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Abstract: The coastal ocean is one of the most important environments on our planet, home to some
of the most bio-diverse and productive ecosystems and providing key input to the livelihood of
the majority of human society. It is also a highly dynamic and sensitive environment, particularly
susceptible to damage from anthropogenic influences such as pollution and over-exploitation as well
as the effects of climate change. These have the added potential to exacerbate other anthropogenic
effects and the recent change in sea temperature can be considered as the most pervasive and severe
cause of impact in coastal ecosystems worldwide. In addition to open ocean measurements, satellite
observations of sea surface temperature (SST) have the potential to provide accurate synoptic coverage
of this essential climate variable for the near-shore coastal ocean. However, this potential has not
been fully realized, mainly because of a lack of reliable in situ validation data, and the contamination
of near-shore measurements by the land. The underwater biotechnological park of Crete (UBPC)
has been taking near surface temperature readings autonomously since 2014. Therefore, this study
investigated the potential for this infrastructure to be used to validate SST measurements of the
near-shore coastal ocean. A comparison between in situ data and Moderate Resolution Imaging
Spectroradiometer (MODIS) Aqua and Terra SST data is presented for a four year (2014–2018) in
situ time series recorded from the UBPC. For matchups between in situ and satellite SST data, only
nighttime in situ extrapolated to the sea surface (SSTskin) data within±1 h from the satellite’s overpass
are selected and averaged. A close correlation between the in situ data and the MODIS SST was
found (squared Pearson correlation coefficient-r2 > 0.9689, mean absolute error-∆ < 0.51 both for
Aqua and Terra products). Moreover, close correlation was found between the satellite data and
their adjacent satellite pixel’s data further from the shore (r2 > 0.9945, ∆ < 0.23 for both Aqua and
Terra products, daytime and nighttime satellite SST). However, there was also a consistent positive
systematic difference in the satellite against satellite mean biases indicating a thermal adjacency effect
from the land (e.g., mean bias between daytime Aqua satellite SST from the UBPC cell minus the
respective adjacent cell’s data is δ = 0.02). Nevertheless, if improvements are made in the in situ
sensors and their calibration and uncertainty evaluation, these initial results indicate that near-shore
autonomous coastal underwater temperature arrays, such as the one at UBPC, could in the future
provide valuable in situ data for the validation of satellite coastal SST measurements.
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1. Introduction

The coastal zone has had a key-role since antiquity in every human activity. It continues to be
an area of major human interaction, such as commercial trading and cultural exchange, providing
food supplies, serving transportation via sea routes, and most recently, providing places for leisure
resorts and the tourist economy to grow [1]. In terms of modern climatology, urban planning, and
legislature for the integrated development of the coastal zone and near-shore land, it is vital to qualify
and quantify various factors that may impact any action to be made in these areas [2].

The intensity of the physical (ground water discharges [3], tidal mixing [4], upwelling
phenomena [5]), chemical (water quality [6], thermal plume contamination [7], ocean acidification [8],
eutrophication [9]), and biological interactions (overfishing [10], habitat loss [11], and reconfiguration
of communities [12]) between the coastal zone and the terrestrial environment, both from natural and
anthropogenic processes, dictates the necessity of monitoring the coastal ocean. Climate change has
the potential to exacerbate other anthropogenic effects on coastal waters and the recent change in sea
temperature is considered as the most pervasive and severe cause of impact in coastal ecosystems
worldwide [13–16]. Furthermore, the Global Climate Observing System (GCOS) considers Sea Surface
Temperature (SST), including that of the coastal zone, a vital component of the climate system since it
largely controls the atmospheric response to the ocean at both weather and climate time scales and it
exerts a major influence on the exchanges of energy, momentum, and gases between the ocean and
atmosphere [17].

In this context, the temperature of coastal ecosystems and marginal seas need to be properly
monitored to allow an improved understanding of their dynamics and detection of changes in their
properties. This could not only help to complete the SST climate data record but also assess the impact
of implementing environmental protection policies at the land-sea interface. Satellite monitoring
provides an essential part of this global observing network but also requires a comprehensive global
network of trustworthy and accurate in situ measurements for validation and calibration. The present
reality is that the actual sampling of a number of important climate-related variables, including
temperature, is unevenly distributed in space or time with a large part of the coastal regions being
poorly sampled [18–20].

Previous use of satellite SST to monitor the coastal ocean have been carried out in different
regions worldwide, e.g., the English Channel [21], Canada [22], Caribbean Sea [23], Argentina [24],
South Africa [18], China [7], Western Australia [25–28], the Mediterranean Sea [29,30], and the Gulf of
California [31]. The aforementioned studies used several satellite SST products including Moderate
Resolution Imaging Spectroradiometer (MODIS) Aqua [22–24,26,30,31], MODIS Terra [18,22,23,26,30]
and Advanced Very High Resolution Radiometer (AVHRR) [7,18,21,25–29,31]. Some studies performed
in the coastal zones are close to places of anthropogenic infrastructures such as aquaculture [22] or
nuclear power stations [7]. Others have focused on areas with both ecological importance and interest
to tourism such as coral reefs [23]. Smale and Wernberg [24], while testing the hypothesis of whether
satellite SST data can be used as a proxy for water temperature in benthic ecology, highlighted the lack
of experimental field studies to improve our understanding of temperature-related processes in the
coastal zone.

Data acquisition and data processing of coastal satellite SST measurements are also prone to
various error sources, e.g., cloud contamination, atmospheric correction errors, sampling errors, surface
emissivity, sea surface roughness, and suspended particulate matter (SPM) [31,32]. This is a result both
of the variable natural characteristics of the coastal zone [33] and of the poor network of near-shore
coastal ocean instruments [18] when compared to the platforms in the open ocean [34]. Recently,



Remote Sens. 2020, 12, 1140 3 of 23

Brewin et al. [21] used AVHRR data of high temporal resolution in the coastal zone of Plymouth to
evaluate operational SST data at the coastline. They matched their in situ data within 1 h of the satellite
overpasses and they chose the closest 1 km pixel from their in situ logger’s location. In the Western
Mediterranean Sea, Bernardello et al. [30] made a similar comparison of MODIS Aqua SST data to in
situ temperature data recorded at five different locations, although without the same strict temporal
and spatial coincidence applied.

In this study, a similar method to Brewin et al. [21] was followed, where in situ temperature
data recorded in the Underwater Biotechnological Park of Crete (UBPC) were compared with satellite
SST data from MODIS Aqua and MODIS Terra instruments. The UBPC is a unique resource in the
Eastern Mediterranean since it is a large-scale in situ research infrastructure in the coastal zone of Crete
that provides autonomous temperature recordings since 2014. The UBPC started as a biotechnology
multi-use infrastructure and the instruments that were installed therein were for the needs of the local
environmental monitoring. However, because of the shallow nature of the temperature monitoring
installations, and since the location of the UBPC is in a key-spot of biodiversity changes due to
Lessepsian Migration and may be prone to climatic changes [35–37], it was thought this time series
could also potentially be useful for satellite coastal SST validation, and thus, it was decided to exploit
the vertical temperature loggers four-year time series for a comparison with the MODIS Aqua and
Terra SST data.

In this study, the main aim was therefore to evaluate the data collected from the autonomous
in situ data loggers of the UBPC for use in the validation of near-shore satellite SST measurements.
The hypothesis that the UBPC data could be useful in this way was tested by correlating the in situ data
with MODIS SST satellite data and examining the possible errors and biases related to such factors as
instrumentation and proximity to the shore.

2. Methods

2.1. Study Area

In the framework of various research projects of the Institute of Marine Biology, Biotechnology and
Aquaculture of the Hellenic Centre for Marine Research (HCMR), the Underwater Biotechnological
Park of Crete (UBPC) has been developed. The UBPC is a unique large-scale in-situ research
infrastructure that covers an area of 0.03 km2, lies about 2 km offshore the northern Cretan coast
in the vicinity of the HCMR land premises in Crete, with a depth increasing from 18 to 22 m along
a south–north direction. Objectives of the UBPC are the protection, conservation, and exploitation
of marine biological resources, the development of innovative technologies in the fields of open
sea invertebrate aquaculture, and marine ecotourism including the development of the HCMR
Artificial Reefs© and long-term monitoring of the coastal environment. In May 2014, a bottom
moored seafloor observatory was deployed that was comprised of various scientific instruments
mounted on a metal truss construction. The seafloor observatory is equipped with an Acoustic
Doppler Profiler (ADP, for the measurement of sea current velocity/direction in the water column and
wave velocity and height), a Fluorometer (for the measurement of in-vivo chlorophyll-a, turbidity,
and fluorescence) and a conductivity-temperature-density instrument (CTD, for the continuous
measurement of sea temperature, salinity, density, sound velocity, and dissolved oxygen). Alongside
the seafloor observatory, a vertical temperature logger array is deployed that has six sensors equally
spaced from 7 m down to 17 m depth.

2.2. In Situ Temperature Datasets

2.2.1. Seafloor Temperature Dataset from CTD

In May 2014, the SAIV SD208 CTD sensor was deployed with the seafloor observatory at a depth of
approximately 19 m in the southwest sector of the UBPC (Figure 1, latitude = 35.346621O N, longitude =
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25.278761O E). According to the manufacturers specifications, the instrument is certified for an accuracy
of +/−0.003 ◦C, over a range of −2 to 40 ◦C, with a resolution of 0.0002 ◦C and a response time of 0.1 s.
The instrument is accompanied by a Calibration Certificate (no. 3065) by Sensordata a.s. and SAIV
A/S, Bergen, Norway that gives a traceable reference of a General Oceanics ATB 1250 temperature
bridge with serial number 1235 and takes as working reference a Falmouth (Cataumet, MA, USA)
Scientific Model OTM S-112 S/N 1377-09JUL96 instrument [38]. The SAIV SD208 CTD manual states
that ‘Due to the excellent long term stability of sensors and circuitry, the instrument does not have to
be recalibrated for several years.’ The initial sampling/recording interval was set to 5 min. The position
of the instrument is approximately 1.5 m from the seafloor (Figure 2a). Every 3–6 months over the
duration of this study, the SAIV CTD was retrieved by scuba divers for the cleaning and maintenance
of its sensors and data were downloaded using the SAIV-MINISOFT SD200W software (SAIV A/S,
Bergen, Norway). This software serves as the communication with the instrument to set it up and
download and process the recorded data. Operational difficulties, due to bad weather conditions,
sometimes prevented the scientific diving team of HCMR to redeploy the instruments immediately
after the maintenance processes, thus, leading to some short periods of data gaps. The number and
periods of data collected are presented in Table A1 alongside the data series of the accompanying
sensors for this study.

Figure 1. (a) Map of the Eastern Mediterranean Sea. (b) Location of the underwater biotechnological
park of Crete (UBPC) (red arrow), almost 2 km offshore the northern coast of Crete island in Greece.

2.2.2. Water Column Temperature Dataset from HOBO Array

In August 2014 a HOBO Water Temp Pro v2 U22-001 (Onset Computer Corporation, Bourne, MA,
USA) (Figure 2b) vertical sensor array was deployed approximately 10 m from the seafloor observatory
of the UBPC (Figure 2c). According to the manufacturer’s specifications, a HOBO sensor is certified for
an accuracy of +/−0.21 ◦C, over a range of 0 to 50 ◦C, with a resolution of 0.02 ◦C and response time of
5 min in water. The initial sampling/recording interval was therefore set to 10 min. The vertical HOBO
array expands from 7 to 17 m below the sea surface and consists of six equally spaced sensors—one
every 2 m—mounted on a floating rope with buoys and weights to keep the sensors location in the water
column precise. The deepest sensor is approximately 1.5 m above the seafloor, thus, differing in depth
less than 1 m from the CTD of the seafloor observatory. Every 6–12 months over the duration of this
study, the HOBO sensors data were downloaded by SCUBA divers using the HOBO Waterproof Shuttle
for the readout and relaunching the HOBO sensors. The HOBO Waterproof Shuttle is compatible
with HOBO data loggers having an Optic USB interface and is waterproof to 20 m, with an operating
temperature ranging from 0 to 50 ◦C. For safety reasons, the deepest HOBO sensor was placed 2–3 m
above the 20 m operational limit of the HOBO Waterproof Shuttle. Twice during the duration of this
study, the whole HOBO sensor array was retrieved by the scientific diving team of HCMR for the
cleaning and maintenance of its sensors. The first time was for the replacement of the sensors and the
second time due to their batteries running out. During these two retrievals, data were downloaded
with the same HOBO Waterproof Shuttle. After every download, HOBOware Pro software (Onset
Computer Corporation, Bourne, MA, USA) was used for data readout and processing and to set up
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each HOBO sensor. From 2014 to 2016, a sampling/recording interval of 10 min was selected. From
2016 to 2018, the sampling interval was changed to 30 min to expand the battery life of the sensors.

Figure 2. The temperature installations in the UBPC: (a) The Seafloor Observatory of the UBPC, bottom
moored at approximately 19 m depth. The installed conductivity-temperature-density instrument
(CTD) instrument, the Acoustic Doppler Profiler (ADP) and the Fluorometer are shown. (b) A deployed
HOBO temperature sensor. The maximum length of the sensor is 11.5 cm and maximum diameter
3 cm. (c) A drawing of the installed temperature instruments. The distance between the CTD and the
HOBO3 is 10 m.

For this study, data from three HOBO sensors were used. The first dataset is from the sensor
located 7 m below sea surface, the second dataset is from the sensor located 11 m below sea surface,
the third dataset is from the sensor located 17 m below sea surface, hereafter called HOBO1, HOBO2,
and HOBO3, respectively. The number and periods of data collected are presented in Table A1
alongside the accompanying CTD data series for this study.

2.3. Remote Sensing SST Datasets

Remote sensing SST data were provided by the NASA Goddard Space Flight Center, Ocean
Ecology Laboratory, Ocean Biology Processing Group and downloaded from NASA’s OceanColor
website (https://oceancolor.gsfc.nasa.gov/). For this study, MODIS level 2 datasets were downloaded.
MODIS is an instrument onboard the Aqua and Terra satellites that views the entire Earth’s surface

https://oceancolor.gsfc.nasa.gov/
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every 1 to 2 days and acquires data in 36 spectral bands with a swath of 2330 km by 10 km along track
at nadir. The spatial resolution of the MODIS instrument for the bands that correspond to the datasets
used in this study is 1 × 1 km. Remote sensing datasets of SST and SST4 (night time SST at 4 µm
wavelength), which refer to skin measurements (a thin layer of ~500 µm depth at the water side of the
air-sea interface), were downloaded in netcdf format for the period of May 2014 until October 2018,
hereafter referred to as AQUASST/AQUASST4 and TERRASST/TERRASST4, respectively.

Algorithms were designed to extract the appropriate data. Firstly, the cell of each Aqua and
Terra MODIS swath that contained the coordinates of the Seafloor Observatory (35.346621◦ N,
25.278761◦ E) was selected and then only the data with a quality flag of ≤2 were used for the
next steps of the analysis. These quality flags are used to select valid SST data and have five
possible values as defined in NASA’s MODIS documentation: 0—best quality, 1—good quality,
2—suspect, 3—bad (cloud/ice/dust or atmospheric correction failed), 4—product failure (not processed
or land). Furthermore, the northern adjacent data cell for each of the previously selected cells was
extracted, in order to compare the values between them, since the northern cell lies further offshore
from the coast and allowed the possible effects of land adjacency and signal contamination to be
examined. The data corresponding to the northern adjacent cell in each case will be referred to as
AQUASST_N/AQUASST4_N and TERRASST_N/TERRASST4_N, with the same pattern as the data
from the cell containing the seafloor observatory.

2.4. Data Processing and Analysis

All the data recorded from the in situ loggers were initially set to the Local Time Zone—UTC +2
(EET) and UTC +3 (EEST)—but for the needs of this study time data were transformed to GMT to
equate to the units of the Aqua and Terra satellite data. Then, a comparison between the CTD and
the HOBO3 data took place to examine any differences between the two instruments that measure
water temperature at the same depth (~17 m). This was necessary because of the lack of any certificate
of calibration for the HOBO sensors, and thus, the calibration certificate of the CTD was used to
provide a rough check on the measurement accuracy of the HOBOs in their long-term deployment
conditions. Following this equivalence check, a comparison between the HOBO1, HOBO2, and
HOBO3 datasets took place, to see any differences in the water column temperature. HOBO1 nighttime
data were extrapolated to surface following the Group for High Resolution Sea Surface Temperature
(GHRSST) [39] method recommended by Donlon et al. [40]. In this study, the relationship between
nighttime temperature from 5 m depth and surface temperature, for wind speeds greater than 2 m/s,
was formulated [40] Equation (2). Data computed for generating their formula were recorded in
various research expeditions using above water infrared radiometers and in water thermistors and
refer to approximately 5 m depth. However, Donlon et al. [40] suggested that this extrapolation method
is applicable for the upper ocean layer to ~10 m depth, if well mixed, making it suitable for our 7 m
depth bulk temperature measurements. Thus, only nighttime in situ data for wind speeds >2 m/s
were extrapolated and used in this study, to avoid the complicating effect of diurnal stratification,
according to the aforementioned method. This extrapolated dataset, which was compared with satellite
measurements, will be referred to as SSTskin. Finally, the remote sensing datasets AQUASST4 and
TERRASST4 were compared to the SSTskin dataset for validation potential, and all remote sensing
datasets were compared between each other to see any differences due to distance from the coastline.
For the comparison between the SSTskin and the remote sensing data series, only the in situ data that
were logged one hour before or after the satellite overpass were selected. For this study, up to 12 in
situ data values were averaged and compared with the remote sensing data values (i.e., 1 h either
side of the satellite overpass time with a 10-min sampling rate). For all datasets descriptive statistics
(e.g., mean value, standard deviation-StD, standard error-SE, range-Min/Max, number of days with
valid data-N) were compiled, and for each comparison between datasets, a set of correlation and bias
statistics were calculated (e.g., squared Pearson correlation coefficient-r2, mean bias-δ, mean absolute
error-∆, root mean squared error-Ψ).
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3. Results

3.1. Comparison between In Situ Temperature Data

3.1.1. Comparison between the CTD and the HOBO3 Data

For this study to be as efficient as possible in terms of calibration and accuracy, a comparison
between the SAIV CTD temperature sensor and the HOBO3 temperature logger took place. The SAIV
CTD was accompanied with a Certificate of Calibration with traceable references of instrumentation [38].
Since the two instruments were deployed at nearly the same depth (CTD at ~17.5 m and HOBO3 at
~17 m), their data were compared for the whole duration of this study. In Figure 3, the data series
of the CTD and the HOBO3 is presented, and in Table 1, the statistics of their recorded data are
presented. Figure 3a shows a good agreement between the two data series over time and in Figure 3b,
the difference between the HOBO3 minus the CTD is presented. Figure 3c shows the correlation plot
for this comparison with correlation statistics. The squared Pearson’s correlation coefficient was 0.9970,
which was calculated from 1066 days of recordings where both instruments were deployed with their
daily averaged values taken into account. The mean bias was calculated to be δ = 0.063 ◦C and the mean
absolute error ∆ = 0.1178 ◦C (Table 1). The correlation statistics show that the HOBO3 temperature
measurements were in good agreement with the CTD measurements. However, if one assumes that
they were both measuring a uniformly well-mixed water mass, and if the CTD is considered “truth,”
then the HOBO3 had a measurement bias of ~0.1–0.2 ◦C (depending on the bias parameter used). This
is in keeping with the stated accuracy of the instrument and is also within the established uncertainty
level of thermistors on drifting buoys (0.2 K) calculated from three-way analysis methods [41–43].

Figure 3. (a) Data series of the CTD instrument (accompanied by a calibration certificate) compared to
the data series of the HOBO3 logger (no calibration certificate). Both sensors are deployed at almost
17 m below the sea surface. Data points are the daily averaged values of each sensor. (b) Difference
between the HOBO3 minus the CTD daily averaged data. For the interruption between June 2016 and
December 2016, refer to Table A1. (c) Correlation plot and statistics (refer to Section 2.4 for definitions)
for the comparison between the HOBO3 and CTD data.
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Table 1. Comparison statistics between the CTD, the HOBO1, the HOBO2, and the HOBO3 datasets.
The squared Pearson correlation coefficient (r2), the mean bias (δ), the mean absolute error(∆), the root
mean squared error (Ψ), and the number of matchups taken into account (N) are presented for daily
averaged values. The last column refers to the percentage of the raw data matchups—not the daily
averaged—that had difference over >2 ◦C / >3 ◦C, respectively.

r2 δ ∆ Ψ N % of Matchups with Difference >2 ◦C/>3 ◦C

HOBO3–CTD 0.9970 0.06 0.12 0.21 1066 -
HOBO1–HOBO2 0.9987 0.05 0.16 0.16 1170 0.004%/0%
HOBO1–HOBO3 0.9916 0.13 0.18 0.40 1292 1.17%/0.33%
HOBO2–HOBO3 0.9952 0.11 0.13 0.30 1076 0.53%/0.06%

Furthermore, the mean annual (Mean), the standard deviation (Std), the standard error (SE),
the minimum (Min), and the maximum (Max) values for every sensor were calculated and are
presented in Table A2 alongside the days of deployment per year for every sensor. Variations in the
aforementioned values (e.g., HOBO1 2014 vs. HOBO1 2015) are not anomalies but have to do with the
different periods within the year that each sensor was deployed (refer to Table A1). For annual datasets
that cover most days of the year, such as CTD 2015 and CTD 2017 or HOBO3 2015 and HOBO3 2017,
there is a common temperature pattern with an average value of approximately 20.5 ◦C and a standard
deviation of approximately 4 ◦C.

3.1.2. Comparison between the HOBO1, HOBO2, and HOBO3 Data

The HOBO1, HOBO2, and HOBO3 loggers are part of a vertical array that is located 10 m away
from the Seafloor Observatory and was initially deployed to record any variations in water column
temperature and investigate any correlation with sea current velocity and direction (acquired by the
ADP). For the needs of this study, the temperature variations due to different depths were examined,
in order to examine any depth related biases concerning the vertical mixing of our study area.

In Figure 4a the temperature time series of the HOBO1 and the HOBO2 loggers is presented.
The datapoints present the daily averaged data for each logger and only days that both sensors were
recording were taken into account. The difference between HOBO1 minus HOBO2 is presented in
Figure 4b. In Figure 4c, the correlation plot between HOBO1 and HOBO2 daily averaged values is
presented. The squared Pearson’s correlation coefficient was 0.9987 and the average temperature
difference for the whole time series was 0.0456 ◦C. The number of days that both sensors were recording
was 1170. It was expected that the temperature difference between the HOBO1 minus the HOBO2 data
was going to be slightly positive, as these results show, because HOBO1 is deployed at 7 m below the
sea surface, while HOBO2 is deployed 11 m below the sea surface.

In Figure 5a, the temperature time series of the HOBO1 and the HOBO3 loggers is presented.
The datapoints present the daily averaged data for each temperature logger and again only days
that both sensors were recording were taken into account. In Figure 5c, the correlation plot between
HOBO1 and HOBO3 daily averaged values is presented. The squared Pearson’s correlation coefficient
is 0.9916 and the average temperature difference for the whole time series is 0.1332 ◦C. The days that
both sensors were recording were 1292. It was expected that the temperature difference between the
HOBO1 minus the HOBO3 data was going to be positive, as these results show (Figure 5b, δ = 0.13 ◦C),
because the HOBO1 is deployed at 7 m below the sea surface, while HOBO3 is deployed 17 m below
the sea surface and ~1.5 m above the seafloor.

As Table 1 presents, there is a small percentage of matchups that have a difference of >2 ◦C and
>3 ◦C between the HOBO sensors data. This means that under most conditions, the study area is
vertically well-mixed. However, as presented in Figures 4b and 5b there are periods that temperature
differences of more than 2 ◦C—up to 3 ◦C—can happen especially when comparing the shallowest
HOBO1 (7 m) with the deepest HOBO3 (17 m) dataset. These differences were recorded during
summertime, a fact that is possibly due to clear hotter sunny days with light currents and wind,
resulting in increased direct sunlight heating the closer to the surface HOBO1 logger.
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Figure 4. (a) Data series of the HOBO1 logger deployed 7 m below sea surface compared with the
HOBO2 logger data that is deployed 11 m below the sea surface. Data points are the daily averaged
values of each sensor only from days that both sensors recorded data. (b) Difference between the
HOBO1 minus the HOBO2 daily averaged data. (c) Correlation plot for the comparison between the
HOBO1 and HOBO2 data (refer to Section 2.4 for definitions).

Figure 5. (a) Data series of the HOBO1 logger deployed 7 m below the sea surface compared with the
HOBO3 logger data that is deployed 17 m below the sea surface. Data points are the daily averaged
values of each sensor only from days that both sensors recorded data. (b) Difference between the
HOBO1 minus the HOBO3 daily averaged data. (c) Correlation plot between the HOBO1 and HOBO3
data (refer to Section 2.4 for definitions).
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Furthermore, for local environmental monitoring, CTD casts have been undertaken in the vicinity
of the seafloor observatory since its installation at various times of year, covering all four seasons (results
not shown). These have always shown a good correlation with the HOBO sensors at their specific
depths, thus, adding further support to the hypothesis that the study area is vertically well-mixed.

3.2. Comparison between In Situ and Remote Sensing Temperature Data

In this section, the results associated with the data recorded in the cell that contains the Seafloor
Observatory location are presented. Table A3 presents the annual average value, the standard deviation
(StD), the standard error (SE), the minimum (Min), and maximum (Max) values recorded and the
number of days that a satellite overpass with quality flag values of 0, 1, and 2 occurred. Data in
Table A3 refer to every satellite SST dataset of AQUASST, AQUASST4, TERRASST, and TERRASST4.

AQUASST4 data are presented in Figure 6a, with the averaged SSTskin data from within ±1 h
from the respective satellite overpass, resulting in a good matchup that follows a sinusoidal interannual
SST pattern. In Figure 6c, the correlation plot between AQUASST4 and SSTskin data is presented,
where the squared Pearson’s correlation coefficient is 0.9847 from 92 mutual pairs of measurements.

Figure 6. (a) SSTskin extracted and averaged data within ±1 h of the respective satellite overpass
compared with Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data from the swath’s
cell that contains the Seafloor Observatory from the AQUASST4 dataset. (b) Difference between the
SSTskin minus the AQUASST4 dataset. (c) Correlation plot between the SSTskin and the AQUASST4
dataset (refer to Section 2.4 for definitions).
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To evaluate the utilization of the Terra MODIS SST data, the same selection of cells and the same
filtering and processing as the Aqua MODIS SST data took place. The acquired TERRASST4 dataset
is presented in Figure 7a compared with the averaged SSTskin data that were obtained within ±1 h
of the respective satellite overpass. Again, the results show a good matchup, following a sinusoidal
interannual SST pattern. In Figure 7c the correlation plot between TERRASST4 and SSTskin data
is presented and the squared Pearson’s correlation coefficient is 0.9689, from 90 mutual pairs of
measurements (Table 2).

Figure 7. (a) SSTskin extracted and averaged data within ±1 h of the respective satellite overpass
compared with Terra MODIS data from the cell that contains the Seafloor Observatory from TERRASST4
dataset. (b) Difference between the SSTskin minus the TERRASST4 dataset. (c) Correlation plot between
the SSTskin and the TERRASST4 dataset (refer to Section 2.4 for definitions).

Table 2. Comparison statistics between the MODIS AQUA and MODIS TERRA datasets and the
SSTskindata. The SSTskin data are averaged from within +/−1 h of the AQUA and TERRA satellite
overpass. The squared Pearson correlation coefficient (r2), the mean bias (δ), the mean absolute error
(∆), the root mean squared error (Ψ), and the number of matchups taken into account are presented.

r2 δ ∆ Ψ N

SSTskin–AQUASST4 0.9847 −0.08 0.27 0.42 92
SSTskin–TERRASST4 0.9689 −0.35 0.51 0.76 90

3.3. Comparison between the MODIS Aqua and Terra Data from the Cell Containing the Seafloor Observatory
of the Underwater Biotechnological Park of Crete and the Northern Adjacent Cell

For the purpose of examining land contamination of the satellite remote sensing SST data due to
the proximity of the coastline with the site of this study, for each of the MODIS datasets the northern
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adjacent cell to the one that contains the Seafloor Observatory was extracted and the respective
temperature value was selected, thus creating the AQUASST_N, AQUASST4_N, TERRASST_N, and
TERRASST4_N datasets. The new datasets were treated with the exact algorithms as the datasets of the
cell containing the Seafloor Observatory location. The extracted MODIS Aqua and MODIS Terra data
with value flags of 0, 1, and 2 are compared with the respective ones that are extracted from the cell
containing the in situ loggers. Table A3 presents the annual average value, the standard deviation (StD),
the standard error (SE), the minimum (Min), and maximum (Max) values recorded and the number of
days that a satellite overpass with quality flag values of 0, 1, and 2 occurred. Data in Table A3 refer to
every satellite SST dataset of AQUASST_N, AQUASST4_N, TERRASST_N, and TERRASST4_N.

All data pairs under comparison have the same sampling time, since they are collected from the
same satellite swath. First, a comparison from the MODIS Aqua dataset is presented in Figures 8
and 9, referring to SST (daytime) and SST4 (nighttime) data, respectively. Both comparisons result
in high comparison statistics, with data following a sinusoidal interannual pattern (Figures 8a and
9a) and most matchups have a difference less than 0.5 ◦C (Figures 8b and 9b). In Figures 8c and 9c,
the correlation plot between the loggers’ cell and the northern adjacent cell is presented for the daytime
and the nighttime satellite measurements, respectively. The squared Pearson’s correlation coefficient is
0.995 and the mean bias is 0.02 for 199 pairs of data of daytime MODIS Aqua measurements (Figure 8c).
For the nighttime MODIS Aqua, the squared Pearson’s correlation is 0.9947 and the mean bias is 0.07
for 92 pairs of data (Figure 9c).

Figure 8. (a) AQUASST (in situ logger’s cell) data compared with AQUASST_N (respective northern
adjacent cell) data from the same satellite swath. All data have quality flags of 0, 1, and 2. (b) Difference
between the AQUASST minus the AQUASST_N dataset. (c) Correlation plot between the AQUASST
and the AQUASST_N dataset (refer to Section 2.4 for definitions).



Remote Sens. 2020, 12, 1140 13 of 23

Figure 9. (a) AQUASST4 (in situ logger’s cell) data compared with AQUASST4_N (respective northern
adjacent cell) data from the same satellite’s swath. All data have quality flags of 0, 1, and 2. (b) Difference
between the AQUASST4 minus the AQUASST4_N dataset. (c) Correlation plot between the AQUASST4
and the AQUASST4_N dataset (refer to Section 2.4 for definitions).

Similar to the MODIS data from the cell containing the Seafloor Observatory location, in order
to evaluate the utilization of the Terra MODIS SST data, the same selection of cells and the same
filtering and processing as with the AQUASST_N and AQUASST4_N data took place. The acquired
TERRASST_N and TERRASST4_N datasets are presented in Figures 10 and 11. Again, the data result
in a good matchup and follow a sinusoidal interannual SST pattern (Figure 10a, Figure 11a). Most of
the differences between the two adjacent cells were less than 0.5 ◦C both for daytime and nighttime
satellite measurements (Figure 10b, Figure 11b). The squared Pearson’s correlation coefficient was
0.995 for the daytime matchups and 0.9945 for the nighttime matchups. The mean bias for both the
daytime data and the nighttime data was δ = 0.03. The above were calculated from 135 and 87 pairs of
daytime and nighttime data, respectively (Table 3).

Table 3. Comparison statistics between the RS SST values from the cell containing the in situ data
loggers and its northern adjacent cell, both for the MODIS AQUA and the MODIS TERRA datasets.
The squared Pearson correlation coefficient (r2), the mean bias (δ), the mean absolute error (∆), the root
mean squared error (Ψ), and the number of matchups taken into account are presented.

r2 δ ∆ Ψ N

AQUASST–AQUASST_N 0.9950 0.02 0.20 0.26 199
AQUASST4–AQUASST4_N 0.9947 0.07 0.19 0.26 92
TERRASST–TERRASST_N 0.9950 0.03 0.23 0.30 135

TERRASST4–TERRASST4_N 0.9945 0.03 0.22 0.28 87
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Figure 10. (a) TERRASST (in situ logger’s cell) data compared with TERRASST_N (respective northern
adjacent cell) data from the same satellite’s swath. All data have quality flags of 0, 1, and 2. (b) Difference
between the TERRASST minus the TERRASST_N dataset. (c) Correlation plot between the TERRASST
and the TERRASST_N dataset (refer to Section 2.4 for definitions).

Figure 11. Cont.
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Figure 11. (a) TERRASST4 (in situ logger’s cell) data compared with TERRASST4_N (respective
northern adjacent cell) data from the same satellite’s swath. All data have quality flags of 0, 1, and 2.
(b) Difference between the TERRASST4 minus the TERRASST4_N dataset. (c) Correlation plot between
the TERRASST4 and the TERRASST4_N dataset (refer to Section 2.4 for definitions).

4. Discussion

This study utilized the four-year data series of the in situ temperature loggers deployed in
the Underwater Biotechnological Park of Crete and investigated the data’s suitability for use in the
validation of MODIS SST products. For the in situ SSTskin, when compared with the AQUASST4
data, there was a negative bias with mean bias values (δ) of −0.08 and squared Pearson’s correlation
coefficient equal to 0.9847 (Table 2). Concerning the MODIS Terra SST products, the TERRASST4
data showed the same pattern in the statistical tests as the aforementioned MODIS Aqua products
(SSTskin-TERRASST4: δ= −0.35, r2 = 0.9689) (Table 2). Moreover, for the location of this study, the
nighttime TERRASST4 data were recorded closer to dusk than the nighttime AQUASST4 data, which
were recorded later in the night. There is a significant cool skin at night—cooler than at dusk—resulting
in the TERRASST4 data having a greater negative bias (δ = −0,35) than the AQUASST4 data (δ = −0.08)
when compared to in situ SSTskin data. As a reference, MODIS Terra overpasses in our region
occurred around 20:00 UTC and MODIS Aqua overpasses were around 00:00 UTC, and the latest sunset
of the year was around 17:40 UTC. Both satellite datasets overestimated the SSTskin measurement
when compared with the in situ data of our study area. Furthermore, the comparison between the
satellite cell that contains the location of the loggers and the northern adjacent cell—further from
the shore—showed an overall positive bias (Table 3), meaning that higher temperature values were
recorded in the cell closer to the shore. These results are in good agreement with previous studies that
compared satellite SST data with in situ collected data [18,21–30]. With such good matchups between
in situ and satellite measurements, these results and statistics also suggest a potential for the use of
UBPC in situ temperature measurements in satellite SST validation.

Recently, Brewin et al. [21] compared AVHRR data in a similar way with in situ data of the
English Channel off the coast of Plymouth and showed a higher difference in satellite SST retrievals in
near-shore waters than in offshore waters. In their study, the differences between satellite and in situ
SST data were well-correlated with land surface temperature and solar zenith angle. For their closest to
the coastline location the correlation between in situ and satellite SST data was 0.83 (δ = −0.30, RMSE
= 1.30), while for an offshore location, the correlation between in situ and satellite SST data was 0.97
(δ = −0.01, RMSE = 0.48). Worth mentioning here, as discussed in their study [21], the closest satellite
pixel to the coastline was closer than 2 km offshore, and potentially influenced by land-contamination,
since land may be included within the satellite pixel. For our study, the correlation coefficient was over
0.967, and δ was between −0.35 and −0.08, while RMSE was between 0.42 and 0.76 for the in situ with
RS SST comparisons. In general, the correlation results of this study’s comparisons agreed well with
the offshore results of Brewin et al. [21]. This may indicate that the land adjacency effect is low enough
to allow these good matchups. However, the bias levels indicate that it is still present, although not
to such a high degree as the coastline location for Brewin et al. Even though the study by Brewin
et al. [21] was with a different satellite SST product, this comparison indicates that the same principles
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and difficulties govern all satellite derived coastal SST measurements and their validation, particularly
the proximity to land.

Another recent study by Bernardello et al. [30], in the Western Mediterranean, is also worth
discussing in more detail. This study compared MODIS-Aqua data with in situ temperature data
loggers, and pointed to a strong correspondence between satellite and in situ data in their area of
study. For their study location, all five in situ datasets, when compared with MODIS-Aqua SST data,
had r > 0.98 and −0.27 < δ < 0.24. Their study used a method of reconstructing the temperature
for shallow near-shore environments not applicable for satellite validation but for overall variability
investigation, intra-seasonal and interannual variability, and unseasonably extreme events. Their
results cannot be directly compared with ours, but could provide a direction for future work and
comparisons concerning two different regions of the Mediterranean Sea, showing a wider application
of satellite SST data reconstruction as a proxy for near-shore habitats monitoring.

With respect to the above discussion—and in fact to all relevant studies for validating coastal
satellite SST measurements—this is indicative of some of the major difficulties of gaining consistent
and valid satellite SST data in the coastal zone. In contrast with the open ocean SST satellite conditions,
in the coastal zone, many extra problems need to be addressed. Not only the very nature of some SST
products make it impossible to be of use in the coastal zone, e.g., data collected from MW (microwave)
technology sensors have to be 75 km away from land because of large footprints that can overlap land,
in contrast to IR (infrared) technology sensors that need to be at least 1 km from the closest shore [18],
but also the characteristics of the coastal zone can result in different land adjacency effects on the
satellite SST data. The local characteristics of a certain area must be taken into account, particularly
for satellite data validation, and need thorough investigation concerning the local geomorphological
characteristics, the prevailing oceanographic and atmospheric conditions, and various other factors.
For example, Stobart et al. [27] mentioned that sites with adjacent estuaries are characterized by higher
SST in the summer and lower in the winter than in situ temperature data, due to fresh, cold water
riverine inputs that float above the denser but warmer seawater. For the location of this study, the
conditions were locally specific, with the UBPC lying about 2 km offshore the northern coast of Crete.
The northern coast of Crete runs almost horizontally on a west-east axis and is open to the wave action
of the Aegean Sea and the prevailing northwest winds that dictate a prevailing west-to-east surface
current for the UBPC location. The wider study location is affected by local winterbourne steams that
flow only after rainfall; thus, the fresh water input and the transportation of suspended matter are very
limited in the satellite cell that the measurements are taken. Furthermore, with the MODIS cell spatial
resolution at 1 × 1 km the distance of the study location from the closest shore being approximately
2 km makes it sufficiently distant from the coast not to be directly contaminated by land. However,
the possibility of a systematic difference between extrapolated SSTskin from 7 m and the actual SSTskin
temperature can be addressed only with the installation of close-to-surface in situ loggers that will
record any stratification phenomena especially during precipitation and/or periods when the local
streams dissipate fresh water in the coastal zone.

There is also a need to highlight the impact of autonomous in situ sensors, in terms of the
applicability of their operating accuracy and uncertainty. Many studies have used autonomous in
situ loggers that come with no traceable certificates of calibration, making them prone to add a large
amount of uncertainty to satellite measurement validation if they are not at least compared with
a sensor that has a traceable calibration certificate and process. Clearly, calibration requirements may
raise the financial cost of a study, or exclude datasets with poor accuracy. In this study, for example,
the initial deployment of the sensors was to monitor the local environment of the UBPC and only after
the comparison between the HOBO3 and the CTD (including a temperature instrument accompanied
by a traceable calibration certificate) resulted in very good correlation statistics (r2 = 0.9970, δ = 0.06,
RMSE = 0.21); thus, it was decided to use the HOBO data series for comparison with the satellite SST
data. There is another important factor that should be borne in mind, which had an unknown effect on
the results of this study when comparing in situ data with RS SST data. This is the difference of depth
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in the water column where the measurements took place, i.e. in situ SSTskin data were extrapolated
to the surface from the 7 m depth temperature logger and the satellite measurements are of the skin
layer taken from above the sea. This has introduced a systematic measurements of temperature bias
that is difficult to correct for in the present in situ time series, and thus, promotes the reconfiguration
of the UBPC temperature array to include sensors at or close to the surface in order to eliminate the
extrapolation necessity as much as possible, and even try to compare RS SST data with daytime in situ
SSTskin data.

Nevertheless, most of the studies comparing satellite SST with in situ temperature data still
concluded that satellite SST is recommended for environmental/biological studies and can be used as
a proxy for temperature in near-shore coastal areas [24,26,28,29]. However, as discussed above and
in the introduction, when it comes to the validation of satellite SST measurements, many additional
factors have to be taken into consideration. Many of the in situ data are collected from research vessels
and are heterogeneous [29] in size, type, and operating footprint, thus creating variable conditions.
Additionally, there are many different types of in situ temperature loggers [29] deployed at different
depths and, apart from having to account for this depth bias, the main problem with them is the
traceability of their calibration and estimating the overall uncertainty budget of their measurements.
For example, the HOBO Pro V2 loggers that are widely used -including in this study- have a poor
accuracy (±0.2 ◦C) and resolution (0.02 ◦C), and their uncertainty budget when operated long-term in
the field and when evaluated, may turn out to be unacceptable for evaluating RS SST data. In various
studies, the accuracy of the in situ temperature loggers was compared with the accuracy of other
instruments with traceable calibration certificates [21,23]. As Castillo and Lima [23] mentioned, even
the position of a logger in the water is crucial; when the narrower side of the logger—or its attached
shader—faces the sea surface, it is prone to minimal heat exposure.

It is clear that in situ temperature data loggers should provide as accurate a ground truthing
factor as possible for the validation of satellite data. Furthermore, it is becoming a prerequisite for
any in situ measurements to be used for satellite sensor validation that they should be SI-traceable (SI:
International System of Units) with an uncertainty estimate for each measurement. This increasing
trend is demanded by the space agencies and follows the recommendations of the Committee on Earth
Observation Satellites (CEOS) [44], the Quality Assurance Framework for Earth Observation (QA4EO)
guidelines [45], and the European Space Agency (ESA) Fiducial Reference Measurements initiative [46],
in particular the project for Fiducial Reference Measurements for Satellite derived Surface Temperature
(FRM4STS) [47].

The above suggests further follow-on work concerning our study area and the UBPC, and an
attempt will be made to calibrate all the in situ temperature sensors according to FRM principles and to
evaluate the additional uncertainty related to using/modeling measurements at a certain depth for the
comparison of satellite measurements of the surface. Now that this study has shown the UBPC’s in situ
temperature measurement potential for satellite SST validation, this further effort may help to make
them more relevant to the space agencies for operational satellite validation. Furthermore, additional in
situ temperature loggers are going to be installed, with some as close to the sea surface as possible to help
account for the depth of measurement related biases in the in situ time series, something that could also
be assisted by comparing our in situ data with an Infrared radiometer that measures the SSTskin-like
Infrared Sea-surface temperature Autonomous Radiometer (ISAR) or Marine-Atmospheric Emitted
Radiance Interferometer (M-AERI). For these near-surface sensors, following the recommendations
of Castillo and Lima [23], the installation will be with their long surface vertical to the sea surface in
order to be less affected/biased due to direct solar radiation heating. This will also provide the most
accurate method for investigating any stratification phenomena in the study area, since it will as much
as possible prevent direct solar radiation heating—which, when using unshaded loggers, can result in
areas with transparent clear waters, with erroneously high underwater temperature measurements,
according to Bahr et al. [48] and Brewin et al. [49]. A land-based meteorological station is also going
to be installed in the vicinity of the study area, so that it will be possible to investigate and quantify
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any correlations between atmospheric conditions and satellite SST measurement anomalies, following
the methods of Brewin et al. [21]. Finally, as there are also biases between different satellite missions,
each with their own uncertainties [18,22], following the UBPC temperature sensor upgrade, a separate
inter-comparison study is planned between various satellite SST products and the UBPC data to give
an indication of the different correspondence between satellite sensors and products when compared
to the same in situ data.

5. Conclusions

The four-year (2014–2018) in situ data series recorded from the UBPC in the waters off the northern
coast of Crete (approximately 2 km away from the shore) was compared with MODIS Aqua and
MODIS Terra SST satellite data. Only data that were within ±1 h of the satellite overpasses were used,
and a close correlation was found between these nighttime in situ data and RS products—from Aqua
and Terra satellite overpasses (e.g., r2 > 0.97, δ < -0.35, ∆ < 0.51, Ψ < 0.76 both for Aqua and Terra from
the cell that contains the UBPC). When comparing RS data from the cell that contains the loggers with
the northern adjacent cell, an overall positive bias occurred, meaning that higher temperature values
were recorded closer to the shore.

These matchups between in situ and satellite measurements suggest a potential for the use of
UBPC in situ temperature measurements in satellite SST validation. The future plans for the UBPC are
therefore not only to continue the operation of the autonomous loggers, but also to add more loggers
as close to the sea surface as possible to be closer to the surface (skin) temperature of satellite SST
measurements. Furthermore, the establishment of a land meteorological station in the vicinity of the
study location will provide information about the interaction and effect of atmospheric conditions on
the operation of satellite acquired SST data. However, to be of real use in satellite validation, as part of
upgrading the UBPC, it is of prime importance that priority is given to the estimation of the uncertainty
budget of the in situ temperature loggers and the traceability of all the calibration procedures of the
instrumentation being used. This is in line with the requirements of fiducial reference measurements,
an ESA initiative that was set to help guide satellite validation for the future [46].
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Appendix A

Table A1. Period of deployment for every sensor in the Underwater Biotechnological Park of Crete.

Sensor Year Period

CTD 2014 26/05/2014–31/12/2014
2015 01/01/2015–31/12/2015
2016 01/01/2016–02/10/2016 & 07/12/2016–31/12/2016
2017 01/01/2017–31/12/2017
2018 01/01/2018–27/03/2018

HOBO1 2014 14/07/2014–31/12/2014
2015 01/01/2015–31/12/2015
2016 01/01/2016–07/06/2016 & 09/12/2016–31/12/2016
2017 01/01/2017–31/12/2017
2018 01/01/2018–01/11/2018

HOBO2 2014 14/07/2014–31/12/2014
2015 01/01/2015–31/12/2015
2016 01/01/2016–07/06/2016 & 09/12/2016–31/12/2016
2017 01/01/2017–22/08/2017
2018 27/03/2018–01/11/2018

HOBO3 2014 16/10/2014–31/12/2014
2015 01/01/2015–31/12/2015
2016 01/01/2016–07/06/2016 & 09/12/2016–31/12/2016
2017 01/01/2017–31/12/2017
2018 01/01/2018–01/11/2018

Table A2. Statistical data extracted from daily averaged values of the deployed instruments in the
Underwater Biotechnological Park of Crete, and the corresponding days of measurement for every year.
Interannual variations occur due to different periods of deployment from year to year (see Table A1).
The mean value of daily averaged data, the standard deviation, the standard error, the minimum, and
maximum values for each data series are presented.

Sensor Year Mean StD SE Min Max Days

CTD 2014 23.2651 2.7996 0.194586 17.9808 27.3790 207
2015 20.6792 3.9237 0.205658 15.0753 27.7596 364
2016 20.5336 4.1066 0.237095 15.4409 27.2247 300
2017 20.4080 3.9063 0.204465 14.4606 27.0765 365
2018 16.1836 0.4254 0.045872 15.5002 17.3387 86

HOBO1 2014 23.5580 3.1856 0.245046 16.0967 27.7329 169
2015 20.8872 4.0666 0.212856 14.9445 28.1352 365
2016 17.6343 1.5589 0.115553 15.7778 22.3708 182
2017 20.6020 4.0199 0.210411 14.3907 27.4004 365
2018 21.4671 4.3554 0.249389 14.0752 27.6611 305

HOBO2 2014 23.5674 3.1649 0.243454 16.1505 27.8156 169
2015 20.8691 4.0223 0.210537 15.0354 27.8438 365
2016 17.6100 1.5093 0.111877 15.7806 22.3003 182
2017 19.8281 4.3129 0.281943 14.4217 27.2163 234
2018 23.3735 3.3278 0.22436 16.1800 27.5739 220

HOBO3 2014 20.3626 1.7853 0.206149 15.3942 23.6355 75
2015 20.7576 3.9212 0.205245 15.0493 27.7035 365
2016 17.5311 1.4586 0.108119 15.5188 22.1203 182
2017 20.4538 3.9013 0.204203 14.4756 27.1492 365
2018 21.3070 4.2799 0.245066 15.5077 27.5616 305
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Table A3. Statistical data extracted from remote-sensing satellite measurements with quality flag values
of 0, 1, and 2. The mean value, the standard deviation, the standard error, the minimum, and maximum
values for each data series are presented. Additionally, the number of days that had the corresponding
quality flag values for every year is presented. Data series with the ‘_N’ ending refer to the northern
cell of the satellite swath from the cell that contains the Seafloor Observatory of the Biotechnological
Park of Crete.

Sensor Year Mean StD SE Min Max Days

AQUASST 2014 23.4166 3.5380 0.505429 16.2250 27.4900 49
2015 23.5043 3.6787 0.554585 15.8900 29.9450 44
2016 22.8998 3.3402 0.427669 16.3550 28.8200 61
2017 22.8295 4.1823 0.563941 14.5800 27.0400 55
2018 25.2624 2.2572 0.301631 16.5900 27.6850 56

AQUASST4 2014 23.5379 3.2620 0.639731 16.7000 27.1550 26
2015 24.0261 3.2073 0.617245 16.3850 28.8450 27
2016 23.2771 3.2781 0.642888 17.4700 27.1550 26
2017 23.6767 3.1903 0.713373 16.4550 26.4850 20
2018 25.3684 2.8590 0.5718 16.7300 27.6600 25

TERRASST 2014 22.5046 3.8579 0.42346 12.1800 27.4400 83
2015 23.4049 3.8319 0.436686 14.6950 28.6600 77
2016 22.8998 3.3402 0.427669 16.3550 28.8200 61
2017 22.8295 4.1823 0.563941 14.5800 27.0400 55
2018 23.1479 4.1998 0.491549 14.4050 27.9300 73

TERRASST4 2014 22.5683 3.9895 0.59472 15.4100 27.7850 45
2015 23.9990 3.8150 0.545 15.8250 29.2050 49
2016 23.2771 3.2781 0.642888 17.4700 27.1550 26
2017 23.6767 3.1903 0.713373 16.4550 26.4850 20
2018 24.0743 3.8630 0.507237 15.6000 28.0150 58

AQUASST_N 2014 23.3129 3.5346 0.510176 16.1050 27.4100 48
2015 23.4441 3.4335 0.542884 15.7800 29.7650 40
2016 22.9784 3.3350 0.437907 16.2700 28.6000 58
2017 22.7984 4.2106 0.627679 14.5950 27.0400 45
2018 25.3579 2.3345 0.336956 16.4750 27.5100 48

AQUASST4_N 2014 23.3467 3.3631 0.659558 16.2850 27.1750 26
2015 24.0608 2.8468 0.56936 17.3750 28.6800 25
2016 23.3600 3.2674 0.6813 17.4200 27.1400 23
2017 23.4629 3.1871 0.731171 16.5150 26.5750 19
2018 25.0714 2.8814 0.614317 16.6900 27.5350 22

TERRASST_N 2014 22.2908 3.8583 0.445518 12.1650 27.3250 75
2015 23.4556 3.7451 0.447625 14.8900 28.7600 70
2016 22.9784 3.3350 0.437907 16.2700 28.6000 58
2017 22.7984 4.2106 0.627679 14.5950 27.0400 45
2018 22.7552 4.3419 0.560537 14.5200 27.4750 60

TERRASST4_N 2014 22.3801 3.9640 0.626763 15.6400 27.4450 40
2015 23.8145 3.9018 0.575289 15.9800 28.7150 46
2016 23.3600 3.2674 0.6813 17.4200 27.1400 23
2017 23.4629 3.1871 0.731171 16.5150 26.5750 19
2018 23.6804 3.9737 0.573554 16.0700 27.6750 48
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