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Abstract: Surface particulate matter with an aerodynamic diameter of <2.5 µm (PM2.5) and
column-integrated aerosol optical depth (AOD) exhibits substantial diurnal, daily, and yearly
variabilities that are regionally dependent. The diversity of these temporal variabilities in urban and
rural areas may imply the inherent mechanisms. A novel time-series analysis tool developed by
Facebook, Prophet, is used to investigate the holiday, seasonal, and inter-annual patterns of PM2.5 and
AOD at a rural station (RU) and an urban station (UR) in Beijing. PM2.5 shows a coherent decreasing
tendency at both stations during 2014–2018, consistent with the implementation of the air pollution
action plan at the end of 2013. RU is characterized by similar seasonal variations of AOD and PM2.5,
with the lowest values in winter and the highest in summer, which is opposite that at UR with
maximum AOD, but minimum PM2.5 in summer and minimum AOD, but maximum PM2.5 in winter.
During the National Day holiday (1–7 October), both AOD and PM2.5 holiday components regularly
shift from negative to positive departures, and the turning point generally occurs on October 4. AODs
at both stations steadily increase throughout the daytime, which is most striking in winter. A morning
rush hour peak of PM2.5 (7:00–9:00 local standard time (LST)) and a second peak at night (23:00 LST)
are observed at UR. PM2.5 at RU often reaches minima (maxima) at around 12:00 LST (19:00 LST),
about four hours later (earlier) than UR. The ratio of PM2.5 to AOD (η) shows a decreasing tendency
at both stations in the last four years, indicating a profound impact of the air quality control program.
η at RU always begins to increase about 1–2 h earlier than that at UR during the daytime. Large
spatial and temporal variations of η suggest that caution should be observed in the estimation of
PM2.5 from AOD.
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1. Introduction

Beijing, the capital of China, has frequently suffered from worsening air pollution episodes,
especially in recent years [1–4]. For example, a widespread and long-lasting extreme air pollution event
in January of 2013 triggered a deep public concern about air pollution and its hazardous effects on
human health [5–7], which, to some extent, fostered the establishment of a national air quality network
and the release of hourly air quality to the public from the beginning of 2013 (http://www.cnemc.cn/).
Dramatic changes of PM2.5 (ground-level ambient fine particulate matter with an aerodynamic diameter
not exceeding 2.5 µm) concentrations in Beijing were widely reported, in which stagnant weather
and chemical reactions worked together to result in an explosive growth of PM2.5, for example from
a few µg m−3 to dangerously high levels (1000 µg m−3)within several hours or in a few days [8–10].
The diurnal and seasonal variability of PM2.5 in the Beijing urban area has been studied based on
observations of 1–3 years, which showed diurnal maxima during the latter half of the night to early
morning and a seasonal peak in winter [11,12].

Aerosol optical depth (AOD), the column-integrated aerosol extinction, has widely been suggested
as a proxy for PM2.5 [13–15]. The sun photometer is an effective remote sensing tool to observe AOD
accurately and validate satellite-derived AOD products. The AOD uncertainty of the Aerosol Robotic
Network (AERONET [16], https://aeronet.gsfc.nasa.gov/) is 0.01~0.02 [17]. Diurnal variation of AOD
based on 15 years worthy of AERONET observation data in the North China Plain (NCP) showed that
AOD increased gradually from early morning to later afternoon [18]. Based on long-term observations
of 50 China Aerosol Remote Sensing Network (CARSNET) sites, Che et al. [19] found that annual mean
AOD at 440 nm (AOD 440nm) increased from remote/rural sites (0.12) to urban sites (0.79).

As the government has implemented strict emission regulations and set absolute targets for
limiting coal consumption to improve air quality in recent years, improvements in average levels of
PM2.5 and AOD would be expected [20,21]. Unfavorable weather is a key external cause of air pollution,
which may counteract the major efforts currently underway to reduce emissions. A slowdown of air
pollution emission would partly influence regional haze by the local interactions between aerosol and
the boundary layer [22–24]; furthermore, aerosol would impact haze in North China by influencing the
East Asian winter monsoon through ocean, sea ice, and cloud feedbacks [25,26]. Therefore, one would
expect a remarkable inter-annual variability and secular trend of PM2.5 and AOD as a result of those
complex interactions.

With large spatial coverage, repeated measurements, and accessible accuracy, satellite AOD
retrievals are applicable for estimating PM2.5 concentrations. PM2.5 is technically measured as dry
particle mass near the surface, while AOD is light extinction by aerosol in the whole atmospheric
column [27]. The AOD-PM2.5 relationship is affected by external factors such as aerosol size, aerosol
vertical profile, and relative humidity, which show a highly spatiotemporal variability. As a matter of
fact, the contrast in the seasonality of AOD and PM2.5 was revealed in Beijing urban areas [28] and in
NCP [29]. Therefore, it is still crucial to explore the spatial and temporal variations of the AOD-PM2.5

relationship [30–32].
Using collocated hourly PM2.5 and AOD datasets spanning more than 10 years at Beijing urban

(UR) and rural (RU) stations, the objective of this study is to present a closer look at the temporal
variabilities of PM2.5 and AOD, as well as their relationship at diurnal to inter-annual scales. Similarities
and differences in the long-term temporal variabilities of PM2.5 and AOD at UR and RU are thoroughly
investigated. Given the fact that conventional time-series analysis approaches are insufficient to analyze
complex changes of PM2.5 and AOD, we use a newly developed forecasting model by Facebook,
namely Prophet, to achieve this goal [33,34]. Adopting a generalized additive model (GAM), Prophet
is fast in its fitting procedure and robust to large outliers, missing values, and dramatic changes. It can
also model multiple periods of seasonality simultaneously [35]. These features make it attractive for
the analysis of PM2.5 and AOD.

http://www.cnemc.cn/
https://aeronet.gsfc.nasa.gov/
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The paper is organized as follows. Section 2 introduces AOD, surface PM2.5 data, and the Prophet
method. Inter-annual, seasonal, holiday components, and diurnal variation are analyzed in Section 3.
Section 4 summarizes the main results and proposes recommendations for further study.

2. Materials and Methods

2.1. Stations and Data

Urban ground-based PM2.5 and AOD observations are from the U.S. Embassy in Beijing
(39.95◦N 116.46◦E) and the AERONET Beijing site (39.98◦N 116.38◦E), respectively (Figure 1). Rural
PM2.5 data are collected at Shangdianzi station (SDZ, 40.65◦N 117.12◦E), the regional atmosphere
watch station in NCP. The measurements are conducted on the south slope of a hill (293 m ASL) at
SDZ that is surrounded by sparsely populated small villages. SDZ is one of the Chinese Aerosol
Research Science Network (CARSNET) [19] stations that has regularly measured AOD by using a
sun photometer since 2004. At UR, hourly PM2.5 data measured by the beta-attenuation monitor
(BAM) range from April 2008 to December 2018, and AERONET Version 3 cloud screened and quality
assured level 2.0 data range from March 2004 to May 2018. At RU, hourly PM2.5 data measured by the
tapered element oscillating microbalance method (TEOM) range from January 2005 to October 2018,
and the CARSNET Level 2.0 AOD data range from March 2004 and October 2017. BAM heats air to
around 20 ◦C, while TEOM keeps the temperature at around 50 ◦C [36]. Inter-comparison of PM2.5

concentrations has shown a good agreement between BAM and TEOM, but the latter is slightly lower
than the former [37], possibly because TEOM is sensitive to losses of semi-volatile components during
the heating process of the air sample [38].
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Figure 1. Locations of the urban station (UR, plus for PM2.5 and circle for aerosol optical depth (AOD))
and the rural station (RU, triangle) in Beijing.

To match the wavelength of the widely-used Moderate Resolution Imaging Spectroradiometer
(MODIS) AOD, the ground-level AOD at 550 nm is interpolated from AOD measurements at the



Remote Sens. 2020, 12, 1193 4 of 17

two nearest wavelengths (generally from 440 and 870 nm) using the Angstrom exponent. PM2.5 data
are discarded if missing hourly measurements exceed 12 during a day. Only days with 20 or more
instantaneous AOD measurements, the first record earlier than 10:30 LST (local standard time) and
the last record later than 15:00 LST, are used for the analysis of diurnal variability. Since the diurnal
variability of clean days with low AOD values is likely overwhelmed by that of polluted days with high
AOD values if absolute values are used in the diurnal analysis, we adopted the percentage departure
from the daily mean to describe the diurnal variation [39]:

V′i, j =

Vi, j −
1
m

m∑
j=1

Vi, j

/
1
m

m∑
j=1

Vi, j (1)

where Vi, j represents the variable (AOD or PM2.5 measurements or PM2.5/AOD) on day i at hour j. m
represents total hourly measurements each day.

η = PM2.5/AOD (2)

The conversion factor η is also analyzed because it is essential for PM2.5 estimation from AOD [40].
η, the aerosol mass extinction capability in reality, is a function of aerosol size, aerosol type, relative
humidity, etc.

2.2. The Prophet Method

The Prophet method is used to detect the temporal variabilities of AOD and PM2.5 from the daily to
the secular trend. Prophet was originally designed to smooth and forecast business data encountered on
Facebook. Fully considering the basic features of business time-series, i.e., piecewise trends, seasonality,
holidays known in advance, and a reasonable number of missing values or outliers, a time-series can
be decomposed into three major components, i.e., secular trend, seasonality, and holidays, as well as
an error term [34].

y(t) = g(t) + s(t) + h(t) + ε(t) (3)

The terms in the right-hand side are the trends in linear or logistic growth (g(t)), periodic patterns
(s(t): e.g., yearly seasonality), the effects of holidays (h(t)), and changes that cannot be expressed by the
model (the error term ε(t)).

Prophet uses Fourier series to describe s(t). t represents the date, and P is the length of the period
(e.g., P is selected as 365.25 for yearly data). In this study, we utilize the default value of N since
Taylor and Letham [34] demonstrated that these values perform well for most issues (i.e., N = 10 for
yearly components).

s(t) =
N∑

n=1

[an cos
(2πnt

P

)
+ bn sin

(2πnt
P

)
] (4)

Holiday effects on pollution are usually due to changes in emissions from traffic and industrial
activities [37,41]. For example, urban areas of Beijing always show a decrease of traffic congestion
due to large population outflow on national holidays, especially during the National Day and Spring
Festival. This pattern would be expected to be similar year after year. Therefore, holidays may provide
non-negligible and regular shocks to air quality [42].

On September 18, 1999, China’s State Council issued the “Golden Week” holiday system, in which
there are three seven-day national holidays each year, i.e., Spring Festival, May Day, and the National
Day. On December 16, 2007, China adjusted the legal holiday and released the revised “Regulation on
Public Holidays for National Annual Festivals and Memorial Days”. May Day’s Golden Week was
replaced by a three-day holiday. Instead, extra three-day national holidays for traditional festivals are
released including Tomb-Sweeping Day, the Dragon Boat Festival, and the Mid-Autumn Festival [43].
All national holidays during 2004-2018 are listed in Table A1 and incorporated into Prophet.



Remote Sens. 2020, 12, 1193 5 of 17

2.3. Emission Inventory

We also collected the monthly total emissions of PM2.5 [44], sulfur dioxide (SO2), and nitrogen
oxides (NOx) [45] over the Beijing area (115.2◦E–117.2◦E, 39.2◦N–41.2◦N) from Peking University
(http://inventory.pku.edu.cn/). The oxidation of atmospheric NOx and SO2 will produce secondary
PM2.5. The inventories (spatial resolution of 0.1◦ × 0.1◦) consist of six sectors. This emission inventories
are calculated by a bottom-up approach covering 1960–2014.

3. Results

3.1. General Picture of AOD and PM2.5 Time-Series

The time-series of daily AOD and PM2.5 values are shown in Figure 2. Annual average AOD
values were 0.59 ± 0.10 (2004–2018) and 0.36 ± 0.12 (2004–2017), and PM2.5 concentrations were
85.4 ± 17.1 (2008–2018) and 42.6 ± 9.7 (2005–2018) µg m−3 at UR and RU, respectively. At least 46.5%
and 15.0% of daily mean PM2.5 concentration exceeded the ambient air quality standards of China
(GB 3095–2012, 75 µg m−3) at UR and RU, respectively. Both AOD and PM2.5 showed decreasing
trends in recent years at UR and RU, which will be explored in detail below. Furthermore, PM2.5 at RU
was closely correlated to that at UR with a correlation coefficient (R) of 0.80 (Table A2). A relatively
larger R (0.88) was also derived for AOD. This high agreement indicated a coherent variation of aerosol
pollution in a fairly large area [46,47].Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 19 
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3.2. Secular Trends of AOD and PM2.5 Concentrations

Figure 3 illustrates the annual trends of AOD and PM2.5 concentrations at UR and RU. AOD at
UR showed a steady decreasing tendency with a decrease of 0.10 during 2007–2018. AOD and PM2.5 at
RU increased slightly during 2004–2006, but a steady decreasing tendency was observed thereafter
in response to clean air policies [48]. The effects of policies are evidenced by emission changes over
the Beijing area in Figure 4, which showed that total emissions of PM2.5 and NOx started to decrease
at the beginning of 2007. For PM2.5, there was an encouraging changing point near 2014 at both
stations, with PM2.5 at UR and RU decreasing by 19.6% and 16.0% (22 and 7 µg m−3) by the end of
2015, respectively. The steady improvement in PM2.5 level since 2014 coincides with the “Clean Air
Action Plan” implemented at the end of 2013, indicating the effectiveness of these measures on the
control of the PM2.5 pollution level. However, AOD kept the same decreasing tendencies since 2007.
This result implied that the air pollution control measures exerted a much larger effect on surface level
PM2.5 concentration than AOD.
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3.3. Seasonality

The seasonality of AOD and PM2.5 at UR was the opposite, with maximum AOD, but minimum
PM2.5 in summer and vice versa in winter (Figure 5). Fueled by solar radiation in summer, aerosols can
be transported to a high level of the atmosphere. This can result in a decrease of PM2.5 at UR. However,
the frequent occurrence of a strong temperature inversion in winter prevents air pollution from
penetrating the upper free convective layer, leading to higher surface level PM2.5 concentrations [22,28].
The larger AOD values in summer were also discovered over NCP by Qu et al. [49]. Based on
multi-source meteorological data, including the vertical profile of the aerosol extinction coefficient,
relative humidity, and wind from reanalysis data, Qu et al. [49] deduced that higher AOD in summer
was likely because of greater aerosol hygroscopic growth under a hot and humid environment, a higher
planetary boundary layer height (PBLH) that resulted in transporting more aerosol particles to a higher
level, and the advection of the summer monsoon from the eastward open topographical basin (further
reading of meteorological analysis can be found in [49]).
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On the contrary, RU was characterized by similar seasonal variations of AOD and PM2.5 (higher
values in spring and summer while lower values in winter). Higher PM2.5 at RU in spring and summer
was likely related to natural emissions of PM2.5, i.e., dust events in spring and biomass burning events
in June [50]. Furthermore, one more outstanding feature at RU is that observations were made on the
south slope of a hill (293 m), and the frequent occurrence of a strong near surface inversion in winter
may prevent the transport of local human emissions to the top of the hill.

3.4. Holiday Effects

Consistent holiday effects on PM2.5 and AOD were not observed in most cases (Figures A1 and A2)
except during the seven-day National Day holiday. This was likely because the effect of the three
days off in most circumstances on PM2.5 and AOD was blurred by a non-periodic weather effect that
should dominantly determine the short-term day-to-day variability of AOD and PM2.5. An interesting
result was derived during the seven-day National Day holiday, i.e., the components of AOD and
PM2.5 nearly always shifted from negative to positive values during 1 October to 7 October (Figure 6).
This phenomenon was associated with the annual cycle between the summer and winter monsoons in
East Asia. At the beginning of October, the East Asian summer monsoon (EASM) moves southward,
and Beijing is gradually dominated by the East Asian winter monsoon (EAWM) [51]. Subsequently,
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there will be a temperature inversion leading to a more stable atmosphere, and the pollutants near the
surface cannot spread to high levels. Meanwhile, because people in Beijing take car trips to nearby
provinces at the beginning of the holiday, this would result in a reduction of traffic flow downtown.
High traffic inflows at the end of holidays, on the contrary, are likely to contribute to increasing air
pollution [52].
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3.5. Diurnal Variation of PM2.5 and AOD

At UR, AOD steadily increased throughout the daytime. The temporal evolution of the boundary
layer height after sunrise led to the column-integrated aerosol concentration increasing because more
aerosols were transported into the troposphere (Figure 7). Larger secondary aerosols which were not
directly from the planet’s surface (such as sulfate and organic aerosol), formation in the afternoon as air
temperature increases and hygroscopic growth would also contribute to this daytime AOD variability.
At RU, AOD remained stable or decreased slightly from dawn to ~11:00 LST and, afterwards, increased
with a comparable (in autumn and winter) or larger (spring and summer) rate to sunset as compared
to that at UR. Daytime AOD variabilities showed seasonal dependence, with magnitudes varying from
~20% in summer (minima) to ~40% in winter (maxima).

An expected morning rush hour (7:00–9:00 LST) enhancement of PM2.5 at UR was only clearly
discerned in spring (increase by ~8%). On the contrary, this feature was always observed at RU,
which was very likely due to cooking rather than traffic emissions. PM2.5 concentrations decreased
to the minima in the afternoon, i.e., 15:00–16:00 LST, when generally, the planetary boundary layer
height reaches its maximum at UR. It is interesting to note that the minimum PM2.5 was observed
at 11:00–12:00 LST at RU. Analysis of wind direction showed that it shifted from southeasterly to
southwesterly wind at 11:00 LST [50]. Considering that the RU is surrounded by hills except to the
southwest with local emissions, southwesterly winds would advect pollutants (primary and secondary
aerosols) from the southern plain to the sampling site. Therefore, PM2.5 concentrations at RU began to
increase earlier than UR as a result of the change in wind direction. The maxima of PM2.5 generally
occurred at 23:00 LST at UR, which occurred earlier at RU (19:00–20:00 LST). From midnight towards
dawn, PM2.5 concentrations fell again because of the reduction in human activities.

Note that the daytime variability of PM2.5 from 11:00 LST to sunset kept pace with that of AOD at
RU, which indicated that PM2.5 there was weakly impacted by the temporal evolution of the boundary
layer height. That is to say, the temporal variability of PM2.5 was dominantly determined by the
formation of aerosols in the atmosphere or the transport of dust and biomass burning aerosols, which
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resulted in a coherent temporal variation of PM2.5 and AOD, from daytime to seasonal scales. On the
contrary, the daytime evolution of PM2.5 was nearly opposite that of AOD at UR.
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3.6. PM2.5 and AOD Relationship

One of the most prominent features of the secular trend of η was that it decreased remarkably
since ~ 2015 at both stations (Figure 8). The secular trends of η before ~2015 differed between UR and
RU. η remained nearly stable during 2008 to 2015 at UR; however, η decreased from 2004 to 2011 and
then increased in 2015 at RU. It is interesting to note that the decreasing η since ~2015 was accompanied
by the fact that both AOD and PM2.5 decreased (Figure 3).

Though the seasonality components of individual variables (AOD and PM2.5) were different at
UR and RU, η shared nearly the same seasonal variation at both stations, i.e., usually lower in summer
(minima in August) and higher in winter (maxima in January at UR and December at RU). Greater
PM2.5, but lesser AOD were observed in winter at UR, which resulted in the largest η [32]. At RU,
AOD seasonality was substantially greater than that of PM2.5 and the maximum AOD occurred in
summer (Figure 5); therefore, it was natural to observe the minimum η in summer.
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Figure 8. Trends and seasonality components of the ratios (PM2.5 mass concentration to AOD, η) for
urban (red solid line) and rural (blue dashed line) stations.

Figure 9 presents the diurnal variation of η and R between hourly AOD and PM2.5 as the percent
departure from the daily mean. η decreased from sunrise to about 14:00 LST; afterwards, η increased
slightly until sunset. This pattern was always observed in each season, although it varied slightly
between seasons and stations. η at RU always began to increase a few hours (1−2 h) earlier than
that at UR, which was due to the earlier increase of PM2.5 concentrations at RU (Figure 7). Hourly η
at 11:00 LST, the Terra overpass time, was within the daytime mean η by a few percent; however,
η at 14:00 LST, the Aqua overpass time, was systematically smaller than the daytime mean value by
10–20%. Hourly PM2.5 was significantly correlated with AOD, which showed little seasonal and station
dependence. R generally varied from 0.6 to 0.8.
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Figure 9. Diurnal variation of the ratios (PM2.5 to AOD, η) as the percent departure from the daily
mean at UR and RU stations (red for UR and orange for RU). The correlation coefficient values (R)
between AOD and PM2.5 for each hour are in blue color. The lower-left text is the daily mean of each
line. The error bar is ± one standard deviation of the mean.
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4. Discussion

For the interpretation of the seasonality in Section 3.3, it would be more comprehensive if the
corresponding meteorological fields (e.g., humidity, wind, pressure, etc.) were analyzed. Meanwhile,
a trajectory analysis combined with a high resolution emission inventory may help us understand
the advection of pollutants [53]. In this study, column AOD data were used to investigate the
relationship with the surface PM2.5 massive concentrations. However, a detailed interpretation of the
internal mechanisms of η requires more supporting data, e.g., chemical composition variation and
meteorological variables. For example, the aerosol particles aloft have more of a contribution to AOD
than the ground PM2.5 concentrations. Further, a conversion from column to ground-level AOD using
the planetary boundary layer height, relative humidity information, and the vertical aerosol profile
should improve the AOD-PM2.5 relationship [27].

Satellite estimation of PM2.5 is mainly based on the AOD-PM2.5 relationship established by
collocated AOD-PM2.5 pairs by using simple regression or complex machine learning methods.
As shown above, η at each station had distinct temporal variations from the annual to diurnal scale.
Therefore, temporal missing values of AOD-PM2.5 pairs may lead to a large bias of the relationship
during these days. It should also be noted that PM2.5 estimated from Aqua AOD (overpass time ~14:00
LST) would have systematically underestimated the daytime mean value (Figure 9). In spatial terms,
larger magnitudes of each η component at UR remind us that the AOD-PM2.5 relationship varies by
location. For better PM2.5 estimation, one is filling the AOD missing values, and the other is utilizing
more variables, such as aerosol type, relative humidity, and wind, to build a more sophisticated
AOD-PM2.5 model. Future work aims at applying a chemical transport model like the Goddard Earth
Observing System (GEOS) Chemistry transport model (GEOS-CHEM) to study the impacting factors
of AOD-PM2.5 and explore the internal mechanism.

5. Conclusions

In a brief overview, we applied Facebook Prophet, a newly-developed and powerful procedure,
to analyze the secular trend, seasonality, and holiday components of AOD and PM2.5 concentrations,
as well as the ratio of PM2.5 to AOD at two representative stations in Beijing, i.e., a rural station and an
urban station. The main conclusions are summarized as follows.

Annual average values of PM2.5 and AOD at RU were almost 1.6 and 2.0 times as large as those at
RU, respectively. Trend analysis revealed a coherent turning point of PM2.5 at both stations, i.e., PM2.5

has decreased remarkably since the end of 2013 as a result of the implementation of the air pollution
control program.

The seasonal variation of PM2.5 was similar to that of AOD at RU, i.e., greater AOD and PM2.5 in
summer and smaller values in winter, while the PM2.5 seasonality (greater/lesser in winter/summer)
was opposite that of AOD (greater/lesser in summer/winter) at UR.

Holiday effects on AOD and PM2.5 concentrations were not discerned in most circumstances;
however, a consistent holiday effect on PM2.5 and AOD was observed during the seven-day National
Day holiday.

Diurnal variations of AOD and PM2.5 were larger at UR than at RU. PM2.5 at RU reached
minima/maxima four hours later/earlier (at around 11:00–12:00/19:00 LST) than UR for all seasons
except in winter.

Based on the ratio between PM2.5 and AOD, we found that the trends of η began to decrease in
2015 for both stations. η shared nearly the same seasonal variation at both stations, i.e., usually lower
in summer and higher in winter. The diurnal cycle of η featured a decreasing tendency from sunrise to
about 14:00 LST and an increasing tendency toward sunset.
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Appendix A

Table A1. List of China holidays.

Year New Year’s
Day Sprig Festival Tomb-Sweeping

Day Labor Day Dragon Boat
Festival

Mid-Autumn
Festival National Day

2004 2004/01/01 (1) 1 2004/01/22 (7) NAN 2004/05/01 (7) NAN NAN 2004/10/01 (7)
2005 2005/01/01 (3) 2005/02/09 (7) NAN 2005/05/01 (7) NAN NAN 2005/10/01 (7)
2006 2006/01/01 (3) 2006/01/29 (7) NAN 2006/05/01 (7) NAN NAN 2006/10/01 (7)
2007 2007/01/01 (3) 2007/02/18 (7) NAN 2007/05/01 (7) NAN NAN 2007/10/01 (7)
2008 2007/12/30 (3) 2008/02/06 (7) 2008/04/04 (3) 2008/05/01 (3) 2008/06/07 (3) 2008/09/13 (3) 2008/10/01 (7)
2009 2009/01/01 (3) 2009/01/25 (7) 2009/04/04 (3) 2009/05/01 (3) 2009/05/28 (3) NAN 2009/10/01 (8) 2

2010 2010/01/01 (3) 2010/02/13 (7) 2010/04/03 (3) 2010/05/01 (3) 2010/06/06 (3) 2010/09/20 (3) 2010/10/01 (7)
2011 2011/01/01 (3) 2011/02/02 (7) 2011/04/03 (3) 2011/05/01 (3) 2011/06/04 (3) 2011/09/10 (3) 2011/10/01 (7)
2012 2012/01/01 (3) 2012/01/22 (7) 2012/04/02 (3) 2012/04/29 (3) 2012/06/22 (3) NAN 2012/09/30 (8) 2

2013 2013/01/01 (3) 2013/02/09 (7) 2013/04/04 (3) 2013/04/29 (3) 2013/06/10 (3) 2013/09/19 (3) 2013/10/01 (7)
2014 2014/01/01 (1) 1 2014/01/31 (7) 2014/04/05 (3) 2014/05/01 (3) 2014/05/31 (3) 2014/09/06 (3) 2014/10/01 (7)
2015 2015/01/01 (3) 2015/02/18 (7) 2015/04/05 (3) 2015/05/01 (3) 2015/06/20 (3) 2015/09/27 (3) 2015/10/01 (7)
2016 2016/01/01 (3) 2016/02/07 (7) 2016/04/02 (3) 2016/04/30 (3) 2016/06/09 (3) 2016/09/15 (3) 2016/10/01 (7)
2017 2017/01/01 (3) 2017/01/27 (7) 2017/04/03 (3) 2017/05/01 (3) 2017/05/28 (3) NAN 2017/10/01 (8) 2

2018 2017–12-30 (3) 2018/02/15 (7) 2018/04/05 (3) 2018/05/01 (3) 2018/6/16 (3) 2018/09/22 (3) 2018/10/01 (7)
1 In 2004 and 2014, New Year’s Day had only one day off. 2 In 2009, 2012, and 2017, National Day had 8 days off
since the Mid-Autumn Festival was combined. The number in parentheses is the number of days off. NAN here
refers to the day off does not exist.

Table A2. Correlation coefficients# among PM2.5, AOD, and emissions.

UR PM2.5 RU PM2.5 UR AOD RU AOD PM2.5
Emission

NOx
Emission

SO2
Emission

UR PM2.5 1.00 0.80 0.88 0.75 0.54 (0.20) 0.28 (0.53) 0.72 (0.07)
RU PM2.5 0.80 1.00 0.82 0.88 0.85 0.83 0.78
UR AOD 0.88 0.82 1.00 0.88 0.91 0.86 0.88
RU AOD 0.75 0.88 0.88 1.00 0.85 0.88 0.56 (0.07)

PM2.5 emission 0.54 (0.20) 0.85 0.91 0.85 1.00 0.97 0.88
NOx emission 0.28 (0.53) 0.83 0.86 0.88 0.97 1.00 0.80
SO2 emission 0.72 (0.07) 0.78 0.88 0.56 (0.07) 0.88 0.80 1.00
# The correlation coefficients are calculated based on the yearly mean values of time-series. The relatively poor
relationship between emissions data and UR PM2.5 is associated with insufficient valid data pairs (PM2.5 records
began in 2008, while emissions data ended in 2014). p-values greater than 0.01 are presented in parentheses, and all
others are less than 0.01.
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Figure A1. Holiday components of AOD and PM2.5 at the urban and rural stations. The components
are averaged every four years (2004–2007 and 2008–2011) when data are available. NY, SF, TS, LD, DBF,
MAF, and ND represent New Year’s Day, Spring Festival, Tomb-Sweeping Day, Labor Day, Dragon
Boat Festival, Mid-Autumn Festival, and National Day. Bars in red, pink, blue, and light blue refer to
holiday components of urban AOD, rural AOD, urban PM2.5, and rural PM2.5, respectively.
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