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Abstract: Using drones to count wildlife saves time and resources and allows access to difficult or
dangerous areas. We collected drone imagery of breeding waterbirds at colonies in the Okavango
Delta (Botswana) and Lowbidgee floodplain (Australia). We developed a semi-automated counting
method, using machine learning, and compared effectiveness of freeware and payware in identifying
and counting waterbird species (targets) in the Okavango Delta. We tested transferability to the
Australian breeding colony. Our detection accuracy (targets), between the training and test data, was
91% for the Okavango Delta colony and 98% for the Lowbidgee floodplain colony. These estimates
were within 1–5%, whether using freeware or payware for the different colonies. Our semi-automated
method was 26% quicker, including development, and 500% quicker without development, than
manual counting. Drone data of waterbird colonies can be collected quickly, allowing later counting
with minimal disturbance. Our semi-automated methods efficiently provided accurate estimates
of nesting species of waterbirds, even with complex backgrounds. This could be used to track
breeding waterbird populations around the world, indicators of river and wetland health, with
general applicability for monitoring other taxa.
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1. Introduction

There is an increasing need to estimate aggregations of animals around the world, including
turtles, seals and birds [1–6]. Regular monitoring of these concentrations allows decision-makers to
not only track changes to these colonies but also long-term environmental changes, given that large
aggregations of some species can be used to monitor environmental change (e.g., waterbird breeding
colonies) [7,8]. Existing methods to monitor such occurrences include the use of camera traps [9,10],
radar [11], aerial surveys [12,13] and in-situ observers [14,15]. Each of these methods has limitations,
including expense [9], poor accuracy [16] or disturbance to wildlife [14].

Drones, or unmanned aerial vehicles (UAVs), can collect considerable data quickly over large areas.
They provide advantages over in-situ observations, accessing physically inaccessible or dangerous
areas in a relatively small amount of time [17–19]. Drones are also relatively cheap, safe and less
disturbing, improving traditional wildlife surveys [3,18,20,21]. They can, however, disturb some
animal populations, requiring careful consideration of appropriateness when surveying [22]. As a
result of such time and cost savings, drones are increasingly used to monitor bird communities [23–25].

Alongside the increasing availability of large amounts of drone datasets, there is a need for effective
and efficient processing methods. There are two broad options: manual counting of images and
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semi-automated methods. The former can be extremely labour-intensive and consequently expensive,
particularly for large aggregations of wildlife [26], further complicated when more than one species
is counted. Semi-automated methods, including the counting of animals from photographs (e.g.,
camera traps) and drone imagery, are increasingly being developed around the world [27]. These
methods reduce the time required to count and process drone images [28], accelerating the data entry
stage and encouraging the use of drones as scientific tools for management. Such benefits allow for
real-time monitoring and management decisions and could, for example, assist in the targeted delivery
of environmental flows for waterbird breeding events [29].

Generally, semi-automated counting methods are most effective for species where there are strong
contrasts against the backgrounds, particularly when background colours and shapes are consistent [28].
They can distinguish large single species aggregations on relatively simple backgrounds [30–32], up
to sixteen avian species (numbering in the hundreds) on simple single colour backgrounds, such as
oceans [33,34], or single species aggregations of hundreds of thousands on complex backgrounds [3].

Development of flexible, repeatable and efficient methods, using open source software, is important
in ensuring methods are applicable across a range of datasets [35,36]. Further, there are potential cost
implications of processing data, given that some processing software can be expensive (i.e., compulsory
licence fees, called ‘payware’ in this paper) and so are often only accessible to large organisations in
high-income countries [37]. Open source software, or software with optional licence/donation fees
(‘freeware’ in this paper), can overcome such restrictions, providing repeatable processing techniques,
which are accessible to all users.

We aimed to develop a semi-automated method for counting large aggregations of mixed species
of breeding waterbirds, with highly complex vegetation backgrounds. Specifically, we had four
objectives: (1) to develop a transferrable semi-automated counting method with high accuracy (>90%)
for counting mixed species of breeding colonies on complex backgrounds, (2) to compare the time using
a semi-automated compared to a manual method, (3) to identify whether birds were on (incubating)
or off their nests and (4) to ensure methods were reproducible and accessible by comparing two
processing pathways (freeware to payware). Finally, we discussed such an application on other
breeding aggregations of wildlife.

2. Materials and Methods

2.1. Study Areas

We focused on two different waterbird breeding colonies (Figure 1): the Kanana colony in the
Okavango Delta, Botswana, and the Eulimbah colony in the Lowbidgee floodplain, Australia. The
colonies were respectively established in 2018 and 2016 following flooding, in a range of vegetation
types (Table 1).

Table 1. Main waterbird breeding species (targets) in the two waterbird colonies, Kanana colony
(Okavango Delta) and Eulimbah colony (Lowbidgee floodplain), counted using semi-automated
methods, including their size and colour (important for detection), the dominant vegetation on which
they nested (the background) and estimated number of each species in the two colonies.

Colony Waterbird Descriptions Dominant Vegetation
Species Colour Size (cm)

Kanana

African Openbill Anastomus lamelligerus Black 82 Gomoti fig Ficus verrucolosa
African Sacred Ibis Threskiornis aethiopicus White 77 Papyrus Cyperus papyrus

Egret sp. Egretta sp 1 White 64–95
Marabou Stork Leptoptilos crumeniferus Grey 152
Pink-backed Pelican Pelecanus rufescens Grey 128

Yellow-billed Stork Mycteria ibis White 97

Eulimbah
Australian White Ibis Threskiornis molucca White 75 Lignum shrubs Duma florulenta
Straw-necked Ibis Threskiornis spinicollis Grey 70 Common reed Phragmites australis

1 Predominantly Yellow-billed Egrets Egretta intermedia with some Great Egrets Ardea alba.
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Figure 1. Locations’ imagery at two resolutions and an example of the segmentation process of the 
two waterbird colonies: (a) Kanana (Okavango Delta, Botswana) taken using a Phantom 4 Advanced 
at 20 m, and (b) Eulimbah (Lowbidgee floodplain, Australia) using a Phantom 3 Professional at 100 
m. 

2.2. Image collection and Processing 

First, we created polygons surrounding the Kanana colony in September 2018, using Pix4d 
Capture [38], allowing pre-programming of drone flights and reducing drone noise by adjusting the 
flight’s height and speed [24]. We collected imagery using a DJI Phantom 4 Advanced multi-rotor 
drone with the stock standard 20 MP camera (5472 × 3648 image size, lens Field of View (FOV) 84° 24 
mm) over the breeding colony (30–40 ha), at a height of 20 m. We flew the drone at the slowest speed 
(∼2 ms−1), with 20% front and side image overlap, taking still images at evenly spaced intervals, along 
parallel line transects, with the camera positioned at 90° (nadir perspective). Waterbirds mostly 
remained on their nests. Resulting photos were clipped to remove the 20% overlap on each side and 
placed into a 5 × 9 grid (Figure 2, Step 1), with images aligned within the freeware Photoscape X [39]. 
We did not orthorectify the images, treating them as joined images (jpegs), in an arbitrary coordinate 
system, allowing us to provide a freeware processing pathway. 

Figure 1. Locations’ imagery at two resolutions and an example of the segmentation process of the two
waterbird colonies: (a) Kanana (Okavango Delta, Botswana) taken using a Phantom 4 Advanced at 20
m, and (b) Eulimbah (Lowbidgee floodplain, Australia) using a Phantom 3 Professional at 100 m.

2.2. Image Collection and Processing

First, we created polygons surrounding the Kanana colony in September 2018, using Pix4d
Capture [38], allowing pre-programming of drone flights and reducing drone noise by adjusting the
flight’s height and speed [24]. We collected imagery using a DJI Phantom 4 Advanced multi-rotor
drone with the stock standard 20 MP camera (5472 × 3648 image size, lens Field of View (FOV) 84◦

24 mm) over the breeding colony (30–40 ha), at a height of 20 m. We flew the drone at the slowest
speed (∼2 ms−1), with 20% front and side image overlap, taking still images at evenly spaced intervals,
along parallel line transects, with the camera positioned at 90◦ (nadir perspective). Waterbirds mostly
remained on their nests. Resulting photos were clipped to remove the 20% overlap on each side and
placed into a 5 × 9 grid (Figure 2, Step 1), with images aligned within the freeware Photoscape X [39].
We did not orthorectify the images, treating them as joined images (jpegs), in an arbitrary coordinate
system, allowing us to provide a freeware processing pathway.
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Figure 2. The ten steps required to process drone imagery of waterbird colonies using our
semi-automated approach, with descriptions of specific software, tool boxes and functions compared
(large-scale mean shift (LSMS), freeware (F) and payware (P)).

We flew the Eulimbah colony manually in October 2016 at a height of 70 m, launching the drone
from a nearby levee bank to reduce disturbance, given that many birds were moving on and off their
nests. We collected imagery over the colony (15–20 ha) using a DJI Phantom 3 Professional multi-rotor
drone, again with the stock standard camera and an additional neutral density filter (4000 × 3000 image
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size, lens FOV 94◦ 20 mm). We flew at 5–10 ms−1 aiming to acquire imagery with ~70% forward and
lateral overlap, along parallel flight lines at 90◦ [3,25]. We processed the imagery using the commercial
software Pix4DMapper (v4.19,166 Pix4D SA), with a photogrammetry technique called ‘structure from
motion’, which identified points in overlapping images, building a three-dimensional (3D) point cloud
reconstruction of the landscape, and finally, generating a digital surface model and an orthorectified
image mosaic (Figure 2, Step 1). This data was originally collected for another purpose, hence the
differing collection methods between colonies, however this allowed us to test the transferability of the
following methods.

2.3. Semi-Automated Image Analysis

We aimed to develop transferable methods for the two datasets, despite different data collection
methods (drone, height), colonies (locations, species) and image processing pathways. We delineated
targets (waterbird-related) and backgrounds (surrounding areas in the colony). There were five
target species in the Kanana colony (Yellow-billed Storks Mycteria ibis, African Openbills Anastomus
lamelligerus, Marabou Storks Leptoptilos crumeniferus, egrets (predominantly Yellow-billed Egrets Egretta
intermedia and some Great Egrets Ardea alba which could not be separated) and Pink-backed Pelicans
Pelecanus onocrotalus) and two species in the Eulimbah colony (Straw-necked Ibis Threskiornis spinicollis,
Australian White Ibis Threskiornis Molucca). At the Eulimbah colony, we also separately identified
whether the two species were on-nests or off-nests (Straw-necked Ibis only), or if the nest had egg/s or
was just nest material: in total, five target objects at each colony.

We used a supervised learning approach, given the complexities of the mixed species’ aggregations
and varied background vegetation. This included an object-based image analysis [40] and a random
forest machine learning classifier [3]. The approach had five steps: (1) curation of a training and test
dataset (subsets of the entire dataset) for respective modelling and validation, (2) segmentation of
the image data (entire dataset) into objects for modelling, with the extraction of colour, texture and
morphological features of image objects to use as predictors, (3) fitting of a random forest model to
predict different target objects into images across the entire datasets and (4) estimation of target species’
numbers in the two colonies.

2.3.1. Training and Test Datasets

Supervised machine learning required a training dataset to develop the algorithm and a test
dataset for targets (one for each colony), before estimating target species numbers in the colonies.
We therefore manually annotated up to 50 of each target object including birds and nests (where
possible) on the original imagery, incorporating a range of different images and areas of the colony
(Figure 2). We also delineated enough ‘background’ polygons (5-10 in each colony) to include the
range of different backgrounds visible (e.g., water, vegetation, bare ground, sand and mud) to train
the algorithm, allowing for their specification as non-targets, producing point (targets) and polygon
(background) shapefiles (Figure 2, Step 2).

2.3.2. Image Object Segmentation and Predictor Variables

For these two (one for each colony) manually selected datasets of targets and backgrounds,
we combined object-based segmentation principles, grouping similar attributes (texture, shape,
neighbourhood characteristics [41]), with machine learning predictive modelling for semi-automated
detection of birds from drone imagery [40,42]. We compared two image segmentation approaches
on each image set from the Kanana and Eulimbah colonies: orfeo toolbox in QGIS v3.6.3 (freeware)
and eCognition v8 (payware) (Figure S1). We used trial and error for the spatial radius parameters,
starting with the defaults and adjusting based on visual determination of appropriate segment size,
ensuring effective delineation of individual birds/targets. This resulted in 20 for the Kanana colony
and 100 for the Eulimbah colony, reflecting differences in pixel size (smaller pixels and lower height in
the Kanana colony) (Figure 2, Step 3). Each image segment was attributed with its colour properties
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(brightness, mean and standard deviation of the blue, green and red photo bands, Figure 1), geometric
features (e.g., size, ellipse radius, rectangularity, roundness), and textural character (e.g., Gray-Level
Co-Occurrence Matrix (GLCM) contrast, entropy), depending on the software used (Figure 2, Step 3).

After segmentation, the manually created point and polygon files of targets and background were
then intersected with the corresponding segmented image layer (Figure 2, Step 4), separately using the
freeware and payware. As a result, each target object and/or background segment was associated with
its corresponding suite of predictor variables and exported as database files (.dbf) for import into R for
modelling [43].

2.3.3. Machine Learning

We developed our machine learning methods in R on the imagery from the Kanana colony. After
importing the two .dbf files into R (freeware and payware files), we split the manually identified
datasets into training (80%) and testing (20%) groups, using stratified random sampling focused
on background and targets (Figure 2, Step 5). We first developed and tested our modelling and
classification on these two datasets and then fitted the model to the entire image sets to estimate the
total numbers of targets.

On the training dataset, we used the random forest algorithm, a widely used machine learning
approach which deals with correlated or redundant predictor data by creating decision trees, where
each different split is based on choosing from a random subset of the predictor variables [44]. We fitted
separate random forest models to the training dataset of each approach (freeware versus payware),
using the ‘ranger’ package on R v3.4.x [45] (Figure 2, Step 6). First, our classification tree separated
different target and background features. We then fitted a (binomial) regression tree, splitting bird
and non-bird targets into 1 and 0 respectively, based on the probability of identification as a bird.
The random forest classification and regression used 1000 trees, the square root of the number of
predictors as the size of the random subset to choose at each split, and a minimum leaf population
of 1 for classification and 5 for regression [44,45]. The final prediction models used the mode of the
classification trees and the mean of the predictions for our regression trees.

We then tested our prediction models on the test data (remaining 20%), reporting accuracy
(Figure 2, Step 6). To improve classification predictions and better separate between the target and
background classes, we inspected the data using boxplots and 99% quantile statistics and developed
thresholds (Figure 2, Step 7). We changed segments that were likely to have been misclassified, as
either bird or background, to the correct class based on the values of the 99% quantile (Figure 3). We
reported on comparison of these datasets as a standard error matrix-based accuracy assessment.

The classified database files (.dbf), with target and background probabilities corrected, were
reimported into GIS software (using freeware or payware). They were inspected visually, and we noted
there were cases where a single target was divided into two segments. We corrected this by merging
neighbouring segments, with the same classifications, ensuring that targets were only counted once.
We then calculated the new segment area and perimeter and imported the database files (.dbfs) back
into R (Figure 2, Step 8). We reran the prediction models and created boxplots of the areas identified
for each species (Figure 4), which allowed us to detect outliers in area across both datasets (freeware or
payware), that exceeded thresholds as specified by the 99% quantile and which therefore needed to be
reclassified as targets or background (Figure 2, Step 9). We replicated the code and GIS steps above
and tested transferability of our approach to the Eulimbah colony.



Remote Sens. 2020, 12, 1185 7 of 17

Remote Sens. 2020, 12, 1185 7 of 18 

 

 

Figure 3. The boxplot used to identify classification errors between targets and background using 99% 
thresholding for the freeware method at (a) the Kanana colony and (b) the Eulimbah colony, and the 
payware method at (c) Kanana and (d) Eulimbah. At the Eulimbah colony, birds were identified as 
being either on or off their nests. 

Figure 3. The boxplot used to identify classification errors between targets and background using 99%
thresholding for the freeware method at (a) the Kanana colony and (b) the Eulimbah colony, and the
payware method at (c) Kanana and (d) Eulimbah. At the Eulimbah colony, birds were identified as
being either on or off their nests.
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2.3.4. Estimation of Target Populations 

Once classifications were cleaned, we could estimate numbers (i.e., targets) for each species in 
the Kanana colony, summing the semi-automated classifications, given limited clumping in this 
colony (Figure 2, Step 10). In contrast, birds in the Eulimbah colony often nested closely together, 
demanding an additional step for estimation of numbers, as our classification inevitably segmented 
a group of nesting birds as a single target. To estimate individual bird numbers in these clumped 

Figure 4. The boxplot used to identify classification errors between segment areas of targets and
background using 99% thresholding for the freeware method at (a) the Kanana colony and (b) the
Eulimbah colony, and the payware method at (c) Kanana and (d) Eulimbah. At the Eulimbah colony,
birds were identified as being either on or off their nests.

2.3.4. Estimation of Target Populations

Once classifications were cleaned, we could estimate numbers (i.e., targets) for each species
in the Kanana colony, summing the semi-automated classifications, given limited clumping in this
colony (Figure 2, Step 10). In contrast, birds in the Eulimbah colony often nested closely together,
demanding an additional step for estimation of numbers, as our classification inevitably segmented a
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group of nesting birds as a single target. To estimate individual bird numbers in these clumped targets,
we divided all bird classifications by average bird size (~0.08 m2 [46]), before summing to estimate
numbers of individuals of the two species in the colony (rounded to integer) (Figure 2, Step 10). Before
estimating the nest count at Eulimbah, we filtered out other targets (e.g., empty nests) which were less
than ‘bird size’, to remove noise and misclassifications that could not be birds or nests. To compare
semi-automated count estimates across the entire image sets to the ‘true’ count, we also manually
counted all birds in both colonies by separating the imagery into grids and summing grid numbers.
We compared these estimates to our semi-automated counts, including the time taken for both counts.

3. Results

The Kanana colony consisted of 45 stitched images of 7,181,016 pixels (size ∼ 5.5 mm), covering
an area of ~39,500 m2 while the stitched orthomosaic image for the Eulimbah colony had 41,785,728
pixels (size ∼ 3 cm) extending over an area of ~120,000 m2. It took 650 and 250 min for respective total
manual counts of the Kanana and Eulimbah colonies. In comparison, our semi-automated approach
took 480 min for initial development and an additional 60 min to edit the code for the Eulimbah colony.
This was a time savings of about 26%, including the development of this method. Excluding this
development, we estimated that about 90 min was required to work through the ten steps (Figure 2), an
estimated time savings of 250–700% (not including processing time, given this can occur independently
on the computer, and would differ between systems). In the Kanana imagery, we manually counted
4140 birds from five species, while Eulimbah had 3443 birds from two species, including nests totalling
6310 targets (Table 2).

Table 2. Final target counts for both the Kanana and Eulimbah colonies with calculations of manual
versus semi-automated methods.

Colony Target Final Counts Difference %
Freeware Payware Manual Freeware Payware

Kanana

Bird 1 2128 1797
Egret Sp. 2 587 605 578 1.56 4.67

Marabou Stork 156 102 137 13.87 −25.55
African Openbill 725 681 2986 −4.45 3

−17.01 4

Pink-backed Pelican 154 71 59 161.02 20.34
Yellow-billed Stork 336 354 380 −11.58 −6.84

Total targets 4086 3610 4140 −1.30 −12.80

Eulimbah

Bird 1 N/A 1155
Egg 108 287 80 35.00 258.75
Nest 3458 3390 2787 24.08 21.64

Straw-necked Ibis on
nest 2271 2590 3267 −30.49 −20.72

Straw-necked Ibis off
nest 196 91 136 44.12 −33.09

White Ibis on nest 111 99 40 177.50 147.50

Total targets 6144 7612 6310 −2.63 20.63
1 Originally, background segments which based on their probabilities were reassigned to a general ‘bird’ category,
and upon inspection of the error matrix identified as mostly African Openbills. This step was not necessary at
Eulimbah using the freeware method. 2 Predominantly Yellow-billed Egrets Egretta intermedia with some Great
Egrets Ardea alba. 3

−75.72 before assigning the misclassified background segments from the ‘bird’ category as
African Openbills. 4

−77.19 before assigning the misclassified background segments from the ‘bird’ category as
African Openbills.

Using freeware to estimate numbers of breeding birds of each species in the Kanana and Eulimbah
colonies, our initial accuracies were respectively, 88% and 99% (Table 3). In the Kanana colony, African
Openbills had the lowest detection accuracy, and were likely contributing to the initial low-accuracy
measure. Once we applied our probability threshold method (Figure 3) and inspected the error matrix
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(Table 4), we identified that many nesting African Openbills were misclassified as background, because
of their dark plumage and its similarity to the background. We corrected this misclassification by
delineating background as any area with a probability (bird classification) of <0.3 or >1, (Figure 4a),
producing a recalculated accuracy of 99% (Table 3). For the Eulimbah colony, it was not necessary to
separate birds from backgrounds with the probability threshold method, and we only corrected for
area (>0.5 as background, Figure 4b), producing a final bird detection accuracy of 98% (Table 5). Finally,
after these corrections, our estimated counts using freeware were within 2% and 3% of respective
manual counts for the Kanana and Eulimbah colonies (Table 2).

Table 3. Results for the freeware and payware used in the development of semi-automated counting
methods for the Kanana and Eulimbah colonies, showing the initial, secondary (after correcting for
probabilities) and final model accuracies (after correcting for area).

Kanana Freeware Initial Secondary Final

Target versus Background Accuracy 0.99 0.99 0.91
Between Target Detection Accuracy 0.88 0.88 0.99

Kanana Payware

Target versus Background Accuracy 0.99 0.99 0.90
Between Target Detection Accuracy 0.57 0.82 0.99

Eulimbah Freeware

Target versus Background Accuracy 0.98 N/A 1 0.98
Between Target Detection Accuracy 0.99 N/A 0.98

Eulimbah Payware

Target versus Background Accuracy 0.99 0.99 0.93
Between Target Detection Accuracy 0.88 0.93 0.98

1 It was not necessary to correct for bird probabilities at Eulimbah using the freeware method, hence the N/A values
in the secondary model accuracies.

Table 4. Results for the freeware and payware used in development of semi-automated methods for
the Kanana colony, showing the secondary error matrix after correcting for probabilities, and the final
error matrix after correcting for area, where rows are the test data and columns are the predicted data.

Kanana Freeware

Background Bird Egret Sp. Marabou
Stork

African
Openbill

Pink-Backed
Pelican

Yellow-Billed
Stork

Background 3310 14 0 0 0 0 0
Egret Sp. a 0 0 11 0 0 0 0

Marabou Stork 0 6 0 5 0 0 0
African Openbill 14 11 0 0 7 0 0

Pink-backed Pelican 0 0 0 0 0 7 0
Yellow-billed Stork 0 1 2 0 0 1 10

Background Bird Egret Sp. Marabou
Stork

African
Openbill

Pink-Backed
Pelican

Yellow-Billed
Stork

Background 2 10 1 0 0 0 0
Egret Sp. a 0 0 50 0 0 0 2

Marabou Stork 0 4 0 49 0 0 0
African Openbill 3 12 0 0 126 0 0

Pink-backed Pelican 1 0 1 0 0 28 0
Yellow-billed Stork 0 0 2 0 0 0 66
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Table 4. Cont.

Kanana Payware

Background Bird Egret Sp. Marabou
Stork

African
Openbill

Pink-Backed
Pelican

Yellow-Billed
Stork

Background 3310 14 0 0 0 0 0
Egret Sp. a 0 0 11 0 0 0 0

Marabou Stork 0 6 0 5 0 0 0
African Openbill 14 11 0 0 7 0 0

Pink-backed Pelican 0 0 0 0 0 7 0
Yellow-billed Stork 0 1 2 0 0 1 10

Background Bird Egret Sp. Marabou
Stork

African
Openbill

Pink-Backed
Pelican

Yellow-Billed
Stork

Background 2 10 1 0 0 0 0
Egret Sp. a 0 0 50 0 0 0 2

Marabou Stork 0 4 0 49 0 0 0
African Openbill 3 12 0 0 126 0 0

Pink-backed Pelican 1 0 1 0 0 28 0
Yellow-billed Stork 0 0 2 0 0 0 66

a Predominantly Yellow-billed Egrets Egretta intermedia with some Great Egrets Ardea alba.

Table 5. Results for the freeware and payware used in development of semi-automated methods for the
Eulimbah colony, showing the secondary error matrix after correcting for probabilities (not necessary
at Eulimbah using the freeware method), and the final error matrix after correcting for area, where
rows are the test data and columns are the predicted data.

Eulimbah Freeware

Background Bird 1 Egg Nest
Straw-Necked Ibis Straw-Necked Ibis White Ibis

On Nest Off Nest On Nest

Background 366 N/A 0 1 0 0 0
Egg 2 N/A 19 3 0 0 0
Nest 2 N/A 0 194 1 0 0

Straw-necked Ibis on nest 4 N/A 0 3 162 0 0
Straw-necked Ibis off nest 0 N/A 0 0 1 21 0

White Ibis on nest 0 N/A 0 1 0 0 19

Eulimbah Payware

Background Bird Egg Nest
Straw-Necked Ibis Straw-Necked Ibis White Ibis

On nest Off nest On nest

Background 1243 0 0 2 2 0 0
Egg 0 1 3 1 0 0 0
Nest 4 1 0 31 0 0 1

Straw-necked Ibis on nest 1 1 0 2 28 1 0
Straw-necked Ibis off nest 1 1 0 0 0 2 0

White Ibis on nest 0 0 0 0 0 0 4

Background Bird Egg Nest
Straw-Necked Ibis Straw-Necked Ibis White Ibis

On nest Off nest On nest

Background 1 2 0 2 0 0 0
Egg 1 0 22 1 0 0 0
Nest 0 0 0 31 0 0 0

Straw-necked Ibis on nest 3 2 0 0 111 0 0
Straw-necked Ibis off nest 0 3 0 0 0 19 0

White Ibis on nest 0 0 0 1 0 0 19
1 It was not necessary to correct for bird probabilities at Eulimbah using the freeware method, hence the N/A values.

Using payware, our initial bird detection accuracies for the Kanana and Eulimbah colonies
respectively, were 57% and 88%. After re-classifying bird and backgrounds, based on the probability
boxplot (<0.1 as background and >0.2 as birds for Kanana and <0.5 as background and >0.5 as birds
for Eulimbah), we improved the accuracy to 85% and 93%. We then re-classified using our area
threshold (>1 and <0.3 as background for Kanana and <0.01 and >0.8 as background for Eulimbah).
This improved respective accuracies to 99% and 99% (Tables 3 and 4). Finally, after these corrections,
our estimated counts using payware were within 13% and 21% of respective manual counts for the
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Kanana and Eulimbah colonies (Table 2). Using the freeware method provided a more accurate overall
count compared to the total manual counts than using payware (Table 2).

The different steps (Figure 2) had an associated code within R for freeware and payware, allowing
modification and transfer from the Kanana colony where it was developed to the Eulimbah colony.
Alteration in the code between colonies is firstly in the correct usage of target object names (which
naturally differ based on the species or object being counted, Figure 2, Step 5). Secondly, thresholds
used to differentiate between and re-classify targets will differ based on the segment statistic used and
the target objects’ physical attributes (e.g., area or colour, Figure 2, Step 9). The major alteration to code
required when transferring between freeware and payware is assigning the correct predictor variables
to the random forest modelling, based on the output of the image statistics of each segment (Figure 2,
Step 3). All code/data required are available for download (see Table S1).

4. Discussion

Methods which can rapidly collect data over large areas and process these data quickly are
important for understanding systems and in providing timely data analyses to managers and the
public. Drones are becoming increasingly powerful tools for the collection of such data on a range of
organisms [25,47,48], given that they can capture imagery over inaccessible and sometimes dangerous
areas. This is only half the process: the imagery needs to be analysed to provide estimates of
organisms. Manual counting is the traditional approach but, it is slow and laborious and may be prone
to error. New and improved methods are required to process images quickly and efficiently. Our
semi-automated system of counting breeding waterbirds on nests on highly variable backgrounds
was effective and efficient. Importantly, we successfully applied the methodology, developed on one
colony with different species in a different environment (on another continent) to another colony.
This transferability is particularly useful. Significantly, payware and freeware methods were equally
effective and accurate, providing global opportunities where resourcing is limited. Finally, there are
opportunities to apply this approach to other organisms, amassing in large aggregations.

Using our approach, waterbird colonies around the world could be quickly and accurately counted
using drone data. There are many active research teams, often providing information for management,
surveying and estimating sizes of breeding colonies of waterbirds, including colonies in Australia [49],
Southern India [50] and Poland [51]. But our methodology is also transferable to other aggregations
of species, such as the Valdez elephant seal Mirounga leonine colony in Patagonia [52] or macaques
Macaca fuscata in tourist areas in Japan [53]. Transferability requires some key idiosyncratic steps in
image processing, data training and modelling. These include either the initial clipping of overlap
in drone imagery or the creation of orthomosaics, then the development of a training model for
classifying species (Figure 2, Step 2) and finally, testing the model using derived thresholds (Figure 2,
Step 9), discriminating between animals and backgrounds. Such steps can be applied to drone imagery
captured in different environments, making the use of citizen science drone-collected imagery a feasible
data source [54].

Every species of waterbird or other organism will differ in some way from the background, be it in
size, colour or a combination of multiple such image statistics. To edit and implement our methodology
for any waterbird colony around the world, after initial image processing, the manually annotated
dataset must be created to train the model on target species. Subsequently, edits must be made to the R
code aligning target names and the image statistics to be used as predictors, which can then be used to
estimate thresholds distinguishing species from backgrounds. Extending to other organisms can take a
similar approach, with final modelling dependant on the creation of the initial manually annotated
dataset classifying the organisms and background. While each study will have its own requirements
for the data, we aimed to develop a methodology that would produce a maximum of 10% disparity
between semi-automated and manual counts, which with more time invested could be further reduced.

Consideration of drone height is an important first step when collecting imagery for use with this
method. In general, a lower flight height and a better camera will produce images of a larger pixel
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size, however this needs to be balanced against disturbance to the species of interest. Furthermore, a
lower drone height equates to less area covered in the imagery within the span of one battery, and so
the number of available batteries and survey area therefore need to be considered. When surveying
a single species that contrasts a relatively simple background, less image detail will be required to
differentiate between the target and background. Conversely, the more species to differentiate between,
particularly if on a varied background such as the colony at Kanana, the more detail required in the
imagery to obtain accurate estimates. Drone height requirements will therefore be unique to study
location, area, species and aims.

The most challenging aspect of our methodology was identifying and dealing with misclassification
errors. Ultimately, inaccuracy occurs and needs to be reported. Identifying the source of errors is
critical and there are two ways to improve the final estimates: increasing sample sizes of training data
and identifying attributes that better discriminate between objects and backgrounds. Increasing sample
sizes of training datasets likely improves models. This may be particularly relevant where colonies are
repeatedly surveyed (i.e., multiple breeding events over time), as the greater initial time investment in
training the model may reduce the time required for following surveys. We only used ~50 individual
objects for each species’ grouping, which may have reduced the power of our models. For example,
for the pink-backed pelicans in the Kanana imagery, we only had 32 training points (as they were
relatively rare in the colony) and so increasing sample size in future years or from other sources would
probably improve the model and classification. Increased sample sizes are particularly important for
discriminating between highly similar target objects, improving the model’s discriminatory capacity to
identify a unique attribute or set of attributes for each object.

Even with reasonable sample sizes, there may be confusion among species and the background,
contributing to errors. For our Kanana colony, the dark plumage of the African Openbills was often
confused with dark patches of background, such as water. Also, similarly sized, shaped and coloured
egret species could be confused with Yellow-billed Storks, contributing to inaccuracies (Table 2). As
well as size, there could be other sources of discrimination between targets (e.g., pigmentation means
or deviations) which could be incorporated in modelling and identified from boxplots (Figure 2, Step
9). Our script can easily be altered, to incorporate such a change. Improvements in image collection
such as the use of a multi-spectral sensor (as opposed to the combined standard Red Green Blue sensor
used here) could also improve modelling and separation of backgrounds from birds. Further, software
improvements could also improve outcomes. Inevitably, more data, repeated measurements and time
invested will improve effectiveness, accuracy and efficiency, in the equally performing freeware and
payware software (Table 2).

There were considerable time efficiency benefits in using our semi-automated approach. We
differentiated among five species in 26% less time than when we used manual counting, with time
savings likely to improve with repeated counts due to user experience. Further, such manual counting
was probably also prone to some error, as observers tire or inadequately discriminate. Increasingly,
machine learning approaches are improving and becoming more accurate than manual methods in a
range of disciplines (e.g., medicine, identification of melanomas [55] and astronomy, identification of
chorus elements [56]). There is no reason why our approach, and more broadly, approaches of counting
animals using drone imagery and machine learning, will not become increasingly more accurate and
more efficient with growing amounts of data, with wide applications. Such savings in time would
allow for counts and reports to be rapidly provided to environmental managers, providing information
for real-time management decisions, where field data may not be sufficient [29].

Drone imagery can also provide baseline data of environmental importance. Although the Kanana
colony is one of the biggest and most frequently used breeding grounds of waterbirds in the Okavango
Delta, a United Nations Educational Scientific and Cultural Organization (UNESCO) World Heritage
Site, there are few quantitative data on the size or composition of this breeding colony. Another
six colonies in the Okavango Delta similarly have little information. Some of these are difficult and
dangerous (crocodiles, hippopotamuses, elephants) to approach on foot and so drones provide an
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excellent data collection method. The importance of these data could grow when combined with
increasing knowledge of the link between flooding and waterbird breeding. Similarly, the Eulimbah
colony is one of the only breeding colonies of up to 50,000 breeding pairs in the Lowbidgee floodplain,
which also includes other breeding species, such as cormorants, herons and spoonbills. These data are
also increasing in their value in determining historical impacts of river regulation and management on
major wetlands [57,58], as well as guiding management of flows to improve waterbird breeding and
wetland condition [59,60].

The use of drones and the processing of imagery for ecological applications will increase, given
their advantages. Processing methods also continue to improve to capitalise on this technology,
increasing our understanding and ability to manage complex ecosystems, not only for waterbird
colonies but other aggregations of wildlife. Eventually, software informed by training data could be
installed on drones, allowing real-time processing and estimation of numbers of birds or other target
organisms. Until this happens, the semi-automated methods described here provide considerable
promise and opportunity around the world, with the added values of efficiency, free software options
and opportunity for improvements in accuracy.

5. Conclusions

We developed a semi-automated machine learning counting method, using both freeware and
payware, that was transferable between waterbird colonies on different continents. Our detection
accuracy (targets), between the training and test data, was 91% for the Okavango Delta colony and
98% for the Lowbidgee floodplain colony. These estimates were within 1–5%, whether using freeware
or payware for the different colonies. Our semi-automated method was 26% quicker, including
development, and 500% quicker without development than manual counting. Using drones and
semi-automated counting techniques therefore saves time and resources, whilst allowing access to
difficult or dangerous areas. As a result, the use of drones as scientific tools will increase, particularly
to survey wildlife aggregations. Importantly, their low cost and the option of using freeware provides
research opportunities globally, including where resourcing is limited. We predict that these benefits will
only increase as battery life is extended and a greater range of drone software options become available.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/7/1185/s1,
Figure S1 and Table S1 can be found in the Supplementary Materials section.

Author Contributions: Conceptualization, R.J.F., M.B.L. and R.T.K.; Data curation, R.J.F. and M.B.L.; Formal
analysis, R.J.F. and M.B.L.; Funding acquisition, R.J.F., K.J.B. and R.T.K.; Investigation, R.J.F. and M.B.L.;
Methodology, R.J.F. and M.B.L.; Project administration, K.J.B.; Software, R.J.F. and M.B.L.; Supervision, K.J.B. and
R.T.K.; Writing—original draft, R.J.F.; Writing—review and editing, R.J.F., M.B.L., K.J.B. and R.T.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received financial support from Elephants without Borders, Taronga Conservation Society,
the Australian Commonwealth Environmental Water Office, the NSW Department of Primary Industries, and the
University of New South Wales Sydney.

Acknowledgments: We thank the New South Wales Department of Primary Industries for providing access to the
Eulimbah property, and similarly we thank Ker & Downey Kanana Camp for access to the Kanana colony. We
acknowledge Max Phillips for his role in flying the drone at the Eulimbah colony. This study was conducted under
the guidelines of the UNSW Animal Care and Ethics, permit 13/3B. We also thank the Government of Botswana
for access to research permits EWT 8/36/4 XXIV (179), and drone permit RPA (H) 211.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Arendt, M.D.; Segars, A.L.; Byrd, J.I.; Boynton, J.; Whitaker, J.D.; Parker, L.; Owens, D.W.; Blanvillain, G.;
Quattro, J.M.; Roberts, M. Distributional patterns of adult male loggerhead sea turtles (Caretta caretta) in the
vicinity of Cape Canaveral, Florida, USA during and after a major annual breeding aggregation. Mar. Boil.
2011, 159, 101–112. [CrossRef]

http://www.mdpi.com/2072-4292/12/7/1185/s1
http://dx.doi.org/10.1007/s00227-011-1793-5


Remote Sens. 2020, 12, 1185 15 of 17

2. Pomeroy, P.; Twiss, S.; Duck, C. Expansion of a grey seal (Halichoerus grypus) breeding colony: Changes in
pupping site use at the Isle of May, Scotland. J. Zool. 2000, 250, 1–12. [CrossRef]

3. Lyons, M.B.; Brandis, K.J.; Murray, N.J.; Wilshire, J.H.; McCann, J.A.; Kingsford, R.; Callaghan, C.T. Monitoring
large and complex wildlife aggregations with drones. Methods Ecol. Evol. 2019, 10, 1024–1035. [CrossRef]

4. Wakefield, E.D.; Owen, E.; Baer, J.; Carroll, M.; Daunt, F.; Dodd, S.G.; Green, J.A.; Guilford, T.; Mavor, R.A.;
Miller, P.; et al. Breeding density, fine-scale tracking, and large-scale modeling reveal the regional distribution
of four seabird species. Ecol. Appl. 2017, 27, 2074–2091. [CrossRef] [PubMed]

5. Bino, G.; Steinfeld, C.; Kingsford, R. Maximizing colonial waterbirds’ breeding events using identified
ecological thresholds and environmental flow management. Ecol. Appl. 2014, 24, 142–157. [CrossRef]
[PubMed]

6. Chambers, L.E.; Hughes, L.; Weston, M.A. Climate change and its impact on Australia’s avifauna. Emu-Austral
Ornithol 2005, 105, 1–20. [CrossRef]

7. Frederick, P.; Ogden, J.C. Monitoring wetland ecosystems using avian populations: Seventy years of surveys
in the Everglades. In Monitoring Ecosystems: Interdisciplinary Approaches for Evaluating Ecoregional Initiatives;
Island Press: Washington, DC, USA, 2003; pp. 321–350.

8. Ogden, J.C.; Baldwin, J.D.; Bass, O.L.; Browder, J.A.; Cook, M.I.; Frederick, P.C.; Frezza, P.E.; Galvez, R.A.;
Hodgson, A.B.; Meyer, K.D.; et al. Waterbirds as indicators of ecosystem health in the coastal marine habitats
of southern Florida: 1. Selection and justification for a suite of indicator species. Ecol. Indic. 2014, 44, 148–163.
[CrossRef]

9. Brandis, K.J.; Koeltzow, N.; Ryall, S.; Ramp, D. Assessing the use of camera traps to measure reproductive
success in Straw-necked Ibis breeding colonies. Aust. Field Ornithol. 2014, 31, 99.

10. Znidersic, E. Camera Traps are an Effective Tool for Monitoring Lewin’s Rail (Lewinia pectoralis brachipus).
Waterbirds 2017, 40, 417–422. [CrossRef]

11. Loots, S. Evaluation of Radar and Cameras as Tools for Automating the Monitoring of Waterbirds at Industrial
Sites. Available online: https://era.library.ualberta.ca/items/e7e66493-9f87-4980-b268-fecae42c9c33 (accessed
on 6 March 2020).

12. Kingsford, R.; Porter, J.L. Monitoring waterbird populations with aerial surveys—What have we learnt?
Wildl. Res. 2009, 36, 29–40. [CrossRef]

13. Rodgers, J.A.; Kubilis, P.S.; Nesbitt, S.A. Accuracy of Aerial Surveys of Waterbird Colonies. Waterbirds 2005,
28, 230–237. [CrossRef]

14. Carney, K.M.; Sydeman, W.J. A Review of Human Disturbance Effects on Nesting Colonial Waterbirds.
Waterbirds 1999, 22, 68. [CrossRef]

15. Green, M.C.; Luent, M.C.; Michot, T.C.; Jeske, C.W.; Leberg, P.L. Comparison and Assessment of Aerial and
Ground Estimates of Waterbird Colonies. J. Wildl. Manag. 2008, 72, 697–706. [CrossRef]

16. Kingsford, R. Aerial survey of waterbirds on wetlands as a measure of river and floodplain health. Freshw.
Boil. 1999, 41, 425–438. [CrossRef]

17. Schofield, G.; Katselidis, K.; Lilley, M.; Reina, R.D.; Hays, G.C. Detecting elusive aspects of wildlife ecology
using drones: New insights on the mating dynamics and operational sex ratios of sea turtles. Funct. Ecol.
2017, 31, 2310–2319. [CrossRef]

18. Koh, L.P.; Wich, S. Dawn of Drone Ecology: Low-Cost Autonomous Aerial Vehicles for Conservation. Trop.
Conserv. Sci. 2012, 5, 121–132. [CrossRef]

19. Inman, V.L.; Kingsford, R.T.; Chase, M.J.; Leggett, K.E.A. Drone-based effective counting and ageing of
hippopotamus (Hippopotamus amphibius) in the Okavango Delta in Botswana. PLoS ONE 2019, 14, e0219652.
[CrossRef]

20. Ezat, M.A.; Fritsch, C.; Downs, C.T. Use of an unmanned aerial vehicle (drone) to survey Nile crocodile
populations: A case study at Lake Nyamithi, Ndumo game reserve, South Africa. Boil. Conserv. 2018, 223,
76–81. [CrossRef]

21. Brody, S. Unmanned: Investigating the Use of Drones with Marine Mammals. Available online: https:
//escholarship.org/uc/item/0rw1p3tq (accessed on 6 March 2020).

22. Bennitt, E.; Bartlam-Brooks, H.; Hubel, T.Y.; Wilson, A.M. Terrestrial mammalian wildlife responses to
Unmanned Aerial Systems approaches. Sci. Rep. 2019, 9, 2142. [CrossRef]

23. Hodgson, J.C.; Baylis, S.; Mott, R.; Herrod, A.; Clarke, R.H. Precision wildlife monitoring using unmanned
aerial vehicles. Sci. Rep. 2016, 6, 22574. [CrossRef]

http://dx.doi.org/10.1111/j.1469-7998.2000.tb00573.x
http://dx.doi.org/10.1111/2041-210X.13194
http://dx.doi.org/10.1002/eap.1591
http://www.ncbi.nlm.nih.gov/pubmed/28653410
http://dx.doi.org/10.1890/13-0202.1
http://www.ncbi.nlm.nih.gov/pubmed/24640540
http://dx.doi.org/10.1071/MU04033
http://dx.doi.org/10.1016/j.ecolind.2014.03.007
http://dx.doi.org/10.1675/063.040.0414
https://era.library.ualberta.ca/items/e7e66493-9f87-4980-b268-fecae42c9c33
http://dx.doi.org/10.1071/WR08034
http://dx.doi.org/10.1675/1524-4695(2005)028[0230:AOASOW]2.0.CO;2
http://dx.doi.org/10.2307/1521995
http://dx.doi.org/10.2193/2006-391
http://dx.doi.org/10.1046/j.1365-2427.1999.00440.x
http://dx.doi.org/10.1111/1365-2435.12930
http://dx.doi.org/10.1177/194008291200500202
http://dx.doi.org/10.1371/journal.pone.0219652
http://dx.doi.org/10.1016/j.biocon.2018.04.032
https://escholarship.org/uc/item/0rw1p3tq
https://escholarship.org/uc/item/0rw1p3tq
http://dx.doi.org/10.1038/s41598-019-38610-x
http://dx.doi.org/10.1038/srep22574


Remote Sens. 2020, 12, 1185 16 of 17

24. McEvoy, J.; Hall, G.P.; McDonald, P.G. Evaluation of unmanned aerial vehicle shape, flight path and camera
type for waterfowl surveys: Disturbance effects and species recognition. PeerJ 2016, 4, e1831. [CrossRef]
[PubMed]

25. Lyons, M.B.; Brandis, K.J.; Callaghan, C.; McCann, J.; Mills, C.; Ryall, S.; Kingsford, R. Bird interactions with
drones, from individuals to large colonies. Aust. Field Ornithol. 2018, 35, 51–56. [CrossRef]

26. Callaghan, C.T.; Brandis, K.J.; Lyons, M.B.; Ryall, S.; Kingsford, R. A comment on the limitations of UAVS in
wildlife research—The example of colonial nesting waterbirds. J. Avian Boil. 2018, 49, e01825. [CrossRef]

27. Tack, J.P.; West, B.S.; McGowan, C.P.; Ditchkoff, S.S.; Reeves, S.J.; Keever, A.C.; Grand, J.B. AnimalFinder:
A semi-automated system for animal detection in time-lapse camera trap images. Ecol. Inform. 2016, 36,
145–151. [CrossRef]

28. Chabot, D.; Francis, C.M. Computer-automated bird detection and counts in high-resolution aerial images:
A review. J. Field Ornithol. 2016, 87, 343–359. [CrossRef]

29. Brandis, K.J.; Kingsford, R.; Ren, S.; Ramp, D. Crisis Water Management and Ibis Breeding at Narran Lakes
in Arid Australia. Environ. Manag. 2011, 48, 489–498. [CrossRef] [PubMed]

30. Descamps, S.; Béchet, A.; Descombes, X.; Arnaud, A.; Zerubia, J. An automatic counter for aerial images of
aggregations of large birds. Bird Study 2011, 58, 302–308. [CrossRef]

31. Liu, C.-C.; Chen, Y.-H.; Wen, H.-L. Supporting the annual international black-faced spoonbill census with a
low-cost unmanned aerial vehicle. Ecol. Inform. 2015, 30, 170–178. [CrossRef]

32. McNeill, S.; Barton, K.; Lyver, P.; Pairman, D. Semi-automated penguin counting from digital aerial
photographs. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium,
Vancouver, BC, Canada, 24–29 July 2011; pp. 4312–4315.

33. Groom, G.; Petersen, I.; Fox, T. Sea bird distribution data with object based mapping of high spatial resolution
image data. In Challenges for Earth Observation-Scientific, Technical and Commercial. Proceedings of the Remote
Sensing and Photogrammetry Society Annual Conference; Groom, G., Petersen, I., Fox, T., Eds.; Available online:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1477-9730.2007.00455.x (accessed on 6 March 2020).

34. Groom, G.; Stjernholm, M.; Nielsen, R.D.; Fleetwood, A.; Petersen, I.K. Remote sensing image data and
automated analysis to describe marine bird distributions and abundances. Ecol. Inform. 2013, 14, 2–8.
[CrossRef]

35. Teucher, A.; Hazlitt, S. Using principles of Open Science for transparent, repeatable State of Environment
reporting. Available online: https://cedar.wwu.edu/ssec/2016ssec/policy_and_management/10/ (accessed on
6 March 2020).

36. Lowndes, J.S.S.; Best, B.D.; Scarborough, C.; Afflerbach, J.C.; Frazier, M.; O’Hara, C.C.; Jiang, N.; Halpern, B.S.
Our path to better science in less time using open data science tools. Nat. Ecol. Evol. 2017, 1, 160. [CrossRef]

37. López, R.; Toman, M.A. Economic Development and Environmental Sustainability; Oxford University Press
(OUP): Oxford, UK, 2006.

38. Pix4d SA. Pix4Dcapture. 2019. Available online: https://www.pix4d.com/product/pix4dcapture (accessed on
6 March 2020).

39. Mooii Tech. Photoscape X. 2019. Available online: http://x.photoscape.org/ (accessed on 6 March 2020).
40. Chabot, D.; Dillon, C.; Francis, C.M. An approach for using off-the-shelf object-based image analysis software

to detect and count birds in large volumes of aerial imagery. Avian Conserv. Ecol. 2018, 13, 15. [CrossRef]
41. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65,

2–16. [CrossRef]
42. Hodgson, J.C.; Mott, R.; Baylis, S.; Pham, T.; Wotherspoon, S.; Kilpatrick, A.D.; Segaran, R.R.; Reid, I.D.;

Terauds, A.; Koh, L.P. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol.
2018, 9, 1160–1167. [CrossRef]

43. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing: Vienna, Austria. Available online: https://www.gbif.org/zh/tool/81287/r-a-language-and-
environment-for-statistical-computing (accessed on 6 March 2020).

44. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
45. Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in

C++ and R. J. Stat. Softw. 2017, 77, 1–17. [CrossRef]
46. Menkhorst, P.; Rogers, D.; Clarke, R.; Davies, J.; Marsack, P.; Franklin, K. The Australian bird guide: Csiro

Publishing. Available online: https://www.publish.csiro.au/book/6520/ (accessed on 6 March 2020).

http://dx.doi.org/10.7717/peerj.1831
http://www.ncbi.nlm.nih.gov/pubmed/27020132
http://dx.doi.org/10.20938/afo35051056
http://dx.doi.org/10.1111/jav.01825
http://dx.doi.org/10.1016/j.ecoinf.2016.11.003
http://dx.doi.org/10.1111/jofo.12171
http://dx.doi.org/10.1007/s00267-011-9705-5
http://www.ncbi.nlm.nih.gov/pubmed/21667315
http://dx.doi.org/10.1080/00063657.2011.588195
http://dx.doi.org/10.1016/j.ecoinf.2015.10.008
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1477-9730.2007.00455.x
http://dx.doi.org/10.1016/j.ecoinf.2012.12.001
https://cedar.wwu.edu/ssec/2016ssec/policy_and_management/10/
http://dx.doi.org/10.1038/s41559-017-0160
https://www.pix4d.com/product/pix4dcapture
http://x.photoscape.org/
http://dx.doi.org/10.5751/ACE-01205-130115
http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004
http://dx.doi.org/10.1111/2041-210X.12974
https://www.gbif.org/zh/tool/81287/r-a-language-and-environment-for-statistical-computing
https://www.gbif.org/zh/tool/81287/r-a-language-and-environment-for-statistical-computing
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.18637/jss.v077.i01
https://www.publish.csiro.au/book/6520/


Remote Sens. 2020, 12, 1185 17 of 17

47. Rees, A.F.; Avens, L.; Ballorain, K.; Bevan, E.; Broderick, A.C.; Carthy, R.; Christianen, M.; Duclos, G.;
Heithaus; Johnston, D.W.; et al. The potential of unmanned aerial systems for sea turtle research and
conservation: A review and future directions. Endanger. Species Res. 2018, 35, 81–100. [CrossRef]

48. Pirotta, V.; Smith, A.; Ostrowski, M.; Russell, D.; Jonsen, I.D.; Grech, A.; Harcourt, R. An Economical
Custom-Built Drone for Assessing Whale Health. Front. Mar. Sci. 2017, 4, 425. [CrossRef]

49. Arthur, A.D.; Reid, J.R.W.; Kingsford, R.; McGinness, H.; Ward, K.A.; Harper, M.J. Breeding Flow Thresholds
of Colonial Breeding Waterbirds in the Murray-Darling Basin, Australia. Wetlands 2012, 32, 257–265.
[CrossRef]

50. Narayanan, S.P.; Vijayan, L. Status of the colonial breeding waterbirds in Kumarakom Heronry in Kerala,
Southern India. Podoces 2007, 2, 22–29.
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