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Abstract: Monitoring cotton status during the growing season is critical in increasing production
efficiency. The water status in cotton is a key factor for yield and cotton quality. Stem water
potential (SWP) is a precise indicator for assessing cotton water status. Satellite remote sensing is an
effective approach for monitoring cotton growth at a large scale. The aim of this study is to estimate
cotton water stress at a high temporal frequency and at a large scale. In this study, we measured
midday SWP samples according to the acquisition dates of Sentinel-2 images and used them to build
linear-regression-based and machine-learning-based models to estimate cotton water stress during
the growing season (June to August, 2018). For the linear-regression-based method, we estimated
SWP based on different Sentinel-2 spectral bands and vegetation indices, where the normalized
difference index 45 (NDI45) achieved the best performance (R2 = 0.6269; RMSE = 3.6802 (-1*swp
(bars))). For the machine-learning-based method, we used random forest regression to estimate
SWP and received even better results (R2 = 0.6709; RMSE = 3.3742 (-1*swp (bars))). To find the
best selection of input variables for the machine-learning-based approach, we tried three different
data input datasets, including (1) 9 original spectral bands (e.g., blue, green, red, red edge, near
infrared (NIR), and shortwave infrared (SWIR)), (2) 21 vegetation indices, and (3) a combination
of original Sentinel-2 spectral bands and vegetation indices. The highest accuracy was achieved
when only the original spectral bands were used. We also found the SWIR and red edge band were
the most important spectral bands, and the vegetation indices based on red edge and NIR bands
were particularly helpful. Finally, we applied the best approach for the linear-regression-based and
the machine-learning-based methods to generate cotton water potential maps at a large scale and
high temporal frequency. Results suggests that the methods developed here has the potential for
continuous monitoring of SWP at large scales and the machine-learning-based method is preferred.

Keywords: cotton stem water potential; linear regression; vegetation indices; machine learning;
random forest; Sentinel-2

1. Introduction

The decrease of regional precipitation and the increase in evapotranspiration driven by climate
change will result in increasing drought in the near future [1–4]. More intense and longer droughts
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have devastating impacts on the environment [3]. For agriculture, drought can endanger food security
which can have critical effects on the economy, geopolitics, and society [5]. Drought can also negatively
affect agriculture production especially in arid and semiarid regions [6]. Therefore, detecting crop
water stress is of vital importance to improve agricultural quality and productivity.

Cotton is cultivated in arid and semiarid regions and is the most important fiber crop in the
world [7]. Cotton is susceptible to water stress in all growth stages, particularly during the flowering
and boll development stages [8]. Moreover, water deficit is an important factor limiting growth and
development in cotton, including plant height, leaf and root size, as well as economic yield and
fiber quality [8]. To better understand the cotton’s response and adaption to water stress, continuous
monitoring of cotton water status in large areas would be essential [9].

Traditional methods for water stress assessment rely on measuring temperature [10], physiological
response [11] and soil moisture [12]. The crop water stress index (CWSI) is calculated by canopy
temperature and has been widely used to quantify crop water stress [13,14], though different dates
may show different correlations [15]. The modified crop water stress index (MCWSI) has mitigated
the problem of temporal variability [16]. The comprehensive stress indicator (CSI), which is based on
leaf temperature and relative humidity, is also useful for water status assessing [17]. However, these
approaches are unsuitable for farmers to adopt due to the difficulty in making them fully automated
and operational.

Recently, some studies have explored the use of vegetation indices (VIs) for automated monitoring
of crop water status and optimizing irrigation schedule at the canopy and landscape scales [18–23].
These physical-based approaches have been used to estimate crop water status at the field scale
for wheat [20], cotton [24], maize [25], and vineyard [26,27] These approaches can effectively avoid
irreversible damage and yield loss in the estimation of crop water status. However, the response to
water stress is crop specific and varies for different kinds of vegetation indices. It is still unknown
which kinds of vegetation indices have the best performance on cotton water stress.

Though the physical-based approaches can provide direct insights on the relationship between the
satellite observation and the response to water stress, they rely heavily on the predefined assumption
of the relationship, such as a linear model. Moreover, the physical-based approaches usually can only
take one or a few variables as inputs for their models and will be overwhelmed easily given the high
dimensions of satellite data, particularly when the physical relationship is nonlinear. Therefore, more
advanced machine learning methods, such as neural networks and random forest, are being used
widely for estimating physical parameters when there are sufficient training data available [28,29].
Therefore, it is interesting to explore how well we can use a machine-learning-based approach (it is
better than physical-based approach or worse?), such as random forest, for estimating crop water
stress, and which combinations of variables can provide the best results.

Remote sensed imagery has long been recognized as a direct measure of plant water stress
estimation [30–32]. Infrared thermal imaging collected by Landsat or MODIS (onboard Terra and
Aqua) offers the potential of acquiring the surface temperature from which the water potential can
be estimated [33,34]. It remains difficult, however, to collect high spatial resolution thermal remotely
sensed imagery. Though water status monitoring with WorldView-2 is achievable [35], the commercial
satellite has limitations in large area applications due to the high cost and small swath size [36]. Unlike
space-borne satellites, handheld spectroradiometer and unmanned aerial vehicle (UAV) allows for local
mapping at higher spatial and temporal resolutions. Moreover, they can monitor plant water status
and aid irrigation water management [30,37,38]. Due to handheld spectroradiometer’s limited range
and UAVs’ limited flight time, they require more measurements to cover a large area [25,39]. Therefore,
it is important to have a system that is capable for monitoring crop water status fully automated and
providing non-destructive, continuous estimates.

The Sentinel-2 satellites are potentially useful in crop water stress estimation due to its rich
spectral information. The twin satellites with 10-20-60 m spatial resolution and five-day revisit
frequency also provides a valuable open data resource for on-the-ground crop management for farmers.
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The effectiveness of using Sentinel-2 imagery for the detection of water stress on grapevines has
been demonstrated [40]. Although spectral indices have relatively significant relationships with
physiological measurements, the use of a single vegetation index for predicting crop water status may
not be optimal. Innovative approaches based on machine learning and multiple spectral dimensions
could be beneficial [38].

The goal of this study is to develop an algorithm for continuous monitoring of cotton water stress
at a large scale by using Sentinel-2 images. The word “continuous” here means the method can produce
the map of cotton water stress as soon as newly collected images are available in a continuous mode.
Two different approaches were compared to estimate cotton water stress: the linear-regression-based
and the machine-learning-based approaches. In the linear-regression-based approach, we developed
an empirical relationship between different Sentinel-2 spectral bands/vegetation indices and the
ground measured cotton water stress values using a linear-regression-based approach. In the
machine-learning-based approach, we employed random forest model to estimate SWP due to its
high non-linear regression precision and its wide applicability [41]. Three different input strategies
(9 original spectral bands, 21 vegetation indices, and a combination of original spectral bands and
vegetation indices) were compared in the study.

2. Materials and Methods

2.1. Study Area

This study was conducted on a research farm planted with cotton in the Southern High Plains
of Texas in 2018. The state of Texas accounts for approximately 50% of US cotton production [42].
Water is the key limiting factor in crop production in the Texas High Plains. It has a semi-arid climate
with annual precipitation of approximately 500mm and high evaporation demand. Low precipitation
and heavy irrigation have resulted in a steady decline in water supply in Lubbock, Texas (Figure 1a).
Producers with irrigated cotton are challenged to maintain production with diminishing water resource
and the harsh climatic environment. The soil type of the study area is loam. Figure 1b shows the
experiment in the paper consisted of 8 zones and 26 ranges of plots, and the 24 labeled plots with
cyan squares are the measured SWP. All the plots in the experiment consisted of four irrigation rates
which are 100%, 25%, 50%, 75%, 50%, 75%, 25% and 100%, respectively, from the left to the right zones.
Each plot had an 8.1 m width and 7.6 m length and contained eight rows of cotton. The irrigation
treatment was implemented using a subsurface drip irrigation system. Different rates of irrigation
were started on June 18, 2018, and ended on September 6, 2018. The irrigation amount changed weekly
on Monday. An ATMOS 41 weather station (METER Group, Pullman, WA) was installed in the field
for recording weather data. The precipitation was measured from January 1, 2018 to November 11,
2018 in the cotton field. The precipitation value ranged from 0 to 0.54 inches with an average value of
0.039 inches during the cotton growing season (Figure 2). The weekly irrigation amount was derived
by using the actual crop evapotranspiration (ETc) minus the effective rainfall of the previous week.
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Figure 1. (a) the location of the study area (Lubbock, Texas); (b) NIR, red and green false-color 
composite image offered by MicaSense sensor to show the experimental design. The plots surrounded 
by cyan squares are places where in-situ stem water potential was measured during the cotton 
growing season. 

 
Figure 2. Seasonal pattern of precipitation during the cotton growing season. 

2.2. Reference Data 

Effective measurement of plant leaf water status provides information about plant water stress 
conditions. We measured five main cotton growing stages: (1) germination and emergence (June 15, 
2018), (2) seedling establishment (June 29, 2018), (3) leaf area and canopy development (July 11, 2018), 
(4) flowering and boll development (August 1, 2018), and (5) maturation (August 23, 2018). In this 
study, midday stem water potential was measured as an effective water stress indicator for 
identifying the plants in moderate or severe water deficits [43]. Midday stem water potential was 
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Figure 1. (a) the location of the study area (Lubbock, Texas); (b) NIR, red and green false-color composite
image offered by MicaSense sensor to show the experimental design. The plots surrounded by cyan
squares are places where in-situ stem water potential was measured during the cotton growing season.
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Figure 2. Seasonal pattern of precipitation during the cotton growing season.

2.2. Reference Data

Effective measurement of plant leaf water status provides information about plant water stress
conditions. We measured five main cotton growing stages: (1) germination and emergence (June
15, 2018), (2) seedling establishment (June 29, 2018), (3) leaf area and canopy development (July 11,
2018), (4) flowering and boll development (August 1, 2018), and (5) maturation (August 23, 2018).
In this study, midday stem water potential was measured as an effective water stress indicator for
identifying the plants in moderate or severe water deficits [43]. Midday stem water potential was
determined by leaves that were in good condition and enclosed in aluminum foil bags for at least 15
minutes to prevent transpiration. In each experimental plot, three healthy leaves were sampled aiming
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for the mid-value to represent the water potential of the corresponding plot. The statistical range of
measured SWP values was illustrated in Figure 3. The average SWP shows a gradual increase during
the growing season. The overall average SWP was 15.31 (-1*swp (bars)) with a standard deviation of
5.89 (-1*swp (bars)), a minimum value of 2.55 (-1*swp (bars)) and a maximum value of 27.13 (-1*swp
(bars)). The SWP was measured once a week from the beginning of the irrigation season until the boll
stage using a pressure chamber. The amount of pressure indicates how much tension the leaf was
experiencing on its water: a high value of pressure meant a high value of tension and a high degree of
water stress. The unit of pressure is bars and 1 bar equals to 1 atmosphere of pressure.
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Figure 3. Measured stem water potential (-1* swp (bars)) with bars indicating average and standard
deviation during the cotton growing season.

2.3. Pre-processing

The Sentinel-2 twin satellites can provide various information on vegetation, soil, inland river
and coastal environment [44–46]. The twin satellites are in the same orbit, phased at 180◦ to each other.
The first satellite, Sentinel-2A, was launched on June 23, 2015 and the second satellite, Sentinel-2B
was launched on March 7, 2017. The twin satellites with a height of 785 km and a swath width of
290 km carry a single multi-spectral instrument (MSI) each which covers 13 spectral bands. The spatial
resolution of MSI is 10 m (three visible spectral bands and a narrow NIR spectral band), 20 m (three red
edge spectral bands, a NIR spectral band and two SWIR spectral bands) and 60m (a Coastal aerosol
spectral band, a water vapor spectral band and a cirrus spectral band) respectively [47] (Table 1). We
used bands 2–7, band 8A and bands 11–12 for linear regression, and random forest regression in this
study (Table 1). As the narrower infrared channel could improve the quality of the vegetation index, it
was used in calculating vegetation indices [48]. We selected five relatively cloudless Sentinel-2 images
with dates of 06/15/2018 (Sentinel-2B), 06/27/2018 (Sentinel-2A), 07/10/2018 (Sentinel-2A), 08/01/2018
(Sentinel-2B), and 08/24/2018 (Sentinel-2B) to analyze SWP during the cotton growing season in
this study. The images were atmospherically corrected and resampled to 20 m (based on nearest
neighborhood method) using the sen2cor plugin, which can be installed and run directly in SeNtinel
Application Platform (SNAP) software [49]. The cloud and cloud shadow masks were derived from
the Fmask4.0 algorithm [50].
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Table 1. Spectral bands of the Sentinel-2 sensors. The bands used in this analysis are in bold letters.

Sentinel-2 bands Central Wavelength (nm) Spatial Resolution (m)
Sentinel-2A Sentinel-2B

Band 1 – Coastal aerosol 442.7 442.2 60
Band 2 – Blue 492.4 492.1 10

Band 3 – Green 559.8 559.0 10
Band 4 – Red 664.6 664.9 10

Band 5 – Vegetation red edge 704.1 703.8 20
Band 6 – Vegetation red edge 740.5 739.1 20
Band 7 – Vegetation red edge 782.8 779.7 20

Band 8 – NIR 832.8 832.9 10
Band 8A – Narrow NIR 864.7 864.0 20

Band 9 – Water vapor 945.1 943.2 60
Band 10 – SWIR – Cirrus 1373.5 1376.9 60

Band 11 – SWIR 1613.7 1610.4 20
Band 12 – SWIR 2202.4 2185.7 20

Figure 4 shows the entire study area of Sentinel-2 (Figure 4a) and the measured SWP overlay on a
small subset of Sentinel-2 image (Figure 4b). Though the ground measured SWP and Sentinel-2 images
were geo-corrected and linked to each other, there is still geometric differences between the target
plot and Sentinel-2 images (Figure 4b). The size of each plot is 8.1 m in width and 7.6 m in length
and the spatial resolution of Sentinel-2 image is 20 m. The measured SWP ranged from 2.55 (-1*swp
(bars)) to 20.79 (-1*swp (bars)) with dates of June 15, 2018 in the target plots. The number of pixels
occupied by the entire study area in Sentinel-2 was 52. We calculated the area weighted average of
ground measured SWP to represent the SWP within the Sentinel-2 pixel [51].
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Figure 4. This figure represents the Sentinel-2 image (NIR band) in the study area for large-scale SWP
estimation (a) and the measured SWP of target plots overlay on a small subset of Sentinel-2 NIR band
image(b). The color layer (b) represents the amount of SWP of each plot collected on June 15, 2018.

2.4. Linear-Regression-Based Method

The least squares linear regression between the vegetation indices and stem water potential were
obtained in this study. We tested 9 spectral bands and 21 Vegetation Indices (VIs) to establish a linear
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relationship with SWP during the growing season (Table 2). The indices using visible and near-infrared
bands were developed to predict crop water stress due to their positive correlations with stomatal
conductance and leaf water potential [22,23]. Many studies have suggested that these indices are
nearly linear related to stem water potential [24,31,52,53]. The red edge-based vegetation indices
were also compared in the study, due to their sensitive to chlorophyll content and leaf area index
(LAI) [54,55]. Moreover, the water absorption bands in the 1300–2500 nm region, which can eliminate
variations caused by leaf internal structure and leaf dry matter content, are most sensitive to the leaf
water content of most crops [56]. The indices created by the combination of the NIR and the SWIR
bands can substantially improve the accuracy of retrieving the vegetation water content [57], which
were widely used to monitor changes in stem water potential in the literature [24,25,58].

Table 2. Spectral vegetation indices that have been used to estimate stem water potential.

Index Name Formula Reference

Red Edge In-flection Point (REIP) 700 + 40×
RED+RE3

2 −RE1
RE2−RE1 [59]

Atmospherically Resistant Vegetation Index
(ARVI)

NIR−2×RED−BLUE
NIR+2×RED−BLUE [60]

Soil Adjusted Vegetation Index (SAVI) NIR−RED
NIR+RED+L × (1 + L)

L = 0.5
[61]

Modified Soil Adjusted Vegetation Index 2
(MSAVI2)

[
2×NIR+1−

√
(2×NIR+1)2

−8×(NIR−RED)

]
2 [62]

Infrared Percentage Vegetation Index (IPVI) NIR
NIR+RED [63]

Normalized Difference Vegetation Index (NDVI) NIR−RED
NIR+RED [64]

Modified Soil Adjusted Vegetation Index
(MSAVI)

(NIR−RED)×(1+L)
NIR+RED+L

L = 1− 2× s×NDVI×WDVI
s = 0.5

[62]

Transformed Normalized Difference Vegetation
Index (TNDVI)

√
NIR−RED
NIR+RED + 0.5 [65]

Green Normalized Difference Vegetation Index
(GNDVI)

NIR−GREEN
NIR+GREEN [66]

Inverted Red Edge Chlorophyll Index (IRECI) NIR−RED
RE1
RE2

[55]

Global Environmental Monitoring Index (GEMI) η× (1− 0.25× η) − RED−0.125
1−RED

η =
2∗(NIR2

−RED2)+1.5×NIR+0.5×RED
NIR+RED+0.5

[67]

Normalized Difference Index 45 (NDI45) RE−RED
RE+RED [68]

Perpendicular Vegetation Index (PVI) sin(α) ×NIR− cos(α) ×RED
α = 45◦

[69]

Difference Vegetation Index (DVI) NIR−RED [64]
Pigment Specific Simple Ratio (PSSRa) RE

RED [70]

Ratio Vegetation Index (RVI) NIR
RED [71]

Weighted Difference Vegetation Index (WDVI) NIR− S×RED
S = 0.5

[72]

Modified Chlorophyll Absorption Ratio Index
(MCARI)

(RE1−RED−0.2×(RE1−GREEN))×RE1
RED [73]

Enhanced Vegetation Index (EVI) 2.5×(NIR−RED)
(NIR+6×RED−7.5×BLUE+1) [74]

Normalized Difference Water Index (NDWI) NIR−SWIR
NIR+SWIR [57]

Simple Ratio Water Index (SRWI) NIR
SWIR [32]

2.5. Machine-Learning-Based Method

The non-linear random forest (RF) regression method was also examined to predict the cotton
stem water potential. RF is a robust, supervised machine learning algorithm used for classification and
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regression [75]. It is the integration of a multitude of unpruned tress which are trained by bagging
(i.e., bootstrap aggregation) [76]. The bagging uses the randomly selected training data and then
constructs the classifier. Three datasets were evaluated as input into the RF regression algorithm:
(1) spectral bands of Sentinel-2 imagery, (2) 21 vegetation indices, and (3) spectral bands combined
with spectral indices. We used the TreeBagger function in MATLAB and the parameter “ntree” was set
as 100. The parameter “mtry” was set as the default for all the three input strategies of RF. The total
number of training and testing pixels was 52, in which 80% of the data were randomly selected as
training samples, and the remaining 20% were used as validation.

3. Results

3.1. Linear-Regression-Based Approach

We conducted 30 experiments to test the effective linear relationship between original spectral
bands of Sentinel-2, different spectral index, and the ground measured cotton stem water stress values
(Figure 5). The R square values calculated from all reference samples (n = 52) were used to evaluate the
performance of different linear-regression-based methods. The high R square values (R square > 0.5)
represented strong correlation between spectral features and SWP [35]. Figure 5 showed that most
of these models had a relatively strong correlation over time. The vegetation index of NDI45 had
the best linear relationship with cotton water potential. NDI45, MCARI, and GNDVI were the three
best-performed models, which were calculated by the green, red and red edge bands. For a single
spectral band, its correlation with stem water potential was relatively lower than VIs. The red and SWIR
bands showed a better linear relationship with the stem water potential compared to other spectral
bands. For the start of the season (June 15, 2018), the field just started to grow, and the vegetation is
sparse. Therefore, due to the different irrigation level in the field, the blue dots in Figure 5 varied
a lot in SWP. For the middle of the season (June 29, 2018-August 1, 2018), the leaf area and the boll
has developed. The cyan, green and yellow dots showed a strong linear correlation between spectral
features and SWP. For the end of the season (August 23, 2018), the cotton was at the early-maturing
stage and the SWP reached to their maximum.

3.2. Machine-Learning-Based Approach

We also used random forest regression to establish the relationship between Sentinel-2 data and
stem water potential, and three scenarios (original bands, vegetation indices, and the combined use of
the two) were compared. Considering the machine-learning-based approach may subject to overfitting,
we compared algorithm performance based on a five-fold cross-validation approach, in which 80% of
the data were randomly selected as training, and the remaining 20% were used to calculate R square
and RMSE (Table 3). Surprisingly, the use of just the surface reflectance bands from Sentinel-2 has the
highest R square and lowest RMSE. The vegetation indices alone and the combined use of spectral
bands and vegetation indices all showed lower accuracies. We think it is mainly because the vegetation
indices are derived from the spectral bands and if a good machine learning approach is used, such as
random forest, all the information contained within the spectral bands has already been well-learned,
and the use of extra derivation from the spectral bands (e.g., vegetation indices) would only have
negative impact by increasing data dimension, instead of brining any extra information. Figure 6 shows
the scatterplot of best-performed random forest estimated (based on original bands) and measured
SWP for all 52 reference samples. We can see that the random forest estimated values are very close to
the actual measurements.

3.3. Comparing Best Approaches from Linear-Regression-Based and maching-Learning-Based Methods

For cotton, SWP varied with growing stage. As such, non-linear machine-learning-based
method, which included more input variables, can better explain variability in cotton water stress.
To better compare the best approaches from linear-regression-based method (based on NDI45) and
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the machine-learning-based method (based on original surface reflectance bands), we calculated
RMSE and R square for the linear-regression-based method (based on NDI45) following the same
five-fold cross-validation approach. The best approach from the machine-learning-based method
achieved a much higher R square (0.6709) and lower RMSE (3.3742) than the best approach from the
linear-regression-based method (R square = 0.6157 and RMSE = 3.6802). This suggests that though
the linear-regression-based method is relatively simple and easy to use, the machine-learning-based
method can provide more accurate detection of SWP due to its capability of including high dimensions
of data. This was further emphasized that single VI was not sensitive enough to SWP, so that additional
spectral features on SWP estimation was of significance.
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Table 3. Algorithm performance comparison based on five-fold cross-validation between different
scenarios of random forest regression.

Original Bands Vegetation Indices Original Bands + Vegetation Indices

RMSE 3.3742 3.5514 3.4620

R square 0.6709 0.6575 0.6592
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Figure 6. Scatterplots derived from random forest regression using original surface reflectance bands
based on all 52 reference samples.

3.4. Comparing Results Spatially and Temporally

We explored the potential of using this approach to continuous monitoring of the stem water
potential of cotton at a large scale. Images of the stem water potential maps for Sentinel-2 based on
random forest regression method and the linear regression method are shown in Figure 7. The map of
Figure 7a was derived from random forest regression when all the original surface reflectance bands of
Sentinel-2 were used as the input. The map of Figure 7b was derived from the best performed linear
regression method (NDI45). The cotton mask was derived from Crop Data Layer 2018 (CDL) [77].
A visual comparison of random forest regression and linear regression shows the random forest
regression model estimates are higher than the linear regression approach does. However, the
estimation of the two regression approaches are consistent at the region with a high level of stem water
potential. Note that this is mainly for qualitative comparison and considering the massive amount
of work to collect field data of stem water potential of cotton at a large scale over time, we did not
provide any quantitative metrics to provide the error analysis for the maps generated below.

By applying the same technique for time series of Sentinel-2 images, we can monitor water
potential continuously (Figure 8). Figure 8 shows the spatial distribution of SWP changes in the
sample scene of cotton field during the growing season. In the sample scene, there was an obvious
ascend trend of SWP within August 1–21, and a descend trend within August 28 to September 21
for machine-learning-based estimation. For linear-regression-based estimation, the SWP had no
obvious change.
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Figure 7. Stem water potential images derived from (a) random forest regression method and (b) linear
regression method from Sentinel-2. The region is approximately 110 by 110 km. The 2018 Crop Data
Layer (CDL) was employed to mask out non-cotton areas (grey color).
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Figure 8. Continuous monitoring of stem water potential based on (a) random forest regression
method and (b) linear regression method. The 2018 Crop Data Layer (CDL) was employed to mask out
non-cotton areas (grey color).

The histogram of stem water potential from Figure 7 maps was computed and shown in Figure 9.
The largest stem water potential ranged from 9 to 10.5 in the linear-regression-based method and
ranged from 13.5 to 15 in the random forest regression method. For the linear regression method, the
estimated stem water potential values were sometimes outside the normal range including negative
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values. For the machine-learning-based method, however, the estimated stem water potential values
were in the normal range and were closer to the measured value according to RMSE.
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Figure 9. Histogram of cotton water potential and its partial enlarged view on August 6, 2018.
(a) A partial enlarged view of the histogram; (b) histograms of cotton water potential estimated by
random forest regression and linear regression.

The two-year estimates of stem water potential for one pixel is illustrated in Figure 10. The time
series plot of estimated water potential results from the best linear regression method and the best
random forest regression method were compared. For the linear regression time series result, the value
of stem water potential was relatively stable at the beginning of the cotton growing stage and then rose
rapidly at the flowering stage. As for the random forest regression result, the curve was not stable but
represented a rising trend generally.Remote Sens. 2020, 11, x FOR PEER REVIEW 13 of 18 
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4. Discussion

The cotton water demand is different at different stages of cotton growth and development [78].
Moreover, the spectral features of water indices reflected water stress to a certain extent [24]. Due to
the self-regulation mechanism of crop, the sensitivity of crop to water stress are reflected on its growth
and development [79]. The linear regression result illustrated that though the irrigation level was
different at the early stage of planting, the SWP value of cotton was almost the same for the mature
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stage. For precise irrigation, water use was relatively low at this cotton planting stage. It can be seen
from the strong linear relationship between spectral features and SWP, in which water was critical
from the germination to flowering stage. Once the bolls started to open, the irrigation level of cotton
should be allowed to reduce for better harvest conditions. Compared with linear-regression-based
method, the machine-learning-based method performed better in SWP estimation based on accuracy
metrics such as R square and RMSE. This will possibly be a small but positive step towards continuous
irrigation scheduling for efficient growth-stage-specific water application in cotton.

Our linear regression results showed that most VIs are suitable predictors for cotton stem water
potential. The VIs based on the red and red edge spectral bands (NDI45, MCARI) were the best
candidates as they are more sensitive to stomatal conductance and leaf water potential [58]. The positive
correlation between the NDI45 or MCARI, and SWP showed these VIs is best suitable for detecting
cotton water stress. Both the linear-regression-based approach and machine-learning-based approach
were useful for water stress detection. The linear regression was more direct and easier to use. However,
this method was more sensitive to outliers. Random forest regression appeared to be more accurate
and suitable for large scale water stress detection.

The random forest regression also produces useful information about variable importance and
partial dependence. At the same time, its results suggest that the SWIR and red edge band are
the most important spectral band variables, and the vegetation indices based on red edge and NIR
bands are particularly helpful (Figure 11). The random forest regression method performed better
than linear regression, where all the RMSE developed by random forest regression are smaller than
linear regression. In addition, for random forest regression, more independent input data resulted
in higher regression accuracy [80]. By combining the spectral reflectance and vegetation indices,
there were 30 variables for each pixel. The vegetation indices were redundant information which
was derived from spectral reflectance. Therefore, the random forest regression performed best when
only the original spectral bands of Sentinel-2 is used as the input variables. Moreover, compared to
linear-regression-based approach, the machine-learning-based (random forest) approach was more
promising as it is less likely to be influenced by outliers. However, it is worth noting that due to
the model development stage was based on a limited amount of data and only from one site, the
applicability of predicting SWP in larger areas based on machine-learning-based approach would
be limited.
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Figure 11. The importance of each vegetation indices in random forest regression (refer Table 2 for
explanation of each input variables).

The Sentinel-2 twin satellites offered better spatial resolution (10-20-60 m versus 30 m), and better
temporal resolution (5 days versus 16 days), compared with Landsat 8. However, the thermal bands



Remote Sens. 2020, 12, 1176 14 of 18

of Landsat 8 does provided land surface temperature information [81] that was not available from
Sentinel-2, and therefore, in cotton stem water potential estimation, Landsat imagery is still extremely
valuable [82]. The surface temperature information and the surface reflectance information may provide
different observing angles to detect cotton water status. The thermal imagery could be considered as a
short-term response which reflected the result of current water status, however, vegetation indices
could be considered as a long-term response which probably reflected the result of cumulative water
deficits. Furthermore, the Harmonized Landsat and Sentinel-2 surface reflectance data set currently
has great potential owing to its improved temporal resolution at the expense of spatial resolution (the
harmonized product resolution is 30 m) [83]. Finally, combining thermal band-based information and
red edge-based information would provide a more robust prediction in water stress [84].

5. Conclusions

The SWP is an important parameter for irrigation management. Sentinel-2 can support irrigation
decisions and can capture within field variability at high accuracy due to the sensor’s unique spectral
bands in the red edge region. The NDI45 index based on red edge band performed best in linear
regression, which can also assist in decision making in precision agriculture. The relationship between
the cotton stem water potential and NDI45 confirmed the capacity of the linear regression approach
to assess cotton water status. Random forest regression is able to provide more accurate prediction
and handle high dimension data with small number of reference samples. The results helped lay a
technical foundation for the continuous and large-scale monitoring of cotton water potential using
Sentinel-2 imagery.
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