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Abstract: Forests reduce snow accumulation on the ground through canopy interception and
subsequent evaporative losses. To understand snow interception and associated hydrological
processes, studies have typically relied on resource-intensive point scale measurements derived
from weighed trees or indirect measurements that compared snow accumulation between forested
sites and nearby clearings. Weighed trees are limited to small or medium-sized trees, and indirect
comparisons can be confounded by wind redistribution of snow, branch unloading, and clearing
size. A potential alternative method could use terrestrial lidar (light detection and ranging) because
three-dimensional lidar point clouds can be generated for any size tree and can be utilized to calculate
volume of the intercepted snow. The primary objective of this study was to provide a feasibility
assessment for estimating snow interception volume with terrestrial laser scanning (TLS), providing
information on challenges and opportunities for future research. During the winters of 2017 and
2018, intercepted snow masses were continuously measured for two model trees suspended from
load-cells. Simultaneously, autonomous terrestrial lidar scanning (ATLS) was used to develop
volumetric estimates of intercepted snow. Multiplying ATLS volume estimates by snow density
estimates (derived from empirical models based on air temperature) enabled the comparison of
predicted vs. measured snow mass. Results indicate agreement between predicted and measured
values (R2

≥ 0.69, RMSE ≥ 0.91 kg, slope ≥ 0.97, intercept ≥ −1.39) when multiplying TLS snow
interception volume with a constant snow density estimate. These results suggest that TLS might
be a viable alternative to traditional approaches for mapping snow interception, potentially useful
for estimating snow loads on large trees, collecting data in difficult to access terrain, and calibrating
snow interception models to new forest types around the globe.
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1. Introduction

The hydrology of snow-dominated forests is controlled by interactions of mass and energy fluxes
between snow and forest structural elements. As forest cover increases, snow accumulation on the
ground is typically reduced because of canopy snowfall interception and subsequent sublimation,
which can account for as much as 60% of the cumulative snowfall depending on forest type, duration
of snow storage in the canopy, and seasonal hydrometeorological conditions [1,2]. The sensitive
connection between forest structure and snow interception therefore has important implications for
the hydrology in any region around the globe where the major proportion of total water input comes
from snow. Understanding this relationship is increasingly important with widespread observed and
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projected shifts from snow to rain [3], changes in the frequency of winter rain-on-snow events [4,5], and
changes in forest vegetation due to fire [6], drought [7], insects [8,9], and other disturbance processes
that might be altered by a changing climate and/or forest management.

While the importance of snow interception has long been acknowledged, it is also difficult to
measure, map, and model. Direct measurement has typically been limited to resource-intensive
point measurements derived from weighed trees, which are generally limited to small or medium
trees [1,10–12] or tree branches [13,14]. Indirect measurements have compared snow accumulation
between forested sites and nearby clearings. Although indirect measurements have advantages (e.g.,
estimating spatial variance), the accuracy has long been questioned [15], and the measurements can be
confounded by wind redistribution of snow, branch unloading, and reference site size [16].

A potential novel method could use terrestrial lidar (TLS) because three-dimensional lidar point
clouds, based on the laser return-time/distance relationship, can be generated for any size tree. The
point clouds can be transformed into a convex hull with a polyhedral surface approximating the shape
of the tree, from which volumes can be calculated [17–19]. Intercepted snow volume can be estimated
by subtracting snow-free tree volume from snow-on tree volume. This volume can be converted
to snow mass by multiplying by fresh snow density, an important variable in snow interception
processes [1,20–22]. Furthermore, novel autonomous terrestrial laser scanning (ATLS) systems [23]
could enable time-series characterization of seasonal dynamics associated with snow interception with
minimal fieldwork and maintenance, as well as the flexibility to relocate the experiment to different
forest types, thereby overcoming some of the limitations of previous studies. Ultimately, TLS-based
snow interception may have a number of advantages over traditional methods, including: spatially
explicit estimation of snow interception for different aspects or portions of tree canopies, data collection
in difficult to access terrain [24] known to be important contributors to water budgets [25,26] and
providing time-efficient data for calibration of emerging aerial lidar (ALS)-based snow interception
models to specific forest types [16,27,28].

The objective of this study was to test the feasibility of using ATLS to estimate intercepted snow
volume. In doing so, this study provides a preliminary feasibility assessment for estimating snow
interception volume solely using terrestrial laser scanning, providing information on challenges and
opportunities for future research.

2. Materials and Methods

2.1. Study Site

Two artificial model hanging trees measuring 1.83 meters (m) in height and weighing 1.65 kg
each (hereafter referred to “left tree” and “right tree”—see Figure 1) were installed prior to winter
2017 following established approaches outlined in Hedstrom and Pomeroy, 1998 [1]. The trees
were off-the-shelf, bilaterally symmetrical Christmas trees. The trees had 25 flexible limbs, multiple
needle-types, and did not represent a specific species. The trees had an approximate leaf area index
(LAI) of 5.15. LAI was estimated from ATLS point clouds using the LeafR R package [29]. Artificial
trees were utilized to avoid desiccation and interception estimates that may be affected by progressive
needle drop, in addition to minimizing field work and maintenance. The limbs (metal and plastic)
were not analyzed for comparability to live wood elasticity. The trees were installed at the University
of Idaho McCall Field Campus (44.9353472◦, −116.0820167◦) in the mountains of west-central Idaho,
which receives an average of 3.4 m total snow fall (maximum 1.9 m snowpack depth) and 0.7 m total
precipitation per year at 1528 m elevation [30].
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Figure 1. (a). Study site showing duplicate model trees hanging from load cells, datalogger, and
automated terrestrial laser scanner (ATLS; see Eitel et al., 2013). “Left tree” to left of image with snow
removed for illustration; “right tree” to right of image. (b). Scan of the trees on the same day.

2.2. Field Measurements

Load cells measured strain gauge output (mV/V), an electrical signal that is proportional to the
applied excitation voltage, from the hanging trees in one-minute intervals. The load cells were designed
to maintain accuracy (within 0.03 mV/V) with temperatures as cold as −18 ◦C and were shielded to
prevent accumulation of snow and ice. Mean temperature during an ATLS scan was only below −18 ◦C
on one occasion (−20.6 ◦C), which would have affected the maximum deviation of the calibration curve
(a straight line drawn between minimum and maximum output) by no more than 0.0054% according to
product specifications. Known masses were hung from the load cells to verify measurement accuracy
and to develop a calibration equation (mass = 30.18 * mV/V – 4.6917), which converted strain gauge
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output to kg. The originating mass of a snow-free tree at the beginning of each winter was subtracted
from subsequent measurements to calculate snow masses for each scan.

An ATLS scanned one side of the trees at a distance of 6.2 m and produced two high resolution
point clouds per day (1.12 cm spot size and 0.20 cm point spacing at 10 m) (Figure 1b). The ATLS
employs a rugged time-of-flight laser rangefinder (optoNCDT ILR 1191 with 905 nm near infrared laser
and 1.7 mrad beam divergence; Micro-Epsilon Messtechnik GmbH & Co. KG, Ortenburg, Germany)
designed for harsh environments (see Eitel et al., 2013 [23] for more detail). The ATLS completed one
scan in 13 h.

Assuming each tree canopy to be bilaterally symmetrical and circular in shape, and given a known
canopy diameter, distance from scanner to canopy perimeter, and location of the ATLS, trigonometric
calculations yielded 47.7% of the tree canopy perimeter viewable by the ATLS. Rounded to 50% for
the analyses, snow masses obtained from the load cells were therefore divided by two and averaged
across each ATLS scan duration to allow for comparison with ATLS data.

2.3. Lidar Volume Estimates

The ATLS point clouds were transformed into convex hull structures approximating the shape
and volume of the scanned trees using the “ashape3d” function in the alphashape3d R package [18].
The convex hull is fitted with Delauney Triangulation (drawing triangles between points so that there
is no overlap between triangles). The convexity parameter (α) is selected by the user, corresponding
to data resolution and units of the input data [17,18]. A convexity parameter of 1 corresponds to the
convex hull; as α approaches zero, triangle borders are deleted to yield a better fitting, flexible, and
concave hull that captures more structural detail. In this case, the TLS data resolution (2.44 cm) is the
sum of the spot size (1.12 cm × 2 points) and the point spacing (0.2 cm). This value was rounded to
2.5 cm (i.e., α = 0.025 m) for construction of all “snow-on” convex hulls. The “volume_ashape3d”
function was then used to calculate volumes (m3) of the convex hulls. The originating volume of
a snow-free tree at the beginning of each winter (α = 0.010 m to capture fine-scale detail of branch
structures) was subtracted from subsequent snow-on measurements to calculate snow volumes for
each scan in the time series.

2.4. Snow Density Estimates

Hourly fresh snow density (kg/m3) was estimated using hourly air temperatures (Ta; 0.1 ◦C
resolution) from a meteorological monitoring sensor equipped with a radiation shield (VP-4, METER,
Pullman, WA, USA) positioned on a pole directly above the ATLS. Ta ranged from −20.6–6.9 ◦C
during the entire study period, with a mean of −2.3 ◦C and standard deviation of 4.9 ◦C. Several
methods [1,31,32] of estimating fresh snow density from air temperature were tested, including:

ρ (constant) = constant density of 100 kg/m3 (1)

ρ (Diamond-Lowry) = 119 + (6.48 × Ta) (2)

ρ (LaChapelle) = 50 + 1.7 (Ta + 15)1.5 (3)

ρ (Hedstrom-Pomeroy) = 67.92 + 51.25e(Ta/2.59) (4)

Mean fresh snow density was calculated for each ATLS scan time interval (13 h). Estimates of
intercepted snow mass were calculated by multiplying the ATLS derived snow volumes (m3) by fresh
snow densities derived from Equations (1)–(4) (kg/m3).
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2.5. Statistical Analysis

The precision and accuracy of ATLS-derived estimates of intercepted snow mass was determined
by fitting a simple linear regression model in R [33] between ATLS-derived intercepted snow mass in
kg (independent variable) and load cell–derived intercepted snow mass in kg (dependent variable) [34].
Estimates of R2 (goodness-of-fit), root mean square error (RMSE) in kg, and regression intercept and
slope (indicative of model bias) were determined for models utilizing each density estimation method
(see Section 2.4). The optimal model was determined by selecting the best performing snow density
estimation method that yielded the least under/over estimation in ATLS derived mass predictions (i.e.,
closest to 1:1 line) and lowest RMSE.

3. Results

Discounting days without snow, a total of 115 complete ATLS scans were recorded for the left tree
in the first winter between January and April; a total of 69 complete ATLS scans were recorded for the
left tree in the second winter between November and March. A total of 83 and 69 scans, respectively,
were recorded for the right tree over the same time periods. Discrepancies in sample size between the
left and right tree were related to incomplete ATLS scans in which scanner malfunction truncated a
portion of the scene (e.g., see Figure 1b).

Data exploration using results from the left tree revealed that measured snow interception
(averaged across multiple complete scans) in the first winter averaged 3.19 kg (1.0% of season total),
with a standard deviation of 4.59 kg and a maximum of 16.95 kg (4.8% of season total). During the
second winter, measured snow interception for the left tree averaged 3.31 kg (2.3% of season total),
with a standard deviation of 2.76 kg and a maximum of 10.19 kg (4.5% of season total). Estimated
mean fresh snow densities using Equations (1)–(4) for the left tree in both winters are summarized in
Table 1. Density values are similar to Mair et al., 2016 [35] in which estimates produced by Equation (2)
approximated the 100 kg/m3 constant, estimates produced by Equation (3) were higher than the
constant, and estimates produced by Equation (4) displayed a wider range.

Table 1. Mean snow density estimates for the left tree in both winter sampling periods utilizing each of
the density estimation Equations (1)–(4) [1,31,32].

Density Estimation Method Mean Fresh Snow Density
(kg/m3): Winter 2017

Mean Fresh Snow Density
(kg/m3): Winter 2018

1. constant 100 100
2. Diamond–Lowry [31] 111.59 ± 29.46 99.58 ± 23.77
3. LaChapelle [32] 141.49 ± 39.52 123.20 ± 31.81
4. Hedstrom–Pomeroy [1] 142.58 ± 150.61 105.19 ± 53.30

Analyses (Table 2) using data spanning both winters for both trees demonstrated that the fresh
snow density constant consistently produced higher R2 (model fit) and lower RMSE (unexplained
variance) than empirical variable-density Equations (2) [31], (3) [32], and (4) [1], in that order. Simple
linear regression utilizing the density constant yielded R2 = 0.7 /RMSE = 1.06 kg for the left tree and
R2 = 0.69/RMSE = 0.91 kg for the right tree. Simple linear regression using the density constant also
produced slopes closest to a 1:1 calibration between ATLS and load cell masses (slope = 0.97 for the left
tree and slope = 1.07 for the right tree) (see Table 2 and Figure 2). Intercepts of −1.39 for the left tree and
−1.34 for the right tree further illustrate model bias and overestimation in TLS-based mass estimates.
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Figure 2. Simple linear regression results comparing predicted (TLS) and measured (load cell) snow
interception mass for density estimation Equations (1)–(4) [1,31,32]. Data spans winters 2017–2018.
Black lines = regression lines; red lines = 1:1 lines.
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Table 2. Simple linear regression results comparing predicted and measured snow interception mass
for each of the density estimation Equations (1)–(4) [1,31,32]. Data spans winters 2017–2018. The snow
density constant produced the best model fit and lowest error for both trees.

Left Tree

Density Method R2 RMSE (kg) Slope

1. Constant 0.71 1.06 0.97
2. Diamond-Lowry 0.53 1.35 0.98
3. LaChapelle 0.53 1.36 0.80
4. Hedstrom-Pomeroy 0.05 1.93 0.17

Right Tree

Density Method R2 RMSE (kg) Slope

1. Constant 0.69 0.91 1.07
2. Diamond-Lowry 0.51 1.14 1.13
3. LaChapelle 0.47 1.19 0.89
4. Hedstrom-Pomeroy 0.01 1.63 0.03

4. Discussion

4.1. The Effect of Snow Density and Scan Duration on Model Performance

To our knowledge, this is the first study that explores the suitability of high resolution, automated
terrestrial lidar to estimate canopy snow interception, with direct comparison to the established
hanging tree method [1]. The most precise proxies for measured snow interception mass (R2

≥ 0.69),
with the least variation in unexplained variance (RMSE ≥ 0.91 kg), were obtained by multiplying the
ATLS derived snow interception volume estimates by a fresh snow density constant of 100 kg/m3.

In contrast, ATLS-derived snow interception volume estimates in conjunction with dynamic fresh
snow density estimation equations based on air temperature reduced R2 and increased RMSE model
estimates. It may be that because Equations (2)–(4) are empirical, they represent relationships between
fresh snow density and air temperature specific to their respective experimental locales: Sierra Nevada
Mountains in California [31]; mid-continental Canadian boreal forest [1]; and, a variety of avalanche
monitoring sites across the western United States [32]. In addition, each snow density estimation
method (2–4) was derived from ground-based samples and may not represent micro-climate conditions
unique to tree canopies. Finally, it should be noted that Equation (4) was derived from two sources of
data [14,31] with different collection methods and air temperature values mainly limited to −10 ◦C and
warmer [36]. This may have contributed to poor model performance when incorporating Equation (4)
(Table 2). Experimental development of adjustment factors for these equations was not in the scope of
this study.

Unexplained model variance in ATLS derived mass predictions may also be partially explained
by the long ATLS scan duration (13 h). Increases in air temperature and subsequent changes to the
density of freshly intercepted snow (i.e., metamorphism) during the course of one scan, or retention
of metamorphosed snow between snow events, may have resulted in unexplained model variance.
Furthermore, this study was not designed to account for losses of intercepted snow due to wind-driven
sublimation and/or unloading, or asymmetrical accumulation of snow on trees during periods of high
wind and wet snow [15], processes that also may have resulted in unexplained model variance. Recent
advances in lidar technology might help to address the slow scan duration time with the relatively
new availability of rugged, relatively low-cost (<$10,000 USD), fast scanning lidar instruments [37].
Future experiments with faster scanning terrestrial lidar that more closely matches single-load cell
readings might allow for estimating snow density (kg/m3) from the division of load cell-derived
masses (kg) by ATLS-derived volumes (m3). This approach may offer a path to developing a new
empirical snow density equation. Further, laser return intensity data obtainable from TLS might
provide valuable insights on snow properties that affect density, such as changes in grain size/shape
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and overall wetness [38,39]. Although this study emphasized automated data collection, model
performance could also have been improved with in situ density measurements of canopy intercepted
snow; fresh snow density estimate Equations (2)–(4) were derived from ground-based samples [1,31,32].
Further research is needed to devise a practical means of sampling snow density on trees.

4.2. The Effect of Weather and Snow Properties on Model Performance

TLS has been used to monitor changes in snowpack depth, but several factors were shown to
decrease the number and intensity of received signals [27,40]. Atmospheric occlusion from heavy snow
or fog can interfere with lidar returns, and wet snow surfaces can lead to adsorption of lidar pulses on
the target itself [27,39,40]. Snow is also strongly forward-scattering; the proportion of forward scattering
of lidar pulses increases with scan angle [27], potentially leading to missed returns on the edges of
targets. Despite these issues, the short distance to target (6.2 m) and low scan angle (4.22◦) should
have minimized the variance between measured and ATLS-derived snow mass due to atmospheric
occlusion or forward scattering. Likewise, sampling during the coldest months should have minimized
unexplained model variance due to lidar pulse adsorption by snow with high water content.

4.3. The Effect of Changing Tree Geometry on Model Performance

It may be that occlusions due to heavy snow loading, or reductions in occupied space resulting
from branch deflection, affected ATLS-derived volume estimates and led to unexplained model variance.
On the other hand, the process of snow bridging may fill interstitial spaces between branches and
accumulate in new space beyond the original canopy profile, thereby counteracting underestimation
due to canopy occlusion or branch deflection. This study was not designed to specifically examine the
relationship between branch deflection and changes to tree geometry, or to examine how plastic limb
strength might compare with natural wood in its interaction with air temperature. A faster scanning
ATLS could, in the future, be utilized in a similar experiment to assess variability in branch deflection,
and physical laboratory testing could evaluate material elasticity. In addition, future research could
explore the sensitivity of TLS to variable snow volumes within live trees of variable height, canopy
density, and needle structure, as well as different air temperature conditions that affect tree geometry
through branch deflection. Alternative approaches that minimize occlusion could include reducing
beam divergence with more accurate TLS equipment, scanning from different scan positions [41], using
full-waveform lidar [27], or exploring emerging ray tracing approaches [42] to reconstruct occluded
canopy components.

5. Conclusions

This study provides valuable insights into the use of TLS for estimating intercepted snow volume.
Initial results indicate agreement between predicted and measured values of intercepted snow mass
(R2
≥ 0.69 and RMSE ≥ 0.91 kg) when utilizing a constant snow density estimate (100 kg/m3). To further

improve TLS derived snow interception estimates, future research is needed to develop improved
approaches to estimate density of canopy intercepted snow in situ, explore the sensitivity of TLS snow
volume estimates to changing snow conditions and quantities within the canopies of a variety of live
trees of different sizes and for a range of temperatures that affect branch flexibility, and/or reduce
beam divergence and reconstruct occluded structural elements. Snow interception is challenging to
measure and model, but our findings highlight the potential of lidar technology to efficiently and
accurately estimate intercepted snow mass. This is a potentially useful development for the collection
of interception data in difficult to access terrain, as well as the calibration of aerial lidar–based snow
interception models to distinct forest types around the globe.
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