomly selected at each node (mTry) was 6, 24, 33, and the tree depth by minimal number
of samples “or leaves” for the terminal nodes (minimum node size) was 5, 20, 50. We fixed 500 trees to
obtain stable estimates [78].

2.5.2. Model Performance

In order to assess the prediction models, we calculated performance metrics such as the root mean
squared error (RMSE), coefficient of determination (R2), and ratio of the performance to interquartile
distance (RPIQ = (Q3−Q1)/RMSE), where Q1 and Q3 are the 1st (25%) and 3rd (75%) quartiles.
The RPIQ is based on prediction error and quartiles, which evaluate the spread of the dataset to
the model’s accuracy, making easier the comparison among soil attribute models and other studies.
We derived these metrics for each one of the 24 models to assess the goodness of fit in the calibration step,
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and the robustness in the validation step. Validation was performed for each one of the 24 models by
10-fold cross-validation, using the caret package version 6.0-84 [79]. The k-cross-validation maximizes
the quantity of points in the training dataset, where the points are divided into k groups or folds, where
k − 1 groups are used for training and 1 group for validation, repeating the training k times, each with a
different validation group [80]. We selected the optimized model by the minimum RMSE of the 10-fold
cross-validation [78,81]. Generally, smaller values of RMSE and larger R2 and RPIQ indicate higher
model performance [82].

2.5.3. Covariates’ Importance

RF models can be interpreted by providing measures for variable importance [68–75], based on
the increase in mean square error when a covariate is randomly permuted. Thus, we used the folds
estimates to calculate the mean frequency of use for the covariates in the models and reported as a
measure of the scaled permutation importance for each soil attribute prediction [42], using the ranger
package version 0.11.1 [77] in R [49]. Interpreting this output is quite straightforward: The more
importance, the more relevant the variable is, according to the model.

2.5.4. Soil Mapping

The optimized models (tuned hyperparameters in R) of soil attributes were implemented into the
cloud-based platform of GEE [64] to predict their spatial distribution in the study area using the RF
algorithm. In this study, the uncertainty was not examined as maps because this technique was not
implemented at the current development stage of GEE [64]. Therefore, to verify the correspondence
of the spatial patterns of our predictions, we performed Pearson’s correlation between our maps
(at the three depth intervals) with legacy soil observations acquired from a national dataset [33], and
also with weathering degree and hue, both inferred according to the World Reference Base for Soil
Resources – WRB [14] from a 1:1,000,000-scale legacy soil class map that covered the study area [45].
The flow diagram of the proposed method is shown in Figure 2.
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3. Results

3.1. Soil Attributes Derived from Spectra

Spectra (350–2500 nm) contain information on important attributes of the soil: Minerals, color,
organic material, texture, and water. The reflectance in the visible spectral interval revealed that in our
dataset the soil color ranged from 8.9 R (red) to 2.5 Y (yellow), and reached more than 50% of samples
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up to 5 YR (yellow-red) (Figure 3). Value and chroma ranged from 1.7 to 8 and from 0.7 to 8 with mean
values of 3.9 and 4.5, respectively. Overall, the hue decreased and the value and chroma increased as
the soil depth interval increased. That is, the soil color was redder, lighter, and purer (or saturated) at
deeper layers. The amplitude between key spectral bands in the SD KM curve (Table 1) indicated that
the soils were dominated by hematite, goethite, and kaolinite, with relative amounts between them of
about 38%, 36%, and 25%, respectively. These minerals were mixed in soils with smaller amounts of
gibbsite and 2:1 clay minerals, where its proportions in relation to kaolinite were near 19%, 15%, and
66%, respectively (Figure 4).

The significant (p < 0.01) Pearson’s correlations for goethite (−0.3 < r < −0.66) and hematite
(−0.79 < r < −0.88) with hue and value suggested that iron oxides decreased these color attributes and
promoted the redness and darkness of the soils at the three depth intervals (Figure 5). Iron oxides also
were correlated with chroma (average r of 0.29), which caused the saturation of soil color.

All minerals were positively correlated with each other (Figure 5a–c), where gibbsite and 2:1 clay
minerals showed the smallest values between them (r < 0.21). Likewise, the proportion of minerals
slightly increased with depth (Figure 5d), since they are relatively dominant at finest fractions, and
there is more clay in the subsurface of the studied soils. Gibbsite was relatively constant across depth
(Figure 5d), while the 2:1 clay minerals were a little more abundant in the topsoil. The hue decreased
with depth while chroma increased, both due to small amounts of iron oxides, which pigmented the
soil at deeper layers. Value increased with depth (Figure 5d), since it depends on reflectance, which
increases with lesser amounts (masking effects) of organic matter on mineral particles.
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(a) 0–20, (b) 20–60, and (c) 60–100 cm depth intervals. Hue values were displayed on circular grid 
beginning at 7.5 YR, increasing values clockwise up to 2.5 Y. Chroma values are presented in Y axis, 
increasing from the center outwards. Value is shown as a color scale, increasing from red to yellow. 
The number of soil samples (n) used to calculate soil color and their mean values and standard 
deviation (sd) were summarized at the bottom of each panel. 

Figure 3. Polar plot of soil color in the Munsell system (hue, value, chroma) predicted from spectra
at (a) 0–20, (b) 20–60, and (c) 60–100 cm depth intervals. Hue values were displayed on circular grid
beginning at 7.5 YR, increasing values clockwise up to 2.5 Y. Chroma values are presented in Y axis,
increasing from the center outwards. Value is shown as a color scale, increasing from red to yellow.
The number of soil samples (n) used to calculate soil color and their mean values and standard deviation
(sd) were summarized at the bottom of each panel.
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Figure 4. Second derivative of the KM spectra (left) and ternary diagrams of soil minerals (right) at
three depth intervals: (a) 0–20, (b) 20–60, and (c) 60–100 cm. The amount of mineral was quantified by
the measurements of the amplitude between values at minima and maxima specifics bands, graphically
exemplified in the left panel a: AGt (goethite), AHt (hematite), A2:1 (2:1 clay minerals), AKt (kaolinite),
AGb (gibbsite). The ternary diagrams were constructed by assessing the proportion between band
amplitudes of the minerals. The number of soil samples (n) used to derive soil minerals and their
mean values and standard deviation (sd) were summarized (scale factor 1 × 10−6) at the bottom of the
spectral curves.
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Figure 5. Based on Pearson’s correlation (r) between soil color components and minerals derived from
spectra at (a) 0–20 cm, (b) 20–60 cm, and (c) 60–100 cm depth intervals, and (d) overall correlation with
depth intervals analyzed. Blue and red colors symbolize positive and negative correlations, respectively.
Insignificant correlation coefficient values (p-value > 0.01) were crossed out (X). HueN, hue number; 2:1,
2:1 clay minerals. The sum of Gt+Ht (Goethite + Hematite) was added to the plot only for comparisons.

3.2. Performance of Spatial Models

The RF models proved to be robust for mapping soil color and mineralogy at three depth intervals
in Midwest Brazil (Table 3), with high prediction accuracy for hematite (R2

10cv > 0.71). The prediction
of Munsell value and hue, gibbsite, kaolinite, 2:1 minerals, and goethite was accurate (0.43 < R2

10cv <

0.65). The models for goethite produced lower validation metrics than for hematite (Table 3), especially
at 60–100 cm depth (R2

10cv = 0.24), probably because the first had higher Al-substitution that affected
the spectral bands used for their relative quantification (Table 1). Munsell chroma at all depths had
worse prediction accuracy (0.24 < R2

10cv < 0.38). Although some models had low R2 for validation,
they all showed a good performance (RPIQ10cv > 1.3) and scatterplots with values following linear
trends (Figure A1).
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Table 3. Hyperparameters and performance metrics for calibration (goodness of fit) and validation
(robustness) of the models used for mapping soil attributes at surface and subsurface.

Soil
Attribute Depth2 mTry minNS RMSEcal RPIQcal R2

cal RMSE10cv RPIQ10cv R2
10cv

Hue number1
0–20 24 5 0.53 5.89 0.93 1.30 2.35 0.58

20–60 24 5 0.61 5.45 0.93 1.50 2.17 0.54
60–100 33 5 0.56 4.80 0.92 1.40 1.91 0.50

Value
0–20 24 5 0.19 4.84 0.93 0.50 1.95 0.59

20–60 24 5 0.24 5.85 0.92 0.60 2.44 0.55
60–100 24 5 0.21 5.79 0.94 0.50 2.32 0.64

Chroma
0–20 33 5 0.27 3.67 0.89 0.70 1.45 0.31

20–60 33 5 0.31 3.56 0.88 0.80 1.41 0.24
60–100 33 5 0.29 3.41 0.90 0.70 1.36 0.38

Goethite
0–20 24 5 414* 4.07 0.91 1008* 1.67 0.45

20–60 24 5 396* 4.06 0.91 990* 1.62 0.45
60–100 6 5 494* 2.97 0.85 1122* 1.31 0.24

Hematite
0–20 24 5 436* 6.49 0.96 1102* 2.57 0.71

20–60 24 5 496* 6.49 0.96 1254* 2.57 0.72
60–100 24 5 504* 6.46 0.96 1264* 2.58 0.72

Kaolinite
0–20 33 5 171* 4.41 0.91 424* 1.78 0.47

20–60 33 5 205* 4.86 0.93 508* 1.96 0.55
60–100 33 5 190* 5.20 0.94 481* 2.05 0.59

Gibbsite
0–20 24 5 123* 3.23 0.93 309* 1.28 0.55

20–60 33 5 132* 3.55 0.94 335* 1.40 0.64
60–100 24 5 124* 4.09 0.95 312* 1.62 0.65

2:1 minerals
0–20 33 5 54* 3.99 0.90 132* 1.63 0.43

20–60 24 5 56* 3.75 0.92 139* 1.52 0.51
60–100 24 5 63* 3.13 0.91 151* 1.31 0.49

1 See Munsell hue in Section 2.2. 2 Depth in cm. * Scale factor 1 × 10−6. The mTry: Hyperparameter of random
forest regression that controls the number of variables that can be randomly sampled in each split of the trees.
The minNS: Minimum node size, a hyperparameter of random forest that controls the tree depth by setting the
minimal number of samples for the terminal nodes. RMSEcal: Root mean square error of calibration. RMSE10cv: Root
mean square error of 10-fold cross-validation. R2

cal: Coefficient of determination of calibration. R2
10cv: Coefficient

of determination of 10-fold cross-validation.

3.3. Relevance of Covariates

The importance of each covariate on predicting Munsell color and mineralogy of soil is shown in
Figure 6. The main predictors (global importance > 10%) for most of the attributes and depths of soil in
the study area were (decreasing sequence) SySIBlue, elevation, annual precipitation, temperature annual
range, temperature seasonality, SySIGreen, SYSISwir2, annual mean temperature, SYSINIR, precipitation
seasonality, SySIRed, topographic position index and SySISwir1. These covariates remained unchanged
and usually in the same sequence at each depth, with bare topsoil reflectance at the blue spectral region
(SySIBlue) as the most relevant predictor for our conditions. They are proxies of the soil forming factors
s, c, r, p, and a (Table 2), which all interact to influence spatial distribution of color and minerals of soil
in Midwest Brazil.

The forming factor o, represented by the potential natural vegetation reflectance of dry and
wet seasons, especially at blue, green, red, and near-infrared spectral ranges, had medium to low
importance (global < 10%) to predict soil color and mineralogy at all depths (Figure 6). The reason is
that vegetation had a more local effect on the spatial distribution of soil attributes, followed by slope
and density of geological lineaments. Horizontal and vertical curvatures had low importance, while
aspect was frequently not important as predictor for our conditions (Figure 6), possibly because the
sparse and uneven distribution of our soil dataset failed to describe important short-range patterns of
soil variations contained in these covariates.
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Figure 6. Covariates’ permutation importance (%) for soil attributes mapping at 0–20 cm (A), 20–60 cm,
(B) and 60–100 cm (C) depth intervals. We used the 10-fold importance in cross-validation to calculate
mean values. HueN, hue number (see Munsell hue in Section 2.2); 2:1, 2:1 clay minerals. Global is
averaged importance values for all soil attributes (per row). NIR, near infrared spectral band; SWIR1,
first shortwave infrared spectral band; SWIR2, second shortwave infrared spectral band; LST, land
surface temperature. We recommend vertical reading of this figure.

3.4. Digital Maps of the Soil Surface and Subsurface

3.4.1. Gridded Munsell Soil Color

We used the maps of Munsell hue, value, and chroma to obtain RGB (Red, Green, Blue) composites
of the true Munsell color of soil for the three depth intervals (Figure 7). It allowed us to simultaneously
assess and compare the spatial patterns of the three components.
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Figure 7. Maps of the true Munsell soil color across the study area and relationship with soil class 
legacy map. True soil color at (a) 0–20, (b) 20–60, and (c) 60–100 cm depth intervals; (d) legacy soil 
map (1:1,000,000-scale) [45] with simplified classes according to the World Reference Base – WRB [14]; 
(e) expanded area showing in detail (from left to right) the spatial pattern of soil hue, soil classes, and 

Figure 7. Maps of the true Munsell soil color across the study area and relationship with soil class
legacy map. True soil color at (a) 0–20, (b) 20–60, and (c) 60–100 cm depth intervals; (d) legacy soil
map (1:1,000,000-scale) [45] with simplified classes according to the World Reference Base – WRB [14];
(e) expanded area showing in detail (from left to right) the spatial pattern of soil hue, soil classes, and
true soil color. The dashed lines link areas between maps with homogeneous soil color to a dominant
soil class. * Soils with a hue of 5 YR or yellower.
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On average, the study area had 49% of soils with hues redder (lower) than 5 YR across the three
depths (Table 3), which were mainly represented by Rhodic Ferralsols (and some Rhodic Nitisols and
Acrisols of lower occurrence), followed by some Dystric Cambisols and Petric Plinthosols with redder
hues in the soil matrix (see areas highlighted with red dashed lines in Figure 7). Within this set of soils,
7% were redder than 2 YR, due to the presence of ferralic (also ferritic) horizon of some Ferralsols
(and Nitisols or Acrisols) developed from basalt in the study area.

About 51% of soils of the study area had Munsell hues yellower (higher) than 5 YR up to 100 cm
depth, which were represented by Haplic Ferralsols, Haplic Acrisol, Arenosols, Haplic Plinthosols,
and Petric Plinthosols with yellower matrix (see areas highlighted with yellow dashed lines in
Figure 7). Among these soils, 7% exhibited hues yellower than 7.5 YR due to: (1) Lower ratio of
hematite/(hematite+goethite), where higher contents of goethite pigmented the soil, such as in Xanthic
Ferralsols, or (2) reduction and removal (or partial removal) of iron oxides from Gleysols.

The orange dashed lines in Figure 7 highlight areas with Plinthosols (mainly Petric) in the study
area. These soils contain petroplinthite (rich in Fe and Al) within a latosolic matrix, which can range
from yellowish (10 YR) to reddish (10 R), according to the parent material. Their hue also can vary
across the same soil profile. This features are important to understand the maps, because in such areas
the Munsell color was more changing between depths.

The maps (Figure 7) showed that most of the soils in the study area with hues between 2.5 YR
and 7.5 YR became redder with depth (Table 4). In addition, soils with Munsell hues <5 YR usually
presented lower values and higher chromas than yellower soils with hues ≥5 YR. The predicted true
color of soils showed a comprehensible spatial correspondence with taxonomic classes of the legacy
soil map. It can be observed in detail in Figure 7e, where the distinction of the spatial pattern of hue
and true soil color is clearly evident between a Rhodic Ferralsol (redder and darker) and a Haplic
Acrisol (yellower, lighter, and brighter).

Table 4. Area quantification of the Munsell soil hue maps at three depth intervals.

Depth Hue < 2.5YR 2.5YR ≤ Hue < 5YR 5YR ≤ Hue ≤ 7.5YR 7.5YR < Hue

(cm) Area (%)
0–20 1 27 66 6

20–60 4 49 46 1
60–100 16 49 23 13

Average 7 42 45 7

3.4.2. Spatial Patterns of the Main Minerals in Studied Soils

For simultaneous assessment of the spatial patterns of soil mineralogy at each depth, we separately
obtained RGB compositions for hematite, goethite, and kaolinite (Figure 8a–c), and for gibbsite, 2:1
clay minerals, and kaolinite (Figure 8d–f).

More than 50% of the study area was covered by highly weathered soils with high relative
proportions of hematite, goethite, and kaolinite, followed by gibbsite and 2:1 clay minerals (Table 5).
The relative proportions of iron oxides in the soil ranged from 6% to 66%, as the surface materials were
Fe rich. The highest proportions of hematite (49% < Ht ≤ 66%) were found in 8% of soils, that accounted
for nearly 7% of soils with hues redder than 2.5 YR (Table 3). About 45% of soils had hematite contents
ranging from 31 to 49% (see areas with red dashed lines in Figure 8a–c, and Table 5), that agreed with
~42% of soils with reddish hues between 2.5 YR and 5 YR (Table 4). This iron oxide also occurred in
47% of soils at lower contents (9% < Ht ≤ 31%), possibly coexisting with most of the 65% of soils with
goethite amounts ranging between 24% and 37%, that may account for ~45% of soils with yellowish
hues ranging from 5 YR to 7.5 YR. The lowest amounts of goethite, ranging from 6% to 24%, might
be distributed in the redder soil masked by pigmenting effects of hematite. Conversely, 21% of soils
presented high amounts of goethite ranging between 37% and 50% (see areas with green dashed lines
in Figure 8a–c, and Table 5), which may account for the color of soils with hues yellower than 7.5 YR.
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Figure 8. Maps of the soil mineralogy in RGB composition across study area and relationship with a
soil class legacy map. RGB: Hematite (Ht), goethite (Gt), and kaolinite (Kt) at (a) 0–20 cm, (b) 20–60 cm,
and (c) 60–100 cm depth; RGB: Gibbsite (Gb), 2:1 clay minerals (2:1), and kaolinite (Kt) at (d) 0–20 cm,
(e) 20–60 cm, and (f) 60–100 cm depth; (g) legacy soil map (1:1,000,000-scale) [45] with simplified classes
according to the WRB [14]; (h−i) expanded areas showing in detail the spatial pattern of soil classes
and mineralogy. The dashed lines link areas between maps with homogeneous soil mineralogy. * Soils
with a hue of 5 YR or yellower. FR, ferralsol; CM, cambisol; AR, arenosol, PT, plinthosol; AC, acrisol,
GL, gleysol. The arrows indicate concave areas with wetter conditions or plateau edges with less
weathered conditions.
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Table 5. Area quantification of the soil mineral maps at 0−20, 20−60, and 60−100 cm depth intervals.

Relative Amount1 0−20 cm 20−60 cm 60−100 cm Average

(%) Area (%)
9 < Ht ≤ 31 51 48 42 47
31 < Ht ≤ 49 36 46 52 45
49 < Ht ≤ 66 13 5 6 8

6 < Gt ≤ 24 23 12 6 14
24 < Gt ≤ 37 55 69 72 65
37 < Gt ≤ 50 22 19 23 21

4 < Kt ≤ 19 46 44 43 44
19 < Kt ≤ 31 34 38 50 41
31 < Kt ≤ 50 21 17 7 15

1 < Gb ≤ 9 69 63 60 64
9 < Gb ≤ 17 26 20 38 28

17 < Gb ≤ 29 5 17 2 8

2 < 2:1 ≤ 7 58 79 91 76
7 < 2:1 ≤ 13 34 20 9 21

13 < 2:1 ≤ 18 8 0.4 0 3
1Amount of given mineral in the < 2 mm fraction of soils. Gt: goethite; Ht: hematite; Kt: kaolinite; Gb: gibbsite; 2:1:
2:1 clay minerals.

The study area had about 56% of soils with high kaolinite contents ranging from 19% to 50%
(blue shades in Figure 8d–f), which seemed to coexist in equilibrium with most of the 64% of soils
with low amounts of gibbsite (1% < Gb ≤ 9%). On the other hand, a large proportion of weathered
soils (44%) with low kaolinite contents (4% < Kt ≤ 19%) might coexist with the 36% of soils with the
highest gibbsite contents, ranging from 9% to 29% (see areas in shades of magenta with red dashed
lines in Figure 8d–f, and Table 5). These highly weathered soils were typical on highland surfaces,
where long-term weathering resulted in intensive leaching of silica from soil particles.

Traces of 2:1 clay minerals (<7%) were found in most of soils in the study area (76%), while the
remaining 24% of soils showed higher contents (7% < 2:1 ≤ 18%), displayed with shades of cyan in
Figure 8d–f (especially in areas highlighted with cyan dashed lines). Table 5 shows that iron oxides
and kaolinite contents increased with depth, while gibbsite increased with less intensity. Higher
proportions of 2:1 clay minerals seemed to be more abundant at topsoil.

We show in detail the spatial patterns of soil mineralogy in two expanded areas linked to the
legacy soil map (Figure 8g). The first area (Figure 8h) was on a highland plateau developed upon
arenite and covered by Ferralsols, where flat areas in red shades were predicted with redder color (3 YR
3/5) and proportions of Ht = 46%, Gt = 36%, Kt = 10%, Gb = 5%, and 2:1 = 3%, indicating that hematite
was dominant in well-drained conditions. Concave areas or lower slopes surrounding drainages with
green shades in the map (marked by black arrows) showed yellower color (6 YR 4/4) and proportions
of Ht = 27%, Gt = 47%, Kt = 18%, Gb = 3%, and 2:1 = 6%, suggesting that goethite was dominant in
wetter drainage conditions. Conversely, plateau edges covered by Cambisols with cyan shades in the
map, presented color 3 YR 4/3 and amounts of Ht = 38%, Gt = 36%, Kt = 8%, Gb = 2%, and 2:1 = 16%,
suggesting less weathered conditions and younger soils.

The second area (Figure 8i) presented two scenarios. One was developed upon siltite, where
smoother relief (shades of blue) showed color 5.5 YR 4/5 and proportions of Ht = 30%, Gt = 40%,
Kt = 15%, Gb = 5%, and 2:1 = 10%, suggesting less weathered conditions. Areas over ferruginous
laterite crusts with hilly relief (shades of magenta), and occurrence of iron oxide concretions, presented
color 7 YR 4/4 and amounts of Ht = 16%, Gt = 43%, Kt = 8%, Gb = 29%, and 2:1 = 4%, indicating
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highly weathered conditions on an ancient surface. Thus, the first scenario accounted for younger soils
(e.g., Cambisols), while the second corresponded to older soils, such as Petric Plinthosols.

4. Discussion

4.1. Relationships Between Soil Color and Mineralogy

We did not verify the accuracy of the color estimations at each site because: (1) We lacked
colorimeter records in our dataset; (2) spectral data were acquired under the same conditions as in
reference works [19,20]; and (3) the mathematical procedures of reference, implemented in this section,
provided similar color estimations to the colorimeter measurements, with R2 ranging from 0.68 to 0.96
and RMSE between 0.19 and 0.57 [19,20].

Aitkenhead et al. [2] demonstrated that inherent color of soil is mainly controlled by organic
compounds and iron oxides. Soil organic matter causes the darkness of soil by decreasing the Munsell
value and chroma [4]. Poppiel et al. [40] found organic matter inversely correlated (r = -0.4) with
soil depth for the same area of Brazil, where average content ranged from 21 g kg−1 at the surface to
9 g kg−1 in the 60–100 cm depth. These findings agreed with our results, where value and chroma
increased with depth, while organic matter decreased, suggesting a negative correlation between them,
as reported by [18].

The most frequent pedogenic oxides in tropical soils are hematite (usually associated to goethite)
with hues between 10 R and 5 YR, and goethite that has hues between 7.5 YR and 2.5 Y [3]. Munsell color
varies with mineral concentration, where higher contents reduce the value and increase the chroma of
soil [83]. According to the geodiversity of the region [6], the most surface materials (Figure 1) contain
Al, Si, and Fe-bearing minerals that released these elements during their weathering (hydrolysis) and
it favored the formations of oxide pigments (e.g., hematite and goethite) [1], common to the majority of
the studied soils (Figure 3) [59,84–86]. Goethite (FeOOH) usually occurs in wetter, colder, and more
acidic (pH 4) pedoenvironments, with seasonal anaerobic conditions and slow Fe release [1]. When the
pedoclimate becomes drier, warmer, and less acidic (pH higher than 4) under higher Fe release, the
ferrihydrite (precursor) is formed and then dehydrated to hematite (Fe2O3), or, also, goethite can
dehydrate to hematite [3]. Usually, in red soils widely distributed in our study area (e.g., Rhodic
Ferralsols), the yellowish hues (10 YR) of coexisting goethite are masked by the higher pigmenting
effects of hematite with reddish hues (10 R) [9]. Hematite, a less stable mineral, is generally negligible
or absent in yellow soils (e.g., Xanthic Ferralsols) from the Central Plateau of Brazil [5].

When iron oxides are completely removed (after mobilization by microbial reduction) under
anaerobic conditions from soil particles, and if organic matter is negligible, the soil achieves the
base color of the matrix minerals resulting in shades of gray (gleyic) [3]. Reducing conditions can
dramatically reduce the chroma and increase the value of gleyed horizons, suggesting saturation by
water in concave areas of the landscape, characteristic of Gleysols [14].

The highest kaolinite content in the <2 mm fraction of soils (see ternary graphs in Figure 4)
might result from primary minerals, which weathered directly into kaolinite under intense warm and
wet leaching in tropical conditions [87]. Gibbsite, a pedogenic Al(OH)3, is formed by desilication of
kaolinite or primary minerals, at low silica concentration and low pH (5-6), when leaching rates are
rather high in well-drained tropical soils [7]. Relatively large amounts of this mineral were found in
the clay fraction of deeply weathered soils in central Brazil [86].

The 2:1 minerals are derived from their parent materials and can be present: (1) In the clay fraction
along the profile of younger (less weathered) soils, or (2) strongly interlayered with Al in older soils,
which decrease the cation exchange capacity by blocking exchange sites and provide greater stability, as
reported by some works for the same region [59,84,85]. In addition, weathered soils (e.g., Ferralsols) can
contain up to 5, 17, and 5% of 2:1 minerals in the sand, silt, and clay fractions, respectively [86]. The first
two fractions slightly decreased their concentration with depth in the region [40], and, therefore, the
2:1 minerals were reduced as well (Figure 4 right panels and Figure 5d).
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Soil color allows us to infer about the conditions of aeration and drainage of the soil and,
consequently, of pedogenetic processes. Thus, red soils (hematite and goethite) are in well-drained
interflows, yellow soils (goethite), on moderately drained slopes, and grey soils develop in poorly
drained foothills. Mineralogical composition can be used to estimate the degree of weathering of
soils, where the next sequence indicates an increasing degree of evolution (from younger to older):
2:1 < kaolinite < hematite < goethite < gibbsite. Thus, the majority of soil presented an advanced
weathering degree with good drainage condition, developed in flattened or smoothed reliefs.

4.2. Use of Regression Models for Mapping Soil Properties

As soil color and mineralogy are important proxies used to distinguish different soil types or
to infer related soil attributes [17], they play an important role in soil cartography. Some studies
have used reflectance spectroscopy (350–2500 nm) as input data to estimate the color and/or its
mineralogy [18–24], but only a small number of works mapped their spatial distribution. At the
moment, Viscarra Rossel et al. [25] performed one of the few studies on soil color mapping, where they
accurately mapped (R2 � 0.67) iron oxides and the color of Australian soil using reflectance spectra
(350–2500 nm) and geostatistics.

Studies on mapping the soil mineralogy, such as Viscarra Rossel and Chen [26], summarized the
information content of spectra (350–2500 nm) by principal components to construct linear models,
and map the mineral (the first three principal component scores) of Australian topsoils robustly
(0.69 < R2

10cv < 0.85). Likewise, Viscarra Rossel [27] measured the relative abundances of kaolinite,
illite, and smectite at 0–20 and 60–80 cm soil depths, using continuum-removed reflectance (350–2500 nm)
to derive statistical models and map the minerals with good cross-validation results (0.40 < R2

10cv
< 0.61). Malone et al. [28] also used continuum-removed spectra (350–2500 nm) for the detection of
iron oxides, kaolinite, and smectite prior to mapping their spatial distribution in Australia, such as
ordinal classes at fixed mineral abundance intervals, with overall accuracy ranging from 44% to 80%.
Mulder et al. [29] used reflectance spectroscopy (350–2500 nm) to derive soil minerals, and multinomial
logistic regression, for mapping the likelihood of “absence” or “presence” of kaolinite, mica, and
smectite with high overall accuracy (>0.74). Other studies [30–32] used enhanced mineral mapping
techniques to produce a thematic mineral map of soil using the spectral response of Landsat imagery.

Our performance metrics were consistent with studies mentioned above, where most of them
used scorpan model [63] for DSM and reported a decline of prediction accuracy from calibration to
validation, as summarized in Table 3. The unexplained part of soil variation in our study area can be
due to two aspects. The first might be a limited number of sparse soil observations, with one site per
~2 km2 (denser) to ~800 km2 (less dense) and ~600 km2 on average in the study area, as also reported
by Liu et al. [88] when they mapped the texture of Chinese soils using RF algorithm. This may be
not sufficient to capture and describe short-range patterns of soil variation [89]. The second, and
the most relevant for soil mapping and its cross-validation, can be an uneven spatial distribution of
observations [73]. In large-extent mapping, more landscapes are usually included with sampling sites
not uniformly distributed over space. Figure 1 shows that the northwestern and northeastern portions
of the study area had less soil observations than other parts. That is because: (1) the soil data used in
this study were acquired by survey activities with limited funding, along different periods of time,
and without a statistical design, but purposive; and (2) a relatively smaller soil spatial variation in the
northwestern and northeastern, developed over more uniform conditions of geology and relief, were
considered by our observations.

Despite our dataset covering the main soil-landscape conditions across the study area, 10-fold
cross-validation was performed on uneven distribution of observations. This method selects 10% of
total sites for validation, leading to a relatively smaller amount of data for modelling in the areas with
sparse observations [88]. In addition, although the model performances were robust for the whole
extent, its prediction may have been biased in local areas.
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The worse spatial prediction accuracy for chroma can be a consequence of a possible lower
performance in their determination from spectra, since this Munsell component is influenced by the
organic matter, which decreases in depth, where chroma model had a slightly better performance
(R2

10cv = 0.38). In addition, Liles et al. [90] reported that soils developed over sedimentary rocks,
as was most of our study area, showed an increasing in the coefficient of variation for Munsell chroma.
Silva et al. [10] found that the spatial variability of goethite was about twice higher than hematite in
soils from the Western Paulista Plateau of Brazil, strongly influenced by the parent material. Thus, the
lowest model performance for chroma may be related to effects of the density and locations of soil
observations used for color predictions, combined with the high occurrence of sedimentary parent
materials in the study area.

The substitution of Fe by Al in goethite, that is greater than in hematite, ranging from 7% to 40%
for Brazilian soils [7], may produce their lower performance. This process causes less stability in the
absorption feature of goethite [24,56] and, consequently, lower prediction performances, especially at
subsoil layers (R2

10cv = 0.24), where we had a relatively smaller number of soil samples.

4.3. Influence of Environmental Predictors in Soil Color and Mineralogy Patterns

Most influential covariates were important predictors of the soil color and mineralogy because
they captured the soil spatial patterns at shorter distances or local variations (detail), and also at longer
distances or regional variations (generalization) across different landscapes [89]. Therefore, SySI (soil),
SyVI (vegetation), elevation, and derived relief attributes describe at detail the factors of soil formation,
while temperature, precipitation, and geological lineaments generalized their patterns [27]. Then we
were able to spatialize our soil predictions from detailed to successively coarser levels of generalization
in our study area. The impact of using multi-scale and multi-source predictors for modelling soil
attributes was demonstrated by [91]. They reported that the parallel use of covariates at multiple levels
of spatial representation for DSM improved the model performance, promoting R2 increases of up
to 70%.

Studies can take advantages from the petabyte-scale Landsat datasets widely available within
GEE [64]. The covariates SySI and SyVI (Table 1) are examples of that [40], which provide improved
proxies for describing several soil forming factors, e.g., s, o, p, and a [63]. SySI can provide direct and
interpretable information from Earth bare surfaces, from which inferences can be made about the main
soil attributes, e.g., the soil color, mineralogy, and texture, among others [39,40]. In a recent study,
Roberts et al. [30] robustly estimated the spectral response of the bare surfaces using the full temporal
archive of Landsat images across Australia. The authors highlighted the broad application of the
topsoil reflectance mosaic, which can be combined with machine learning for enhanced geological
mapping, mineral exploration, and digital soil mapping. Likewise, Post et al. [92] reported a very
strong correlation (0.68 < r < 0.85) between Munsell soil color measured with a colorimeter and Landsat
reflectance on semiarid rangelands, where they precisely and accurately determined the color of bare
topsoil using remotely sensed spectral data.

When we examined individually the relevance of predictors for each soil attribute, we found
that SySIBlue, SySIGreen, and SySIRed, were the most important spectral bands to predict Munsell
hue (from 12 to 47%), value (from 14 to 34%), and chroma (from 11 to 26%), see Figure 6. This is
because the Munsell color system described different soil components with absorption features (due to
electronic transitions) in the visible range between 380 and 780 nm [8], where the blue, green, and red
Landsat spectral bands are situated. The SySIBlue was by far the most important predictor for geothite
(from 7 to 34%) and hematite (from 47 to 60%), followed by SySIGreen and SySIRed (between 8 and 22%).
Goethite and hematite had stronger absorption features situated between the blue and red spectral
ranges (Figure 4), with a weaker effect in the near-infrared interval [24,56]. The SySISwir1 and SySISwir2

were important (from 9 to 37%) for gibbsite and kaolinite because they both exhibit molecular vibrations
(involving stretching and bending) between ~1400 and ~2300 nm [62]. Also, SySIBlue and SySINIR were
important (from 11 to 21%) for gibbsite and kaolinite, because these minerals are usually associated
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with iron oxides in tropical soils [1,7], which had spectral response between 380 and 1000 nm [24,56].
SySISwir2 was important (from 8 to 12%) for predicting 2:1 clay minerals, due to their typical absorption
features (by molecular vibrations) near 1900 nm [62]. SySIBlue, SySIGreen, and SySIRed also were highly
important (from 7 to 21%) to predict 2:1, since they usually were associated with iron oxides in soils of
our study area [59,84,85].

SyVI provides vegetation feedback dynamic patterns attributed to the differences in topsoil and
subsoil conditions, across the rooting depth [40] that can help to distinguish, for example: (1) Warmer
and more rapidly drying sands, from colder and slower drying wet clays [93], and (2) different levels
of chemical soil attributes, such as pH and fertility [94], among others. These soil conditions are
all interlinked with other soil attributes (e.g., soil color and mineralogy) as a result of pedogenic
processes [63].

Among the terrain attributes, elevation, topographic position index, and slope were the most
important covariates for modelling soil color and mineralogy. They control the water dynamic of
the relief, which influenced the intensity of erosion, redistribution, and sorting processes of soil
particles [88]. In addition to that, the density of geological lineaments strongly influenced the surface
drainage density, soil texture, and soil depth [95], which controlled the internal drainage through soil
and the leaching rates [5]. Relief attributes such as horizontal and vertical curvatures and aspect had
relatively low importance, because they usually controlled local moisture, thermal conditions, and
short-range mass redistribution over landscapes [63].

Especially for gibbsite, the elevation of terrain was a very important predictor of their spatial
patterns in our study area (Figure 6). According to the study of Reatto et al. [96], the spatial variation
of gibbsite in the Brazilian Central Plateau depended on two aspects. First, the spatial variability
of gibbsite at regional levels was mainly related to the age (a) of the surface, since the higher the
elevation, the greater the time the soils were exposed to weathering and hydrolysis process in tropical
climate conditions, resulting in older soils (e.g., Ferralsols, Plinthosols) with a higher gibbsite content.
Second, local spatial pattern of gibbsite was related to the local topographic position on landscape (r),
where conditions that favored the percolation of water through the soil and the hydrolysis processes
presented greater amounts of gibbsite. These conditions on soil water and temperature regimes, also
affect the genesis of iron oxides and organic matter oxidation rates, which strongly influence the soil
attributes, such as color, aggregation of soil particles, the retention of cations, and anions [3].

Climate conditions of relatively high annual temperature (>20 ◦C) and precipitation (>1000 mm)
and low temperature changes in the study area lead to strong weathering of surface materials (Al,
Si, Fe-rich) [1] and intensive silica leaching, that provided conditions for accumulation of specific
mineral products [7] such as iron oxides that pigmented the soils [3]. In a similar approach, Ramcharan
et al. [97] found that climate covariates, followed by elevation and satellite data derived from MODIS
(Moderate Resolution Imaging Spectroradiometer) and Landsat, were the most important predictors
for both soil property and taxonomic classes, across the United States.

The statistical parameters bring very significant information about the covariates’ influences.
Nevertheless, despite each covariate importance indicated, we are aware about the boundary of model
conditions. The estimations are strongly influenced by local characteristics and cannot be generalized
to a true global model, but certainly represent the characteristics of a local model.

4.4. Comparison with Legacy Data and Maps

In this section, the most significant issue was to account for the trend of spatial patterns between
the data instead of measure of the bias or error between predicted maps and legacy observations.
We demonstrated that DSM using proximal and remote sensing data can reach realistic spatial
representations of the soil.

The spatial patterns of soil on our predicted maps were consistent with pedological expert
knowledge of the region and with legacy data presented in Table 6. Predicted Munsell color was
negatively correlated with total elements, especially with the Fe that reduced the hue (−0.18 ≤ r ≤ −0.35)
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and value (−0.39≤ r≤−0.53) of soil at the three depth intervals. Higher Fe, Al, and Ti concentrations tend
to darken the soils, by reducing the brightness and increasing the yellowness, redness, or brownness of
soil [3]. Chroma was poorly correlated with total elements and not entirely consistent at 60–100 cm
depth, where it was influenced by Fe (r = −0.30), possibly due to the worse spatial prediction accuracy
(Table 3). These findings agreed with Simon et al. [18], who reported negative correlations of hue and
value with Fe (−0.25 ≤ r ≤ −0.37) and Al (r ≤ −0.64), and weak for chroma (r ≤ 0.06). The Munsell
color’s spatial patterns from our maps were coherently correlated with the Munsell color from
legacy observations (0.14 ≤ r ≤ 0.63), although the latter was determined visually in wet conditions.
These relationships reinforce the accuracy and representativeness of our spatial predictions.

Table 6. Verification of the spatial correspondence, based on Pearson’s correlation (p-value < 0.05),
between our predicted maps (at the three depth intervals) with legacy soil observations acquired from
a national dataset [33], and weathering degree and hue, both inferred from a legacy soil class map of
the study area [45].

Depth Legacy Data Our Predicted Maps

(cm) Total Elements1 n HueN Value Chroma Ht Gt Gb Kt 2:1

0–20
Fe2O3 225 −0.35 −0.39 0.10 0.39 −0.03 0.06 0.09 0.12
Al2O3 878 −0.01 −0.12 0.05 0.09 0.10 0.25 0.25 0.01
TiO2 782 −0.12 −0.16 0.03 0.11 0.04 0.13 0.06 0.19

20–60
Fe2O3 124 −0.26 −0.39 −0.12 0.38 0.11 0.06 0.00 0.09
Al2O3 729 −0.03 0.10 0.04 0.04 0.23 0.20 0.23 0.06
TiO2 639 −0.27 −0.12 −0.03 0.20 0.28 0.10 0.14 0.07

60–100
Fe2O3 174 −0.18 −0.53 −0.30 0.56 0.30 0.15 0.00 0.51
Al2O3 532 −0.06 −0.04 −0.09 0.06 0.33 0.37 0.06 0.05
TiO2 479 −0.06 −0.23 −0.14 0.22 0.29 0.14 −0.15 0.20

Munsell color2

0–20
Hue number 230 0.53 0.38 −0.24 −0.39 −0.26 −0.01 −0.06 −0.10

Value 230 0.32 0.37 0.01 −0.24 −0.07 0.06 −0.07 −0.18
Chroma 230 0.01 0.02 0.16 0.01 0.23 0.32 0.15 −0.05

20–60
Hue number 195 0.63 0.44 −0.11 −0.40 −0.30 0.02 −0.11 −0.02

Value 195 0.48 0.46 0.03 −0.35 −0.32 0.04 −0.10 0.04
Chroma 195 0.05 0.17 0.14 −0.04 0.11 0.24 0.19 0.13

60–100
Hue number 143 0.35 0.46 −0.16 −0.44 −0.15 0.05 0.12 −0.06

Value 143 0.42 0.58 −0.23 −0.46 −0.38 −0.06 0.09 −0.11
Chroma 143 −0.01 0.05 0.19 −0.06 0.21 0.12 0.01 −0.12
Legacy soil map

0–20
Weather. degree3 5k* −0.38 −0.34 0.08 0.42 0.23 0.19 0.09 −0.02

Hue number4 5k* 0.48 0.47 −0.10 −0.52 −0.27 −0.17 −0.05 −0.13

20–60
Weather. degree3 5k* −0.27 −0.35 0.03 0.40 0.35 0.17 −0.02 0.10

Hue number4 5k* 0.39 0.47 0.03 −0.49 −0.42 −0.10 −0.03 −0.22

60–100
Weather. degree3 5k* −0.15 −0.38 −0.09 0.37 0.31 0.23 −0.03 0.02

Hue number4 5k* 0.29 0.48 0.20 −0.47 −0.38 −0.18 0.00 −0.17
1Fe, Al, and Ti were determined from clay fraction by sulfuric acid digestion method. 2Munsell color of soil
determined visually in wet conditions. We used the soil classes of the legacy soil map to infer a theoretical number
sequence, according to the WRB [14], for 3weathering degree from 1 (less weathered) to 10 (more weathered), as
follows Leptosols, Arenosols, Gleysols, Cambisols, Plinthosols, Acrisols, Nitisols, and Ferralsols (Xanthic, Haplic,
and Rhodic), and 4Munsell hue number from 10 (redder, 10 R) to 22.5 (yellower, 2.5 Y), as follows Rhodic Ferralsols,
Rhodic Nitisols, Plinthosols, Leptosols, Cambisols, Haplic Ferralsols, Haplic Acrisols, Arenosols, Xanthic Ferralsols,
Gleysols. The *5k: 5000 random points. The n: Numbers of observations or random points used for sampling the
maps; HueN, Munsell hue number; Ht, hematite; Gt, goethite; Gb, gibbsite; Kt, kaolinite; 2:1, 2:1 clay minerals.

Maps of soil minerals were mostly correlated with total elements of soil (0.20≤ r≤ 0.56), determined
from clay fraction by sulfuric acid digestion method (Table 6). This is because Ht, Gt, Gb, and Kt
from Midwest Brazil are Fe- and Al-bearing minerals [5]. The correlations between predicted soil
minerals and Ti (r ≤ 0.29) occurred because titanium probably was absorbed or incorporated into
the crystal framework of iron oxides as impurities [1]. Goethite showed correlation with Al in soils



Remote Sens. 2020, 12, 1197 23 of 30

ranging from 0.1 to 0.33 (Table 6), likely because the yellower soils of the region contained more
goethite (e.g., Xanthic and Haplic Ferralsols), which was found to have more Al substituted than
hematite [5,7]. In addition, predicted iron oxides were inversely related with observed hue and value
(−0.24 ≤ r ≤ −0.46), suggesting that these two minerals (mainly hematite) reddened and darkened the
soil color. Conversely, goethite, gibbsite, and kaolinite tended to brighten the soil by increasing the
chroma (0.11 ≤ r ≤ 0.32), as suggested in Figure 5 and Table 6. The correlations with Ti may have
resulted from the ferralic (also ferritic) horizon of some Ferralsols and Nitisols developed from basalt
in the study area [86,87]. Ferralic horizons are rich in iron oxides (especially hematite), where the clay
fraction can reach 5.3% of Ti-bearing minerals, mainly ilmenite and anatase [7]. Also, some Ti might be
substituted in the kaolinite structure or surface sorbed [87].

Low predicted Munsell hues (redder) and values suggested (−0.15 ≤ r ≤ −0.38) higher degrees
of soil weathering inferred from a legacy map of soil classes (Table 4). Therefore, nearly 50% of the
study area was dominated by weathered soils (Figure 7), such as Rhodic and Haplic Ferralsols [14],
which presented high amounts of iron oxides that pigmented the soil color (reddened or yellowed) and
absorbed the sunlight (darkened) [3]. Higher relative proportions of predicted iron oxides and gibbsite
correlated with higher theoretical soil weathering degrees (0.17 ≤ r ≤ 0.42) and lower theoretical
Munsell hues (−0.10 ≤ r ≤ −0.52).

Thus, we achieved accurate, large-extent soil maps because our models dealt with the complex
relationships between factors of soil formation across the region that were well described by covariates
at multiple resolutions. The linkage of our spatial predictions with legacy data provided a good
correspondence at both local and regional levels, provided by correlations with soil observations that
were relatively uniformly spatially distributed and the associations with regional patterns derived
from a legacy soil map [45]. This map of soil classes at coarse 1:1,000,000-scale was performed several
years ago by Brazilian government agencies, and is currently the best available pedological information
covering the study area.

5. Conclusions and Future Outlook

Reflectance spectra (350−2500 nm) can be used to accurately determine the Munsell color of soil
and the relative abundance of hematite, goethite, kaolinite, gibbsite, and 2:1 clay minerals in tropical
soils. Once the method was defined, only a few minutes were required for application of any of
the steps described in Sections 2.2 and 2.3, apart from the time necessary for drying, grinding, and
sieving the soil samples. Sample mount in Petri dishes and measurement required only a short time
and low cost without chemical solutions, thus making the method suitable for use on a routine basis.
We encouraged the soil scientists to implement and improve this clean technology into their research.

The random forest models proved to be robust for mapping soil color and mineralogy (derived
from spectra) at three depth intervals in Midwest Brazil. Validation showed high prediction accuracy
for hematite (R2

10cv > 0.71), followed Munsell value and hue, gibbsite, kaolinite, 2:1 minerals, and
goethite at topsoil and subsoil (0.43 < R2

10cv < 0.65). Munsell chroma at all depths had worse prediction
accuracy (0.24 < R2

10cv < 0.38).
The most relevant predictor of the spatial patterns of soil color and mineralogy at surface and

subsurface in Midwest Brazil was the blue spectral region of satellite topsoil reflectance (SySIBlue) with
25% of global importance, followed by elevation, precipitation, and temperature. These covariates are
proxies of the soil forming factors s, c, r, p, and a.

More than 50% of the study area was covered by highly weathered soils, where 45% of soils had 31
to 49% of hematite accounting for 42% of soils with reddish hues between 2.5 YR and 5 YR. Nearly 56%
of soils had 19 to 50% of kaolinite while 36% of weathered soils presented highest gibbsite contents
between 9 and 29%. Traces of 2:1 clay minerals (<7%) were found residing in most of the soils in the
study area (76%).

The soil spatial patterns on our predicted maps were consistent with pedological expert knowledge
of the region and with legacy soil observations and legacy soil class map. Therefore, we have proven
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that large-extent DSM at a fine resolution using proximal and remote sensing data can reach realistic
spatial representations of soil color and mineralogy in tropical conditions.

Future studies should be performed using recent multispectral and radar sensors, like those
onboard the Sentinel satellites, or hyperspectral instruments like Hyperion, that provide detailed
spectral absorption features (242 spectral bands) of Earth’s surface with 30 m resolution. Hyperspectral
sensors probably are the future of remote sensing. New covariates for soil predictions may be produced
by mining data from a single sensor or from the integration of multiple sensors (at multiple resolutions).
Special attention should be paid to the thermal infrared spectral bands.

For DSM purposes, soil reflectance 350–2500 nm spectra need to be evaluated for further
information about suitable spectral absorption bands for practical determination of soil minerals,
e.g., by assessing different spectral bands at different Al-substitution percentages for mineralogical
determination. The medium infrared spectral range should also be considered for soil evaluation, since
this spectral range can provide information about soil geneses and weathering degree, among other
valuable pedological information
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Appendix A

Figure A1 exhibits the predicted vs. observed scatterplots of 10-fold cross-validation derived from
optimized models for Munsell hue number, value, and chroma, goethite, hematite, kaolinite, gibbsite,
and 2:1 clay minerals at three depth intervals (0−20 cm, 20−60 cm, and 60−100 cm).
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Figure A1. Predicted vs. observed (a) hue number, (b) value, (c) chroma, (d) goethite, (e) hematite,
(f) kaolinite, (g) gibbsite, and (h) 2:1 clay minerals by depth interval of 10-fold cross-validation.
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