
remote sensing

Article

Priority Branches for Ship Detection in Optical
Remote Sensing Images

Yijia Zhang, Weiguang Sheng, Jianfei Jiang, Naifeng Jing, Qin Wang * and Zhigang Mao

Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China; zhangyijia@sjtu.edu.cn (Y.Z.); wgshenghit@sjtu.edu.cn (W.S.);
jiangjianfei@sjtu.edu.cn (J.J.); sjtuj@sjtu.edu.cn (N.J.); maozhigang@sjtu.edu.cn (Z.M.)
* Correspondence: qinqinwang@sjtu.edu.cn; Tel.: +86-21-34204546-1039

Received: 13 March 2020; Accepted: 4 April 2020; Published: 8 April 2020
����������
�������

Abstract: Much attention is being paid to using high-performance convolutional neural networks
(CNNs) in the area of ship detection in optical remoting sensing (ORS) images. However, the problem
of false negatives (FNs) caused by side-by-side ships cannot be solved, and the number of false
positives (FPs) remains high. This paper uses a DLA-34 network with deformable convolution layers
as the backbone. The network has two priority branches: a recall-priority branch for reducing the
number of FNs, and a precision-priority branch for reducing the number of FPs. In our single-shot
detection method, the recall-priority branch is based on an anchor-free module without non-maximum
suppression (NMS), while the precision-priority branch utilizes an anchor-based module with NMS.
We perform recall-priority branch functions based on the output part of the CenterNet object
detector to precisely predict center points of bounding boxes. The Bidirectional Feature Pyramid
Network (BiFPN), combined with the inference part of YOLOv3, is used to improve the precision of
precision-priority branch. Finally, the boxes from two branches merge, and we propose priority-based
selection (PBS) for choosing the accurate ones. Results show that our proposed method sharply
improves the recall rate of side-by-side ships and significantly reduces the number of false alarms.
Our method also achieves the best trade-off on our improved version of HRSC2016 dataset, with
95.57% AP at 56 frames per second on an Nvidia RTX-2080 Ti GPU. Compared with the HRSC2016
dataset, not only are our annotations more accurate, but our dataset also contains more images and
samples. Our evaluation metrics also included tests on small ships and incomplete forms of ships.

Keywords: ship detection; optical remote sensing images; priority branch; side-by-side ships

1. Introduction

Advanced aerospace technologies and optical remote sensing image sensors make it possible to
record images of higher resolution over larger areas. Due to the high quality of these remote sensing
images, people can complete many tasks and applications that were not possible in the past. For
example, Li et al. [1] used remote sensing images to perform urban flood mapping. Sun et al. [2]
analyzed the number and locations of cotton bolls based on 3-D photogrammetric mapping. As the
importance of ship detection increases in both military and civil use, much research is taking place in
this field. In military action and rescue work, detection results can be used to find whether ships exist
in a certain area and possibly their exact location. Enhancing the detection accuracy for locating ships
is a hot topic worldwide.

Despite the great achievements scientists have made in enabling satellites to provide
high-resolution images, partial joggles of images can reduce the accuracy of detection results.
Environmental factors, such as ocean waves and severe weather, can also cause the images of
ships to suffer from different levels of incompleteness. In addition, the type, color, and material of a

Remote Sens. 2020, 12, 1196; doi:10.3390/rs12071196 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/2072-4292/12/7/1196?type=check_update&version=1
http://dx.doi.org/10.3390/rs12071196
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2020, 12, 1196 2 of 19

ship [3] can also hinder the detection results. Moreover, multi-scale ships and the existence of ship-like
floating objects on the sea also negatively affect detection technology. In short, methods to solve the
problems involved in ship detection are urgently needed.

The earliest work on ship detection can be traced back to the 1980s when Barnum [4] presented
an overview of ship detection by high-frequency skywave backscatter over-the-horizon radar. After
that, works on ship detection began to spring up. There are three types of ship detection methods:
traditional, machine learning-based, and deep learning-based methods.

In traditional detection, researchers applied mathematical analyses to pixel distribution, statistic
data and local gradience. Although high-resolution remote sensing (RS) images can be produced by
advanced sensors, such detection is not robust enough for images of different brightness and contrast.
Therefore, in traditional method there is pre-processing, including land mask, image enhancement,
image segmentation, and false alarm elimination [5]. After processing, Nocak et al. [6] used a global
thresholding algorithm to complete ship detection. In the work of Vachon et al. [7], K distribution was
used as a marine clutter distribution model. To build a fractal model of ships, Kaplan [8] introduced
Hurst parameters and proposed extended fractal features for identifying targets of specific sizes in
RS images. Aware of the important role of trails in detecting ships, Copeland et al. [9] described
a feature space linear detection method using the local Radon transform to detect trails. However,
such methods have weak anti-noise capability, and the detection result depends on the acquisition of
prior knowledge.

Detection methods based on machine learning perform better when they rely on noise. One of the
most popular algorithms is support vector machine (SVM). According to Dong et al. [3], a trainable
Gaussian SVM classifier was performed to validate real ships from ship candidates. Inspired by
Bayesian decision theory, Proia et al. [10] fixed the size of the analysis window and the threshold used
to make a choice. In addition, histograms of oriented gradient (HOG) feature [11] and binary linear
programming [12] were proposed to solve the problem. The machine learning-based methods achieved
promising performance and outstanding accuracy [13], but the training process was complicated.

With the recent rapid development of deep learning, researchers are trying to improve the accuracy
of detection with the help of convolutional neural networks (CNNs). Lin et al. [14] avoided carefully
tuned parameters and complicated procedures by utilizing a full convolution network, which shows
ship detection can benefit from CNN. Xie et al. [15] used the reflectance gradient to extract ship
candidates and then used LFNet to verify true ships. In this work, ships under complex environment
were detected well, but it took extra time to separate ship candidates from the background. Different
from [15], Chen et al. [16] proposed an end-to-end structure. It enhanced the segmentation speed
compared with their structure without end-to-end connection. In [17], Clément et al. benefited from
their large dataset composed of 18,894 raw Synthetic Aperture Radar (SAR) images and achieved good
performance in ship detection, classification, and length estimation. Considering the training dataset
can be much smaller for other researchers, Dechesne’s method may not work well on other datasets.
To get a network which can be effective with only a small labeled dataset, Rostami et al. [18] used an
innovative approach to train a DNN for classifying SAR images by transferring knowledge from an
electro-optical (EO) domain. Although the method is effective, full overlap was needed between the
existing classes across SAR and EO domains. Inspired by the Faster-RCNN detection framework [19],
Zhang et al. [20] proved their improved Faster-RCNN could achieve a higher recall and accuracy for
small ships and gathering ships. However, ships abreast with each other still cannot be detected easily.
To solve the problem, Zhang et al. [21] replaced horizon boxes with inclined ship region proposals. It
reduced the rate of misses to an extent, but the calculation of intersection over union (IoU) became
more complicated and the method needed more skills to train. Other issues include deep learning’s
large amount of training time and the fact that it suffers from overfitting.

For this paper, we conducted several detecting experiments on ORS ship images and discovered
the main obstacles that hindered the detection results in previous methods. These obstacles are listed
below, and examples of them are shown in Figure 1.

Remote Sens. 2020, 12, 1196 3 of 19

Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 19

For this paper, we conducted several detecting experiments on ORS ship images and discovered
the main obstacles that hindered the detection results in previous methods. These obstacles are listed
below, and examples of them are shown in Figure 1.

• Side-by-side ships. In previous works, bounding boxes are produced to cover the area of ships.
To avoid repeated bounding boxes on the same ship, researchers apply a non-maximum
suppression (NMS) or soft-NMS strategy [22] that prevents bounding boxes from having a large
overlap with the most likely box. However, the drawback to this strategy is that if ships are close
together, boxes belonging to different ships will be eliminated until down to only one. Therefore,
some side-by-side ships will be missed.

• Ship-like objects. Some ship-like objects will be mistaken for ships. This can be attributed to
algorithms’ insufficient ability to perform feature extraction, and a lack of negative samples.

• Multi-scale ships. If ships of different sizes gather, the smaller ships are often missed by detectors.
Multi-scale outputs are designed to predict ships with different sizes in different modules. This
method decreases the number of missed multi-scale ships but does not completely eliminate the
possibility of missing them.

(a) (b) (c)

Figure 1. Main obstacles in ship detection: (a) side-by-side ships; (b) ship-like objects; (c) multi-scale
ships.

We use the CNN algorithm to design a single-shot detector that predicts all bounding boxes and
the category at the same time. In our CNN detection method, DLA-34 [23] with deformable
convolution layers is used as our backbone. During the detection process, an ORS image is first put
into the backbone to create feature maps that contain all the features that the backbone extracts. Then,
the feature maps are put into two branches to produce bounding boxes. One branch is the recall-
priority branch, which reduces the number of missed side-by-side ships and improves the recall; the
other branch distinguishes ship-like objects to increase the precision. In the end, all boxes from the
two branches are filtered by priority-based selection (PBS) to obtain boxes with both high recall and
high precision. The recall of multi-scale ships is also improved in this process.

Our contributions in this paper include the following:

• A state-of-the-art performance detector is proposed in this paper. Priority branches for CNN
ship detectors are specially designed, and PBS is used to filter potential outputs from branches.

• To obtain more samples, we add 360 ORS ship images collected from Google Earth to the
HRSC2016 dataset [24]. In our dataset, ships include warcrafts, aircraft carriers, and cargo and
passenger ships. We re-annotate the dataset with consistent standards. If a ship is completely
displayed in an image, we distinguish whether it is a large ship or a small ship based on whether
its bounding box area is larger than 96 × 96 pixels. For those displayed incompletely, we labeled
them as incomplete ships. Detecting results of large ships, small ships and incomplete ships are
involved in our stricter evaluation metrics.

Figure 1. Main obstacles in ship detection: (a) side-by-side ships; (b) ship-like objects;
(c) multi-scale ships.

• Side-by-side ships. In previous works, bounding boxes are produced to cover the area of ships. To
avoid repeated bounding boxes on the same ship, researchers apply a non-maximum suppression
(NMS) or soft-NMS strategy [22] that prevents bounding boxes from having a large overlap with
the most likely box. However, the drawback to this strategy is that if ships are close together,
boxes belonging to different ships will be eliminated until down to only one. Therefore, some
side-by-side ships will be missed.

• Ship-like objects. Some ship-like objects will be mistaken for ships. This can be attributed to
algorithms’ insufficient ability to perform feature extraction, and a lack of negative samples.

• Multi-scale ships. If ships of different sizes gather, the smaller ships are often missed by detectors.
Multi-scale outputs are designed to predict ships with different sizes in different modules. This
method decreases the number of missed multi-scale ships but does not completely eliminate the
possibility of missing them.

We use the CNN algorithm to design a single-shot detector that predicts all bounding boxes
and the category at the same time. In our CNN detection method, DLA-34 [23] with deformable
convolution layers is used as our backbone. During the detection process, an ORS image is first put into
the backbone to create feature maps that contain all the features that the backbone extracts. Then, the
feature maps are put into two branches to produce bounding boxes. One branch is the recall-priority
branch, which reduces the number of missed side-by-side ships and improves the recall; the other
branch distinguishes ship-like objects to increase the precision. In the end, all boxes from the two
branches are filtered by priority-based selection (PBS) to obtain boxes with both high recall and high
precision. The recall of multi-scale ships is also improved in this process.

Our contributions in this paper include the following:

• A state-of-the-art performance detector is proposed in this paper. Priority branches for CNN ship
detectors are specially designed, and PBS is used to filter potential outputs from branches.

• To obtain more samples, we add 360 ORS ship images collected from Google Earth to the HRSC2016
dataset [24]. In our dataset, ships include warcrafts, aircraft carriers, and cargo and passenger
ships. We re-annotate the dataset with consistent standards. If a ship is completely displayed in
an image, we distinguish whether it is a large ship or a small ship based on whether its bounding
box area is larger than 96 × 96 pixels. For those displayed incompletely, we labeled them as
incomplete ships. Detecting results of large ships, small ships and incomplete ships are involved
in our stricter evaluation metrics.

Remote Sens. 2020, 12, 1196 4 of 19

The code and dataset in this work will be updated to GitHub (https://github.com/Chocolife-96/

Priority-Branches-for-Ship-Detection-in-Optical-Remote-Sensing-Images) in the near future.
The rest of this paper is organized as follows. Section 2 reviews the related works on ship detection

and introduces our network with priority branches in detail. Experimental results are provided in
Section 3. In Section 4, we give our conclusions.

2. Methodology

The architecture of our proposed priority-based ship detection is shown in Figure 2. It is based
on CNN and consists of four parts: a feature fusion backbone; the recall-priority branch, which is
an anchor-free module; the precision-priority branch, which is an anchor-based module; and a PBS
module. After the ORS image is resized to a resolution of 512 × 512, it goes through the backbone,
which integrates the multi-scale feature maps together. Then, the branch functions are performed on
the same feature maps produced by the backbone. Finally, boxes from branches are filtered by the PBS
to obtain predicted ones.

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 19

The code and dataset in this work will be updated to GitHub (https://github.com/Chocolife-
96/Priority-Branches-for-Ship-Detection-in-Optical-Remote-Sensing-Images) in the near future.

The rest of this paper is organized as follows. Section 2 reviews the related works on ship
detection and introduces our network with priority branches in detail. Experimental results are
provided in Section 3. In Section 4, we give our conclusions.

2. Methodology

The architecture of our proposed priority-based ship detection is shown in Figure 2. It is based
on CNN and consists of four parts: a feature fusion backbone; the recall-priority branch, which is an
anchor-free module; the precision-priority branch, which is an anchor-based module; and a PBS
module. After the ORS image is resized to a resolution of 512 × 512, it goes through the backbone,
which integrates the multi-scale feature maps together. Then, the branch functions are performed on
the same feature maps produced by the backbone. Finally, boxes from branches are filtered by the
PBS to obtain predicted ones.

2.1. Feature Fusion Backbone

Our proposed backbone is derived from deep layer aggregation (DLA) and Deformable
Convolutional Networks (ConvNets). As an image classification network with hierarchical skip
connection [25], DLA has the ability to integrate multi-scale feature maps together. Moreover,
deformable convolution derived from Deformable ConvNets v2 is used in up-sample stages, making
the convolution process sufficiently robust to work in complex environments.

2.1.1. Deep Layer Aggregation

Aggregation is the combination of different layers throughout a network. Deep layer
aggregation (DLA) is when a group of aggregations are compositional and nonlinear, and the earliest
layers pass through multiple aggregations. The structure of DLA can be viewed as the connections
of blocks which contain several layers. At the same time, blocks are grouped into stages by feature
resolution. We select the fully convolutional up-sampling DLA for dense prediction as our backbone,
which is a combination of iterative deep aggregation (IDA) and hierarchical deep aggregation (HDA)
[23].

Figure 2. Our proposed priority-based architecture: DLA-34 using deformable convolution layers is
selected as the backbone. Priority branches are used for improving recall rate and precision rate
respectively. PBS serves as a bounding box filter which outputs only the accurate boxes we want.

The deeper the CNN layers are located, the more semantic they are. However, problems exist.
Details would be lost from shallow layers, and as a result the feature maps will be coarse. Unlike the
skip connections in previous work, which only integrate the shallowest layers with the deeper layers,
IDA aggregates shallower layers with deeper layers at an early stage, then propagates the integrated
feature maps deeper to achieve more aggregation. In this way, features from multiple levels can be
integrated thoroughly.

Figure 2. Our proposed priority-based architecture: DLA-34 using deformable convolution layers
is selected as the backbone. Priority branches are used for improving recall rate and precision rate
respectively. PBS serves as a bounding box filter which outputs only the accurate boxes we want.

2.1. Feature Fusion Backbone

Our proposed backbone is derived from deep layer aggregation (DLA) and Deformable
Convolutional Networks (ConvNets). As an image classification network with hierarchical skip
connection [25], DLA has the ability to integrate multi-scale feature maps together. Moreover,
deformable convolution derived from Deformable ConvNets v2 is used in up-sample stages, making
the convolution process sufficiently robust to work in complex environments.

2.1.1. Deep Layer Aggregation

Aggregation is the combination of different layers throughout a network. Deep layer aggregation
(DLA) is when a group of aggregations are compositional and nonlinear, and the earliest layers pass
through multiple aggregations. The structure of DLA can be viewed as the connections of blocks
which contain several layers. At the same time, blocks are grouped into stages by feature resolution.
We select the fully convolutional up-sampling DLA for dense prediction as our backbone, which is a
combination of iterative deep aggregation (IDA) and hierarchical deep aggregation (HDA) [23].

The deeper the CNN layers are located, the more semantic they are. However, problems exist.
Details would be lost from shallow layers, and as a result the feature maps will be coarse. Unlike the
skip connections in previous work, which only integrate the shallowest layers with the deeper layers,
IDA aggregates shallower layers with deeper layers at an early stage, then propagates the integrated
feature maps deeper to achieve more aggregation. In this way, features from multiple levels can be
integrated thoroughly.

https://github.com/Chocolife-96/Priority-Branches-for-Ship-Detection-in-Optical-Remote-Sensing-Images
https://github.com/Chocolife-96/Priority-Branches-for-Ship-Detection-in-Optical-Remote-Sensing-Images

Remote Sens. 2020, 12, 1196 5 of 19

In Equation (1) [23], I stands for the IDA function. Layers x1, . . . , xn are sorted according to their
depth in a network, and N is the aggregation node

I(x1, . . . , xn) =

{
x1 i f n = 1
I(N(x1, x2), . . . , xn) otherwise

(1)

N(x1, . . . , xn) =

σ(BatchNorm(

∑
i

Wixi + b) + xn i f residual connections are added

σ(BatchNorm(
∑
i

Wixi + b)) otherwise
(2)

Although IDA can propagate shallow features sequentially to deep layers, it is impossible to
integrate features from all scales. To solve that problem, HDA is created: The tree structure is used to
feed back the features from an aggregation node to the next level. This guarantees that features are
integrated sufficiently.

The tree structure of HDA is present in Equation (3) [23], where N stands for aggregation node.
The functions L and R are defined in Equations (4) and (5), where B is a convolution block.

Hn(x) = N(Rn
n−1(x), Rn

n−2(x), . . . , Rn
1(x), Ln

1(x), Ln
2(x)) (3)

Ln
2(x) = B(Ln

1(x)), Ln
1(x) = B(Rn

1(x)) (4)

Rn
m =

{
Tm(x) i f m = n− 1
Tm(Rn

m+1(x)) otherwise
(5)

To achieve a better fusion of local and global information, we chose the fully convolution DLA
version, which makes use of interpolation with IDA. It represents a conversion from classic DLA
architecture with HDA and IDA. Because of IDA, outputs from all stages are propagated to the outputs
at the next stage, which promises aggregations of features from different stages. As can be seen in
Figure 3, there are six stages in DLA; however, only stages 3–6 are used to get fully convoluted in this
work. The structure of stage connections is depicted in Figure 4.

Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 19

In Equation (1) [23], I stands for the IDA function. Layers x1, …, xn are sorted according to their
depth in a network, and N is the aggregation node

𝐼(𝑥 , … , 𝑥) = 𝑥 𝑖𝑓 𝑛 = 1𝐼(𝑁(𝑥 , 𝑥), … , 𝑥) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1)

𝑁(𝑥 , … , 𝑥) = ⎩⎪⎨
⎪⎧𝜎(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑊 𝑥 + 𝑏) + 𝑥) 𝑖𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑎𝑑𝑑𝑒𝑑

𝜎(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑊 𝑥 + 𝑏)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2)

Although IDA can propagate shallow features sequentially to deep layers, it is impossible to
integrate features from all scales. To solve that problem, HDA is created: The tree structure is used to
feed back the features from an aggregation node to the next level. This guarantees that features are
integrated sufficiently.

The tree structure of HDA is present in Equation (3) [23], where N stands for aggregation node.
The functions L and R are defined in Equations (4) and (5), where B is a convolution block. 𝐻 (𝑥) = 𝑁 𝑅 (𝑥), 𝑅 (𝑥), … , 𝑅 (𝑥), 𝐿 (𝑥), 𝐿 (𝑥) (3)𝐿 (𝑥) = 𝐵 𝐿 (𝑥) , 𝐿 (𝑥) = 𝐵 𝑅 (𝑥) (4)

𝑅 = 𝑇 (𝑥) 𝑖𝑓 𝑚 = 𝑛 − 1𝑇 (𝑅 (𝑥)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5)

To achieve a better fusion of local and global information, we chose the fully convolution DLA
version, which makes use of interpolation with IDA. It represents a conversion from classic DLA
architecture with HDA and IDA. Because of IDA, outputs from all stages are propagated to the
outputs at the next stage, which promises aggregations of features from different stages. As can be
seen in Figure 3, there are six stages in DLA; however, only stages 3–6 are used to get fully convoluted
in this work. The structure of stage connections is depicted in Figure 4.

Figure 3. The full convolution DLA-34 we use. Stages 3–6 are used to go through a further level of
iterative deep aggregation. IDA for interpolation is used to project and up-sample nodes by 3 × 3
convolution while other nodes use 1 × 1 convolution.

Figure 3. The full convolution DLA-34 we use. Stages 3–6 are used to go through a further level of
iterative deep aggregation. IDA for interpolation is used to project and up-sample nodes by 3 × 3
convolution while other nodes use 1 × 1 convolution.

Remote Sens. 2020, 12, 1196 6 of 19
Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 19

Figure 4. IDA and HDA work together to fully extract features and fuse them well. A 7 × 7
convolution and a basic block form stage 1. Stage 2 is formed by a basic block. Other stages are
combinations of bottleneck blocks and aggregation nodes [23].

2.1.2. Deformable Convolution

Deformable convolution in ConvNets v2 [26] is an optimized version of deformable convolution
v1 [27]. It was designed to solve the biggest challenge in object recognition and detection, caused by
geometric variations due to scale, pose, viewpoint, and part deformation. In DCNv1, augmented
offsets are used to select deformed sampling locations so that the feature scale in convolution layers
can be expanded. Nevertheless, the vision scale that DCNv1 produces is not precise enough to cover
the area of interest, which is why DCNv2 was created. A learned offset and a learned feature
amplitude ensure that DCNv2 has enhanced modeling power.

In this work, we replace convolution layers in up-sampling stages of DLA-34 with DCNv2
layers. They are also used in the recall-priority branch as skip connections to further integrate
features.

2.2. Priority Branches

Our experiment results presented in Section 3.5 shows that the low recall rate is mainly caused
by missed side-by-side ships and multi-scale ships, while the reduced precision rate is caused by
ship-like objects. Although feature fusion in the backbone can improve these phenomena to some
extent, the fundamental problems are not resolved. Therefore, we thought of splitting the ship
detection task into two branches. Branches are designed to improve recall and precision separately.
We use an anchor-free module to work as our recall-priority branch and an anchor-based module to
act as the precision-priority branch.

2.2.1. Recall-Priority Branch

Experiment results presented in Section 3.5 show that the low recall rate of side-by-side ships
can be attributed to the poor precision of produced center points. Frankly speaking, NMS, as used in
previous methods, is just a remedy for the imprecise center points that detections predict. Moreover,
the threshold of NMS is difficult to select; while a low threshold cannot effectively curb repeated
boxes of the same object, close boxes that belong to different objects may be eliminated to get down

Figure 4. IDA and HDA work together to fully extract features and fuse them well. A 7 × 7 convolution
and a basic block form stage 1. Stage 2 is formed by a basic block. Other stages are combinations of
bottleneck blocks and aggregation nodes [23].

2.1.2. Deformable Convolution

Deformable convolution in ConvNets v2 [26] is an optimized version of deformable convolution
v1 [27]. It was designed to solve the biggest challenge in object recognition and detection, caused
by geometric variations due to scale, pose, viewpoint, and part deformation. In DCNv1, augmented
offsets are used to select deformed sampling locations so that the feature scale in convolution layers can
be expanded. Nevertheless, the vision scale that DCNv1 produces is not precise enough to cover the
area of interest, which is why DCNv2 was created. A learned offset and a learned feature amplitude
ensure that DCNv2 has enhanced modeling power.

In this work, we replace convolution layers in up-sampling stages of DLA-34 with DCNv2 layers.
They are also used in the recall-priority branch as skip connections to further integrate features.

2.2. Priority Branches

Our experiment results presented in Section 3.5 shows that the low recall rate is mainly caused by
missed side-by-side ships and multi-scale ships, while the reduced precision rate is caused by ship-like
objects. Although feature fusion in the backbone can improve these phenomena to some extent, the
fundamental problems are not resolved. Therefore, we thought of splitting the ship detection task
into two branches. Branches are designed to improve recall and precision separately. We use an
anchor-free module to work as our recall-priority branch and an anchor-based module to act as the
precision-priority branch.

2.2.1. Recall-Priority Branch

Experiment results presented in Section 3.5 show that the low recall rate of side-by-side ships
can be attributed to the poor precision of produced center points. Frankly speaking, NMS, as used in
previous methods, is just a remedy for the imprecise center points that detections predict. Moreover,
the threshold of NMS is difficult to select; while a low threshold cannot effectively curb repeated boxes
of the same object, close boxes that belong to different objects may be eliminated to get down to only

Remote Sens. 2020, 12, 1196 7 of 19

one bounding box. Furthermore, this problem cannot be eradicated by other improved NMS methods,
such as Soft-NMS.

If the center points produced by detections are precise enough, the detecting results will not need
to be filtered by NMS. Because CenterNet provides a highly effective way to obtain precise center
points, it can guarantee that objects closely abreast can be recalled without using NMS. We next use the

feature maps from DLA-34 to produce a center-point map Ŷ ∈ (0, 1)
W
R ×

H
R ×C [26] instead of producing

the coordinates of center points. C is the number of object types and R is the stride of output. In this
paper, we set C to 1. According to Cao et al. [28] and Newell et al. [29], we set the default stride to
R = 4, which means it will down-sample the output feature by a factor R. We resize the input image to
512 × 512, and after being processed by the branch, we obtain a heat map with the size of 128 × 128.
At each location of output, five predicted parameters are produced: the key point Ŷ, offset Ô(δx̂, δŷ),
and size Ŝ width (ŵ) and height (ĥ) of predicted bounding box [25]. Ŷx,y,c = 1 means it is a center
point of a detected ship, while Ŷx,y,c = 0 corresponds to background. At the inference time, when
such a feature map is remapped to the original image, it will create errors in accuracy. Therefore, an

additional local offset δx̂, δŷ ∈ <
W
R ×

H
R ×2 is needed for each center point.

After obtaining the heat map, we extract the peaks of detected ships by finding the top 100 points
whose value is greater than (or equal to) the eight neighboring points around it. This task can be
performed by applying 3 × 3 max pooling to the heat map. If the center point in a 3 × 3 matrix equals
to the 3 × 3 max pooling result of the matrix, it meets the requirement of being a peak point. The Ŷx,y,c

of the top 100 points is used to indicate the confidence in potential detecting ships. Meanwhile, the
location of bounding boxes is produced by Equation (6) [25], where x̂ and ŷ are remapped coordinates
from the low resolution of heat map to the original resolution.

(x̂ + δx̂−
ŵ
2

, ŷ + δŷ−
ĥ
2

, x̂ + δx̂ +
ŵ
2

, ŷ + δŷ +
ĥ
2
) (6)

During training, as proposed by Law et al. [30], we map each true ground center point p ∈
<

2(< = 512) to the resolution of the heat map by obtaining equivalent p̃ =
⌊ p

R

⌋
. Then, we use

Yxyc ∈ (0, 1)
W
R ×

H
R ×C to label the down-sampled heat map by using a Gaussian kernel, presented in

Equation (7) [30]. σp is a standard deviation related to the size of targets.

Yxyc = exp (−
(x− p̃x)

2 + (y− p̃y)
2

2σ2
p

) (7)

The loss function of this branch can be divided into three parts [25]: Lh: focal loss [31] of heat
map; Lo f f : L1 loss of offset; and Lsize: L1 loss of object size. It is defined as

Lrecall = Lh + λo f f Lo f f + λsizeLsize (8)

Lh = −
1
N

∑
xyc

{
log (Ŷxyc)(1− Ŷxyc)

α i f Ŷxyc = 1
log (1− Ŷxyc)(1−Yxyc)

β(Ŷxyc)
α otherwise

(9)

Lo f f =
1
N

∑
p
|Ô− (

p
R
− p̃)| (10)

Lsize =
1
N

∑
N

|Ŝ− S| (11)

where λo f f and λsize are scaling factors to confidence loss, offset loss, and size loss. α and β are
hyperparameters [31] of confidence loss. We use N as the number of ships in an image. In this paper,
λo f f = 1, λsize = 0.1, α = 2, and β = 4 [25].

Remote Sens. 2020, 12, 1196 8 of 19

2.2.2. Precision-Priority Branch

The detection results of the recall-priority branch in Section 3.5 show that the recall of side-by-side
ships increases sharply, but the number of false alarms is high. This could be ascribed to mistaking
ship-like floating objects on the water as ships. Meanwhile, despite the increased recall result, some
ships of different sizes are still not detected. Therefore, the precision-priority branch has to make up
for the false alarms and the missed ships recall-priority branch causes. Motivated by the output part of
YOLOv3 [32], which draws on feature pyramid networks (FPNs) [33] and uses multiple scales to detect
targets of different sizes, we use the anchor-based module to detect ships with multi-scale anchors,
which can make up for the small ships missed by the recall-priority branch. To reduce the number
of false alarms caused by another branch, a more powerful fusion architecture, BiFPN [34], is used
to replace the feature pyramid in the YOLO module. We also use the K-means clustering method to
obtain anchors based on the training boxes.

The main idea of the YOLO prediction module is to get three modules producing feature maps
with different sizes after feature fusion. Using the output strides (32,16, 8) in YOLOv3 [32], we choose
16 × 16, 32 × 32, and 64 × 64 the sizes of the feature maps. For each feature map, three anchor priors
are chosen. In order to select anchors based on the ship dataset, we apply the K-means algorithm to
the annotated bounding boxes in the training dataset to obtain suitable priors [35]. In our dataset, the
nine clusters are: (10, 14), (26, 22), (15, 49), (65, 30), (35, 59), (23, 149), (109, 74), (61, 151), and (143, 177).
The first three clusters belong to module 1 (64 × 64), while the second and third three are the size of
anchors belonging to modules 2 and 3, respectively.

For each location in an output feature map, the module produces three groups of data. Each group
contains four coordinates Ĉo = (tx, ty, tw, th) for each bounding box and its confidence value [32].
Therefore, the dimension of each module output is S × S × N, where S = 16, 32, 64; N = B × (5+C). In
this paper, B, N= 3, 1.

As shown in Figure 5, tx and ty can be transformed to the coordinates of the center point relative
to the upper left corner of the grid cells. tw and th are parameters related to the width and height pw, ph
of the bounding box priors. The predictions correspond to

bx = σ(tx) + cx, by = σ(ty) + cy (12)

bw = pwetw , bh = pheth (13)

Following the method of YOLOv3, the loss of this branch is the sum of three parts [28]: loss of
class (Lcls), loss of location (Lloc), and loss of confidence (Lcon f). Lloc is based on sum of error loss, while
Lcls and Lcon f are realized with binary cross-entropy. The overall function is

Lprecision = Lloc + Lcls + Lcon f (14)

Lloc = λcoord

S2∑
i = 0

B∑
j = 0

Iobj
i j |V − V̂| (15)

Lcls = −
S2∑

i = 0

B∑
j = 0

Iobj
i j (P̂ j

i ln (P j
i) + (1− P̂ j

i) ln (1− P j
i)) (16)

Lcon f = −
S2∑

i = 0

B∑
j = 0

Iobj
i j (Ĉ j

i ln (C j
i) + (1− Ĉ j

i) ln (1−C j
i))−λnoobj

S2∑
i = 0

B∑
j = 0

Inoobj
i j (Ĉ j

i ln (C j
i) + (1− Ĉ j

i) ln (1−C j
i)) (17)

where V in formulation (15) is a vector (x j
i , y j

i ,
√

w j
i ,
√

h j
i), C, P are confidence of bounding box and

classification probability. The value of Iobj corresponds to whether the anchor box is responsible for the

Remote Sens. 2020, 12, 1196 9 of 19

detected ship, while Inoobj means the anchor box is out of business. λcoord and λnoobj are scaling factors
to weigh the loss. In this experiment, λcoord = 1, and λnoobj = 0.5 [32].

Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 19

2.2.2. Precision-Priority Branch

The detection results of the recall-priority branch in Section 3.5 show that the recall of side-by-
side ships increases sharply, but the number of false alarms is high. This could be ascribed to
mistaking ship-like floating objects on the water as ships. Meanwhile, despite the increased recall
result, some ships of different sizes are still not detected. Therefore, the precision-priority branch has
to make up for the false alarms and the missed ships recall-priority branch causes. Motivated by the
output part of YOLOv3 [32], which draws on feature pyramid networks (FPNs) [33] and uses multiple
scales to detect targets of different sizes, we use the anchor-based module to detect ships with multi-
scale anchors, which can make up for the small ships missed by the recall-priority branch. To reduce
the number of false alarms caused by another branch, a more powerful fusion architecture, BiFPN
[34], is used to replace the feature pyramid in the YOLO module. We also use the K-means clustering
method to obtain anchors based on the training boxes.

The main idea of the YOLO prediction module is to get three modules producing feature maps
with different sizes after feature fusion. Using the output strides (32,16, 8) in YOLOv3 [32], we choose
16 × 16, 32 × 32, and 64 × 64 the sizes of the feature maps. For each feature map, three anchor priors
are chosen. In order to select anchors based on the ship dataset, we apply the K-means algorithm to
the annotated bounding boxes in the training dataset to obtain suitable priors [35]. In our dataset, the
nine clusters are: (10, 14), (26, 22), (15, 49), (65, 30), (35, 59), (23, 149), (109, 74), (61, 151), and (143, 177).
The first three clusters belong to module 1 (64 × 64), while the second and third three are the size of
anchors belonging to modules 2 and 3, respectively.

For each location in an output feature map, the module produces three groups of data. Each
group contains four coordinates 𝐶𝑜 =(𝑡 , 𝑡 , 𝑡 , 𝑡) for each bounding box and its confidence value
[32]. Therefore, the dimension of each module output is S × S × N, where S = 16, 32, 64; N = B × (5+C).
In this paper, B, N= 3, 1.

As shown in Figure 5, 𝑡 and 𝑡 can be transformed to the coordinates of the center point
relative to the upper left corner of the grid cells. 𝑡 and 𝑡 are parameters related to the width and
height 𝑝 , 𝑝 of the bounding box priors. The predictions correspond to 𝑏 = 𝜎(𝑡) + 𝑐 , 𝑏 = 𝜎 𝑡 + 𝑐 (12)𝑏 = 𝑝 𝑒 , 𝑏 = 𝑝 𝑒 (13)

Figure 5. To be the center location of predicted bounding box, tx and ty should go through sigmoid
function σ, which will map the value of them to the range of 0 to 1. (cx, cy) stands for the offset to the
upper left corner of the grid cells. (px, py) denotes the shape of anchor priors.

To decrease the number of false alarms in the detection results of recall-priority branch, we replace
the feature pyramid in the YOLO module with BiFPN. This is a combination of efficient bidirectional
cross-scale connections and weighted feature fusion [34]. Such connections are improved from
PANet [36]. However, unlike PANet, nodes with only one input are removed. In addition, extra
connections are added on each level from original input to output node, and each bidirectional path is
treated as a feature layer in BiFPN. More high-level feature fusion is ensured by repeating the same
layer multiple times. Fast normalized fusion is selected as weighted feature fusion, whose function is
O =

∑
i Iiwi/(∈ +

∑
j w j). In this function, wi ≤ 0, and ∈ = 0.0001 is a value to keep stability. Such

fusion is much more efficient than softmax-based fusion. The structure of precision-priority branch is
shown in Figure 6.

Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 19

Figure 5. To be the center location of predicted bounding box, 𝑡 and 𝑡 should go through sigmoid
function 𝜎, which will map the value of them to the range of 0 to 1. (𝑐 , 𝑐) stands for the offset to the
upper left corner of the grid cells. (𝑝 , 𝑝) denotes the shape of anchor priors.

Following the method of YOLOv3, the loss of this branch is the sum of three parts [28]: loss of
class (𝐿), loss of location (𝐿), and loss of confidence (𝐿). 𝐿 is based on sum of error loss,
while 𝐿 and 𝐿 are realized with binary cross-entropy. The overall function is 𝐿 = 𝐿 + 𝐿 + 𝐿 (14)

𝐿 = 𝜆 𝐼 |𝑉 − 𝑉| (15)

𝐿 = − 𝐼 (𝑃 ln 𝑃 + (1 − 𝑃) ln 1 − 𝑃) (16)

𝐿 = − 𝐼 (𝐶 ln 𝐶 + (1 − 𝐶) ln 1 − 𝐶)

−𝜆 𝐼 (𝐶 ln 𝐶 + (1 − 𝐶) ln 1 − 𝐶) (17)

where V in formulation (15) is a vector (𝑥 , 𝑦 , 𝑤 , ℎ), C, P are confidence of bounding box and

classification probability. The value of 𝐼 corresponds to whether the anchor box is responsible for
the detected ship, while 𝐼 means the anchor box is out of business. 𝜆 and 𝜆 are
scaling factors to weigh the loss. In this experiment, 𝜆 = 1, and 𝜆 = 0.5 [32].

To decrease the number of false alarms in the detection results of recall-priority branch, we
replace the feature pyramid in the YOLO module with BiFPN. This is a combination of efficient
bidirectional cross-scale connections and weighted feature fusion [34]. Such connections are
improved from PANet [36]. However, unlike PANet, nodes with only one input are removed. In
addition, extra connections are added on each level from original input to output node, and each
bidirectional path is treated as a feature layer in BiFPN. More high-level feature fusion is ensured by
repeating the same layer multiple times. Fast normalized fusion is selected as weighted feature
fusion, whose function is 𝑂 = ∑ 𝐼 𝑤 (∈ + ∑ 𝑤)⁄ . In this function, 𝑤 0, and ∈= 0.0001 is a value
to keep stability. Such fusion is much more efficient than softmax-based fusion. The structure of
precision-priority branch is shown in Figure 6.

Figure 6. The feature map produced by the backbone first go through BiFPN layers to integrate
features further. Finally, the output modules from YOLOv3 give the predicted boxes based on anchor
priors.

Figure 6. The feature map produced by the backbone first go through BiFPN layers to integrate features
further. Finally, the output modules from YOLOv3 give the predicted boxes based on anchor priors.

Remote Sens. 2020, 12, 1196 10 of 19

2.3. Priority-Based Selection

Priority-based selection serves as a filter to distinguish accurate boxes from the boxes from
precision-priority branch (Bp) and the boxes from recall-priority branch (BR).

The strategy to filter boxes changes with whether they overlap:

1. If BP has a high overlap with BR, we reserve BR.
2. If a box has low or no overlap with all boxes from the other branch, and its confidence is higher

than the threshold (the threshold is less strict for precision-priority branch), we reserve it.

Strategy (1) works in the area where BP and BR reach a consensus that ships exist, but they produce
different boxes. At this time, BR is selected because the boxes from recall-priority can promise the recall
for side-by-side ships. Strategy (2) deals with disagreements between the two branches. Boxes with
low confidence are filtered and more boxes from the precision-priority branch are reserved because it
is less likely to sound false alarms. Strategy (2) not only reduces the number of false alarms, but also
keeps high potential boxes. This selection algorithm is shown in Figure 7.

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 19

2.3. Priority-Based Selection

Priority-based selection serves as a filter to distinguish accurate boxes from the boxes from
precision-priority branch (𝐵) and the boxes from recall-priority branch (𝐵).

The strategy to filter boxes changes with whether they overlap:

1. If 𝐵 has a high overlap with 𝐵 , we reserve 𝐵 .
2. If a box has low or no overlap with all boxes from the other branch, and its confidence is higher

than the threshold (the threshold is less strict for precision-priority branch), we reserve it.

Strategy (1) works in the area where 𝐵 and 𝐵 reach a consensus that ships exist, but they
produce different boxes. At this time, 𝐵 is selected because the boxes from recall-priority can
promise the recall for side-by-side ships. Strategy (2) deals with disagreements between the two
branches. Boxes with low confidence are filtered and more boxes from the precision-priority branch
are reserved because it is less likely to sound false alarms. Strategy (2) not only reduces the number
of false alarms, but also keeps high potential boxes. This selection algorithm is shown in Figure 7.

Figure 7. 𝑅 and 𝑃 are the list of detection boxes produced by the two branches. 𝐶 and 𝐶 contain
corresponding detection confidence. If boxes have overlap higher than 𝜃 , the box from the
precision-priority branch will be eliminated. The confidence thresholds for the two branches are
defined in the form of 𝜃 , 𝜃 . The accuracy of detection results is the highest by setting 𝜃 = 0.3, 𝜃 = 0.4, and 𝜃 = 0.8 in our work.

PBS works as an efficient arbiter, ensuring high-quality boxes. The experiments described in the
next section show that it leads to noticeable improvement compared with detection results from each
branch.

3. Experiments and Results

To evaluate the performance of our proposed single-shot ship detection method, we compared
it with other methods. The settings of the experiments introduced in this section include datasets,
evaluation metrics, and compared methods. The efficiency of our method will also be presented.

3.1. Dataset

Figure 7. R and P are the list of detection boxes produced by the two branches. Cr and Cp contain
corresponding detection confidence. If boxes have overlap higher than θIoU, the box from the
precision-priority branch will be eliminated. The confidence thresholds for the two branches are defined
in the form of θr, θp. The accuracy of detection results is the highest by setting θIoU = 0.3, θr = 0.4,
and θp = 0.8 in our work.

PBS works as an efficient arbiter, ensuring high-quality boxes. The experiments described in
the next section show that it leads to noticeable improvement compared with detection results from
each branch.

3. Experiments and Results

To evaluate the performance of our proposed single-shot ship detection method, we compared
it with other methods. The settings of the experiments introduced in this section include datasets,
evaluation metrics, and compared methods. The efficiency of our method will also be presented.

Remote Sens. 2020, 12, 1196 11 of 19

3.1. Dataset

The HRSC2016 dataset contains images from two scenarios, including ships at sea and ships
near the shore [24]. These 1061 images, including 2976 samples, were selected from Google Earth,
and consist of images from six famous ports: Murmansk, Everett, Newport, Rhode Island, Mayport
Naval Base, Norfolk Naval Base, and San Diego Naval Base. Their sizes range from 300 × 300 and 1500
× 900, while the resolutions vary from 2 m to 0.4 m. However, by studying the official images and
annotations, the standard for annotations was found to be inconsistent. The two aspects to the problem
are small ships and incomplete ships. In some images, they are annotated, but most are ignored by the
author. Sample images and official annotated boxes are shown in Figure 8.

Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 19

The HRSC2016 dataset contains images from two scenarios, including ships at sea and ships
near the shore [24]. These 1061 images, including 2976 samples, were selected from Google Earth,
and consist of images from six famous ports: Murmansk, Everett, Newport, Rhode Island, Mayport
Naval Base, Norfolk Naval Base, and San Diego Naval Base. Their sizes range from 300 × 300 and
1500 × 900, while the resolutions vary from 2 m to 0.4 m. However, by studying the official images
and annotations, the standard for annotations was found to be inconsistent. The two aspects to the
problem are small ships and incomplete ships. In some images, they are annotated, but most are
ignored by the author. Sample images and official annotated boxes are shown in Figure 8.

(a) (b)

(c) (d)

Figure 8. Sample images and official annotated boxes. The inconsistent standards for small ships and
incomplete ships are very noticeable.

To improve the dataset, we selected 360 more images from Google Earth to augment it and re-
annotated these images. The resolutions of the images were between 0.27 m to 2.15 m. Their sizes
range from 450 × 350 to 1200 × 850, and most of them are smaller than 1000 × 600. Like the original
images in HRSC2016, most of the added samples are on the sea or near the shore. Sample images in
our dataset are shown in Figure 9.

(a) (b) (c)

(d) (e) (f)

Figure 8. Sample images and official annotated boxes. The inconsistent standards for small ships and
incomplete ships are very noticeable.

To improve the dataset, we selected 360 more images from Google Earth to augment it and
re-annotated these images. The resolutions of the images were between 0.27 m to 2.15 m. Their sizes
range from 450 × 350 to 1200 × 850, and most of them are smaller than 1000 × 600. Like the original
images in HRSC2016, most of the added samples are on the sea or near the shore. Sample images in
our dataset are shown in Figure 9.

We divided all the samples into large, small, and incomplete. Varying from the method of
Lin et al. [37], we labeled complete ships with bounding box area larger than 96 × 96 pixels as large
ships, and other complete ones as small ships. The improved dataset includes a total of 1421 images
and 5058 samples, as shown in Table 1.

Remote Sens. 2020, 12, 1196 12 of 19

Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 19

The HRSC2016 dataset contains images from two scenarios, including ships at sea and ships
near the shore [24]. These 1061 images, including 2976 samples, were selected from Google Earth,
and consist of images from six famous ports: Murmansk, Everett, Newport, Rhode Island, Mayport
Naval Base, Norfolk Naval Base, and San Diego Naval Base. Their sizes range from 300 × 300 and
1500 × 900, while the resolutions vary from 2 m to 0.4 m. However, by studying the official images
and annotations, the standard for annotations was found to be inconsistent. The two aspects to the
problem are small ships and incomplete ships. In some images, they are annotated, but most are
ignored by the author. Sample images and official annotated boxes are shown in Figure 8.

(a) (b)

(c) (d)

Figure 8. Sample images and official annotated boxes. The inconsistent standards for small ships and
incomplete ships are very noticeable.

To improve the dataset, we selected 360 more images from Google Earth to augment it and re-
annotated these images. The resolutions of the images were between 0.27 m to 2.15 m. Their sizes
range from 450 × 350 to 1200 × 850, and most of them are smaller than 1000 × 600. Like the original
images in HRSC2016, most of the added samples are on the sea or near the shore. Sample images in
our dataset are shown in Figure 9.

(a) (b) (c)

(d) (e) (f)

Figure 9. Samples of augmented images and their new annotations based on levels. Red boxes represent
large ships, orange boxes represent small ships, and yellow boxes represent incomplete ships.

Table 1. Number of samples in three sets

Levels Number of Samples

Training Set Validation Set Testing Set

Large 2204 285 1059
Small 825 70 333

Incomplete 181 11 90
Total 3210 366 1482

3.2. Evaluation Metrics

To measure the performance of our proposed methods quantitatively, we adopted precision, recall,
and the precision–recall curve (PRC). The value of recall and precision can be calculated by TPs (true
positives), FPs (false positives), and FNs (false negatives). If the IoU between a predicted box and
ground truth is higher than 0.5, it is defined as TP. If the IoU is lower than 0.5, it is defined as FP. An
actual object missed by detection is called an FN. Precision stands for the ratio of correct boxes and all
predicted ones, and recall is the proportion of predicted correct boxes in all ground truth. AP, which is
the area under PRC, is a comprehensive metric for avoiding the situation where recall and precision
are unbalanced. The value of AP is between 0 and 1. The calculation methods are

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

3.3. Compared Methods

The detections we compare with consist of one-stage and two-stage frameworks. One-stage
detections include YOLOv3 [32], RetinaNet [31], and FSAF [38]. Faster R-CNN [19] is the two-stage
framework we use.

YOLOv3 is known for its efficiency. Referring to the feature pyramid structure and forming a
multi-scale detection, it is good at detecting small objects. For better performance, we use darknet-53
with official pretrained weights as the backbone.

Remote Sens. 2020, 12, 1196 13 of 19

Using focal loss, RetinaNet is able to challenge the accuracy of two-stage detections after
overcoming the problem of category imbalance. Images with a size of 640 × 640 go through ResNet-50
for feature extraction.

Like our proposed methods, FSAF also has an anchor-based branch and an anchor-free one. The
best feature map is selected automatically by feature levels. Finally, predicted boxes produced by the
two branches need to go through NMS. The base network of FSAF is also ResNet-50.

As a two-stage framework, Faster R-CNN applies a region proposal network to obtain candidate
regions containing objects. The Fast R-CNN detector then classifies these regions. They share ResNet-50
as the backbone. Faster R-CNN is a popular method because of its high accuracy in detection tasks.

We adopted pretrained ResNet-50 on the Microsoft COCO dataset for RetinaNet, FSAF, and Faster
R-CNN. For all methods, we used the Adam [39] optimization algorithm during 200 epochs of training.
The initial learning rate remains 10−4 for the first 80 epochs and decays to 10−5 and 10−6 at epoch 80
and epoch 150. All networks are trained and tested in our dataset.

Considering that they all use NMS to merge results, networks with soft-NMS are also used.

3.4. Implementation Details

Data augmentation was applied before training the proposed network and the compared methods.
It includes random flip respect to x-axis, shift augmentation, rescale 0.5, and rotate 90, 180, 270. In
addition, more negative samples were added artificially to some images to improve the balance of
positive and negative samples.

In the proposed single-shot detector, input images were resized to 512 × 512. Since NMS is not
applied in the anchor-free recall-priority branch, boxes are selected if the confidence is higher than 0.3.
The threshold of NMS in our anchor-based branch is 0.4. During training, the backbone is initialized
by the weights of pretrained DLA-34 on the ImageNet database [40]. We follow Zhu et al. [38] to use
L = LR + λLP as total optimization loss. The entire training process lasts for 200 epochs. The learning
rate is set to 1.25 × 10−4 for the first 90 epochs and becomes 10 times smaller at epoch 90 and 150. The
Adam optimizer is also used during the training. Our detector performs best after we trained it in
this way. Our proposed method is implemented on the PyTorch framework and employs an Nvidia
GeForce RTX 2080 Ti GPU with 11 GB memory for training.

3.5. Results

The comparison between our proposed network and other methods is presented both visually
and quantitatively. The PRCs of five networks are shown in Figure 10, and the specific values of AP
are compared in Table 2.

Table 2. Recall, precision, and AP values of methods on the same dataset

Methods P & R (%) AP Values (%)

P R AP APL APS APIn

Faster R-CNN 90.50 89.95 86.95 94.14 69.94 59.46
YOLOv3 93.24 83.81 83.27 92.73 58.47 52.45

RetinaNet 87.90 88.19 86.28 94.55 66.43 56.06
FSAF 91.55 91.36 89.71 96.12 76.23 53.32

Proposed 94.02 96.02 95.57 99.42 83.14 78.51

From Figure 10, it is obvious that our method transcends all other networks in both precision
and recall. Specifically, the recall is much higher than others. As a two-stage detector, Faster R-CNN
achieves good results in recall because the region proposal network produces proper boxes for candidate
ships. YOLOv3 has the best performance in precision but has the lowest recall of ships of the compared
methods. By observing the visual outputs of YOLOv3, we find that some ships are selected by
bounding boxes, but the size and location of boxes are not precise enough, thereby making recall the

Remote Sens. 2020, 12, 1196 14 of 19

lowest. In contrast, the recall of RetinaNet is high but the precision is unsatisfactory. FSAF has the
steadiest performance.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 19

Figure 10. PRC of different methods. The proposed network shows significant improvement in both
precision and recall.

Table 2. Recall, precision, and AP values of methods on the same dataset

Methods
P & R (%) AP Values (%)
P R 𝐀𝐏 𝐀𝐏𝐋 𝐀𝐏𝐒 𝐀𝐏𝐈𝐧

Faster R-CNN 90.50 89.95 86.95 94.14 69.94 59.46
YOLOv3 93.24 83.81 83.27 92.73 58.47 52.45

RetinaNet 87.90 88.19 86.28 94.55 66.43 56.06
FSAF 91.55 91.36 89.71 96.12 76.23 53.32

Proposed 94.02 96.02 95.57 99.42 83.14 78.51

To further show the advantages of our proposed method, we list the number of false alarms and
missed ships in Table 3. Surprisingly, YOLOv3 produces the same number of false alarms as the
proposed network, despite the fact that it misses many more ships. At the early stages of our
experiment, we found that YOLOv3 is good at accurate detection, so we used the YOLO output part
as the main module in our precision-priority branch. From our observation of all the missed ships,
we found that ships with different sizes were responsible for the most obstacles for improving recall
value. By further fusing features, our method significantly reduced the number of obstacles.
Meanwhile, our method was highly efficient in detecting side-by-side ships, reducing the number to
zero, compared to tens of missed ships by other methods. Figure 11 shows the number of missed
side-by-side ships after replacing NMS with soft-NMS in compared networks. Although soft-NMS is
reported to significantly improve NMS [22], the number is only reduced by a small amount.
Therefore, we believe that the key to solving this problem is to find center points more precisely
instead of improving the performance of NMS. It is by this particular method that we can solve the
problem so completely.

Faster R-CNN
YOLO v3
RetinaNet
FSAF
proposed

Figure 10. PRC of different methods. The proposed network shows significant improvement in both
precision and recall.

Table 2 shows that our method achieves the best AP value. In addition to its nearly 100% AP of
large ships, it makes strong progress in detecting small ships and ships with incomplete forms. Among
all compared networks, the AP of FSAF is closest to our performance, especially in detecting small
ships. Using the same pretrained weights with Faster R-CNN and RetinaNet, we can speculate that
the combination of anchor-free and anchor-based modules works well in the task of detecting ships.
Compared with FSAF, the heat map method in our anchor-free module and the feature extraction
architecture in the anchor-based module achieve 5.86%, 3.30%, 6.91%, and 25.19% performance gains
in AP, APL, APS, and APIn respectively. The other three networks perform well in detecting large ships
but are poor at detecting small ships and those with incomplete forms.

To further show the advantages of our proposed method, we list the number of false alarms
and missed ships in Table 3. Surprisingly, YOLOv3 produces the same number of false alarms as
the proposed network, despite the fact that it misses many more ships. At the early stages of our
experiment, we found that YOLOv3 is good at accurate detection, so we used the YOLO output
part as the main module in our precision-priority branch. From our observation of all the missed
ships, we found that ships with different sizes were responsible for the most obstacles for improving
recall value. By further fusing features, our method significantly reduced the number of obstacles.
Meanwhile, our method was highly efficient in detecting side-by-side ships, reducing the number to
zero, compared to tens of missed ships by other methods. Figure 11 shows the number of missed
side-by-side ships after replacing NMS with soft-NMS in compared networks. Although soft-NMS is
reported to significantly improve NMS [22], the number is only reduced by a small amount. Therefore,
we believe that the key to solving this problem is to find center points more precisely instead of
improving the performance of NMS. It is by this particular method that we can solve the problem
so completely.

Remote Sens. 2020, 12, 1196 15 of 19

Table 3. Number of missed ships and false alarms of methods

Methods False Alarms
Missed Ships

Side-by-Side
Ships Incomplete Ships Multi-Scale Ships

Faster R-CNN 140 17 34 98
YOLOv3 90 36 41 177

RetinaNet 180 23 36 116
FSAF 125 25 38 65

Proposed 90 0 15 44

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 19

Table 3. Number of missed ships and false alarms of methods

Methods False
Alarms

Missed Ships
Side-by-

Side Ships
Incomplete

Ships
Multi-Scale

Ships
Faster R-CNN 140 17 34 98

YOLOv3 90 36 41 177
RetinaNet 180 23 36 116

FSAF 125 25 38 65
Proposed 90 0 15 44

Figure 11. Number of missed side-by-side ships. Soft-NMS improves a small degree when conducting
this task.

The good performance of our detection method in both precision and recall can be attributed to
PBS combining outputs from two branches. Table 4 clearly shows that the recall-priority branch is
good at getting high recall while the other branch produces bounding boxes much more accurately.
Because of PBS, the recall rises little compared to the recall-priority branch and the precision of the
filtered results nearly reaches that of the precision-priority branch. It is easy to explain why the recall
gets higher: more boxes mean more chances to hit the targets. Since we keep some results from the
recall-priority branch, it is inevitable that more false alarms will occur and produce a lower precision.
To attain higher precision, a recall-priority branch with better precision is needed. This is one of the
goals of our future work.

Table 4. Change of recall and precision after being filtered by PBS

Modules Precision (%) Recall (%)
Precision-Priority Branch 94.68 86.17

Recall-Priority Branch 90.11 95.48
PBS 94.02 96.02

Qualitative comparisons to other methods are shown in Figure 12. Compared with other
methods, our networks achieve more robust detection of ship-like objects, side-by-side ships, and
multi-scale ships. Our detector also shows favorable performance for incomplete ships.

The final efficiency analysis of networks is shown in Table 5. The inference speed of the proposed
method is second only to YOLOv3. Considering that it is much better in precision and recall values,
ranking second in speed is acceptable.

Table 5. Average inference time of all methods

Methods Pretrained
Backbone

Frames per
Second

Faster R-CNN ResNet-50 20.2
YOLOv3 Darknet-53 75.1

Figure 11. Number of missed side-by-side ships. Soft-NMS improves a small degree when conducting
this task.

The good performance of our detection method in both precision and recall can be attributed to
PBS combining outputs from two branches. Table 4 clearly shows that the recall-priority branch is
good at getting high recall while the other branch produces bounding boxes much more accurately.
Because of PBS, the recall rises little compared to the recall-priority branch and the precision of the
filtered results nearly reaches that of the precision-priority branch. It is easy to explain why the recall
gets higher: more boxes mean more chances to hit the targets. Since we keep some results from the
recall-priority branch, it is inevitable that more false alarms will occur and produce a lower precision.
To attain higher precision, a recall-priority branch with better precision is needed. This is one of the
goals of our future work.

Table 4. Change of recall and precision after being filtered by PBS

Modules Precision (%) Recall (%)

Precision-Priority Branch 94.68 86.17
Recall-Priority Branch 90.11 95.48

PBS 94.02 96.02

Qualitative comparisons to other methods are shown in Figure 12. Compared with other methods,
our networks achieve more robust detection of ship-like objects, side-by-side ships, and multi-scale
ships. Our detector also shows favorable performance for incomplete ships.

The final efficiency analysis of networks is shown in Table 5. The inference speed of the proposed
method is second only to YOLOv3. Considering that it is much better in precision and recall values,
ranking second in speed is acceptable.

Remote Sens. 2020, 12, 1196 16 of 19

Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 19

RetinaNet ResNet-50 33.5
FSAF ResNet-50 43.0

Proposed DLA-34 55.8

Figure 12. Visual comparisons of detection results in different methods. From top to bottom, each row
is Faster R-CNN, YOLOv3, RetinaNet, FSAF, and the proposed method, respectively.
Figure 12. Visual comparisons of detection results in different methods. From top to bottom, each row
is Faster R-CNN, YOLOv3, RetinaNet, FSAF, and the proposed method, respectively.

Remote Sens. 2020, 12, 1196 17 of 19

Table 5. Average inference time of all methods

Methods Pretrained Backbone Frames per Second

Faster R-CNN ResNet-50 20.2
YOLOv3 Darknet-53 75.1

RetinaNet ResNet-50 33.5
FSAF ResNet-50 43.0

Proposed DLA-34 55.8

4. Conclusions

In this paper, we find that many of the obstacles of ship detection are caused by side-by-side
ships, shape-like objects, and multi-scale ships. First, to reduce the number of false alarms and missed
ships, we split the task into two branches: the recall-priority branch without NMS, which improves
recall; and the precision-priority branch, which is good at detecting ships precisely. The final bounding
boxes are selected from the results of two branches by PBS. Next, we constructed a dataset based on
HRSC2016 with more samples and stricter annotation standards.

Through experiments on our dataset, we can make three conclusions. (1) The bottle neck to
reducing the number of times side-by-side ships were missed is not the quality of the suppression
algorithm, but the accuracy of detected center points of ships. Accordingly, the recall-priority branch
improves recall to a high level. In addition, false alarms can be avoided to an extent by better fusion
of features in our precision-priority branch. (2) Through the use of PBS, the combination of different
branches works well, and the AP values increase sharply compared to other networks. (3) The inference
time of our proposed method is short enough to meet the requirements of real-time detection (above
30 fps). In the future, we aim to simplify the network and put it on an ASIC chip.

Author Contributions: Conceptualization, Q.W.; Methodology, Y.Z.; Dataset, W.S. and J.J.; Software,
Y.Z.; Validation, Q.W. and N.J.; Formal Analysis, J.J. and W.S.; Writing—Original Draft Preparation, Y.Z.;
Writing—Review and Editing, N.J. and Q.W.; Supervision, Z.M.; Funding acquisition, Z.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (61176037).

Acknowledgments: The authors sincerely thank Dong G. C. and Shen F. Y. for their suggestions. The authors also
want to thank You Y.L. and LetPub for their language polish of the writing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, Y.; Martinis, S.; Wieland, M. Urban flood mapping with an active self-learning convolutional neural
network based on TerraSAR-X intensity and interferometric coherence. ISPRS J. Photogramm. Remote Sens.
2019, 152, 178–191. [CrossRef]

2. Sun, S.; Li, C.; Chee, P.W.; Paterson, A.H.; Jiang, Y.; Xu, R.; Shehzad, T. Three-dimensional photogrammetric
mapping of cotton bolls in situ based on point cloud segmentation and clustering. ISPRS J. Photogramm.
Remote Sens. 2020, 160, 195–207. [CrossRef]

3. Dong, C.; Liu, J.; Xu, F. Ship detection in optical remote sensing images based on saliency and a
rotation-invariant descriptor. Remote Sens. 2018, 10, 400. [CrossRef]

4. Barnum, J. Ship detection with high-resolution HF skywave radar. IEEE J. Ocean. Eng. 1986, 11, 196–209.
[CrossRef]

5. Tian, Y.; Wang, C.; Zhang, H. Spaceborne SAR Ship Detection and its Application on Marine fisheries
monitoring. Remote Technol. Appl. 2007, 22, 503–512.

6. Novak, L.M.; Halversen, S.D.; Owirka, G.; Hiett, M. Effects of polarization and resolution on SAR ATR. IEEE
Trans. Aerosp. Electron. Syst. 1997, 33, 102–116. [CrossRef]

7. Vachon, P.W.; Adlakha, P.; Edel, H.; Henschel, M.; Ramsay, B.; Flett, D.; Thomas, S. Canadian progress toward
marine and coastal applications of synthetic aperture radar. Johns Hopkins APL Tech. Digest. 2000, 21, 33–40.

http://dx.doi.org/10.1016/j.isprsjprs.2019.04.014
http://dx.doi.org/10.1016/j.isprsjprs.2019.12.011
http://dx.doi.org/10.3390/rs10030400
http://dx.doi.org/10.1109/JOE.1986.1145176
http://dx.doi.org/10.1109/7.570713

Remote Sens. 2020, 12, 1196 18 of 19

8. Kaplan, L.M. Improved SAR target detection via extended fractal features. IEEE Trans. Aerosp. Electron. Syst.
2001, 37, 436–451. [CrossRef]

9. Copeland, A.C.; Ravichandran, G.; Trivedi, M.M. Localized Radon transform-based detection of ship wakes
in SAR images. IEEE Trans. Geosci. Remote Sens. 1995, 33, 35–45. [CrossRef]

10. Proia, N.; Pagé, V. Characterization of a Bayesian ship detection method in optical satellite images. IEEE
Geosci. Remote Sens. Lett. 2009, 7, 226–230. [CrossRef]

11. Shu, C.; Ding, X.; Fang, C. Histogram of the oriented gradient for face recognition. Tsinghua Sci. Technol.
2011, 16, 216–224. [CrossRef]

12. Liu, G.; Zhang, Y.; Zheng, X.; Sun, X.; Fu, K.; Wang, H. A new method on inshore ship detection in
high-resolution satellite images using shape and context information. IEEE Geosci. Remote. Sens. Lett. 2013,
11, 617–621. [CrossRef]

13. Yu, Y.; Guan, H.; Li, D.; Gu, T.; Tang, E.; Li, A. Orientation guided anchoring for geospatial object detection
from remote sensing imagery. ISPRS J. Photogramm. Remote. Sens. 2020, 160, 67–82. [CrossRef]

14. Lin, H.; Shi, Z.; Zou, Z. Fully convolutional network with task partitioning for inshore ship detection in
optical remote sensing images. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 1665–1669. [CrossRef]

15. Xie, X.; Li, B.; Wei, X. Ship Detection in Multispectral Satellite Images Under Complex Environment.
Remote Sens. 2020, 12, 792. [CrossRef]

16. Chen, Y.; Li, Y.; Wang, J.; Chen, W.; Zhang, X. Remote Sensing Image Ship Detection under Complex Sea
Conditions Based on Deep Semantic Segmentation. Remote Sens. 2020, 12, 625. [CrossRef]

17. Dechesne, C.; Lefèvre, S.; Vadaine, R.; Hajduch, G.; Fablet, R. Ship Identification and Characterization in
Sentinel-1 SAR Images with Multi-Task Deep Learning. Remote Sens. 2019, 11, 2997. [CrossRef]

18. Rostami, M.; Kolouri, S.; Eaton, E.; Kim, K. Deep Transfer Learning for Few-Shot SAR Image Classification.
Remote Sens. 2019, 11, 1374. [CrossRef]

19. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

20. Zhang, S.; Wu, R.; Xu, K.; Wang, J.; Sun, W. R-CNN-based ship detection from high resolution remote sensing
imagery. Remote Sens. 2019, 11, 631. [CrossRef]

21. Zhang, Z.; Guo, W.; Zhu, S.; Yu, W. Toward arbitrary-oriented ship detection with rotated region proposal
and discrimination networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1745–1749. [CrossRef]

22. Bodla, N.; Singh, B.; Chellappa, R.; Davis, L.S. Soft-NMS–improving object detection with one line of code. In
Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 5561–5569.

23. Yu, F.; Wang, D.; Shelhamer, E.; Darrell, T. Deep layer aggregation. In Proceedings of the 2018 IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2403–2412.

24. LB, W. A high resolution optical satellite image dataset for ship recognition and some new baselines.
In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods, Porto,
Portugal, 24–26 February 2017.

25. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as Points. arXiv 2019, arXiv:1904.07850.
26. Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable convnets v2: More deformable, better results. In Proceedings of the

2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 9308–9316.

27. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings
of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773.

28. Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 7291–7299.

29. Newell, A.; Yang, K.; Deng, J. Stacked hourglass networks for human pose estimation. In Proceedings
of the 2016 European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016;
pp. 483–499.

30. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the 2018 European
Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 734–750.

31. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the
2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

http://dx.doi.org/10.1109/7.937460
http://dx.doi.org/10.1109/36.368224
http://dx.doi.org/10.1109/LGRS.2009.2031826
http://dx.doi.org/10.1016/S1007-0214(11)70032-3
http://dx.doi.org/10.1109/LGRS.2013.2272492
http://dx.doi.org/10.1016/j.isprsjprs.2019.12.001
http://dx.doi.org/10.1109/LGRS.2017.2727515
http://dx.doi.org/10.3390/rs12050792
http://dx.doi.org/10.3390/rs12040625
http://dx.doi.org/10.3390/rs11242997
http://dx.doi.org/10.3390/rs11111374
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.3390/rs11060631
http://dx.doi.org/10.1109/LGRS.2018.2856921

Remote Sens. 2020, 12, 1196 19 of 19

32. Redmon, J.; Farhadi, A. Yolov3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
33. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object

detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

34. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and Efficient Object Detection. arXiv 2019, arXiv:1911.09070.
35. Zhuang, S.; Wang, P.; Jiang, B.; Wang, G.; Wang, C. A Single Shot Framework with Multi-Scale Feature Fusion

for Geospatial Object Detection. Remote Sens. 2019, 11, 594. [CrossRef]
36. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the

2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 8759–8768.

37. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L. Microsoft coco: Common
objects in context. In Proceedings of the 2014 European Conference on Computer Vision, Zurich, Switzerland,
6–12 September 2014; pp. 740–755.

38. Zhu, C.; He, Y.; Savvides, M. Feature selective anchor-free module for single-shot object detection.
In Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA,
USA, 15–20 June 2019; pp. 840–849.

39. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
40. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.

In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL,
USA, 20–25 June 2009; pp. 248–255.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs11050594
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Feature Fusion Backbone
	Deep Layer Aggregation
	Deformable Convolution

	Priority Branches
	Recall-Priority Branch
	Precision-Priority Branch

	Priority-Based Selection

	Experiments and Results
	Dataset
	Evaluation Metrics
	Compared Methods
	Implementation Details
	Results

	Conclusions
	References

