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Abstract: Nitrogen (N) is one of the most essential nutrients that can significantly affect crop grain
yield and quality. The implementation of proximal and remote sensing technologies in precision
agriculture has provided new opportunities for non-destructive and real-time diagnosis of crop N
status and precision N management. Notably, leaf fluorescence sensors have shown high potential in
the accurate estimation of plant N status. However, most studies using leaf fluorescence sensors have
mainly focused on the estimation of leaf N concentration (LNC) rather than plant N concentration
(PNC). The objectives of this study were to (1) determine the relationship of maize (Zea mays L.)
LNC and PNC, (2) evaluate the main factors influencing the variations of leaf fluorescence sensor
parameters, and (3) establish a general model to estimate PNC directly across growth stages. A leaf
fluorescence sensor, Dualex 4, was used to test maize leaves with three different positions across four
growth stages in two fields with different soil types, planting densities, and N application rates in
Northeast China in 2016 and 2017. The results indicated that the total leaf N concentration (TLNC)
and PNC had a strong correlation (R2 = 0.91 to 0.98) with the single leaf N concentration (SLNC).
The TLNC and PNC were affected by maize growth stage and N application rate but not the soil type.
When used in combination with the days after sowing (DAS) parameter, modified Dualex 4 indices
showed strong relationships with TLNC and PNC across growth stages. Both modified chlorophyll
concentration (mChl) and modified N balance index (mNBI) were reliable predictors of PNC. Good
results could be achieved by using information obtained only from the newly fully expanded leaves
before the tasseling stage (VT) and the leaves above panicle at the VT stage to estimate PNC. It is
concluded that when used together with DAS, the leaf fluorescence sensor (Dualex 4) can be used to
reliably estimate maize PNC across growth stages.

Keywords: nitrogen status diagnosis; Dualex sensor; precision nitrogen management; leaf position;
proximal sensing; nitrogen balance index
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1. Introduction

Maize (Zea mays L.) is one of the three major grain crops in the world along with rice (Oryza
sativa L.) and wheat (Triticum aestivum L.) [1]. Nitrogen (N) is one of the most essential nutrients that
significantly affect maize yield, biomass, and grain quality. However, over-application of N is common
in Chinese agriculture, resulting in many environmental problems [2,3]. Precision N management
strategies aiming to apply the optimal amount of N fertilizer at the right time and place can help
increase crop yield and N use efficiency, as well as reduce N surplus and environmental impacts [4–6].

The development and implementation of proximal and remote sensing technologies has provided
new opportunities for non-destructive and real-time crop N status estimation on different scales [7–9].
Since leaf pigment concentrations, especially the chlorophyll concentration (Chl), can affect leaf
reflectance properties and are highly correlated with N status, many optical sensors have been used
to measure the canopy reflectance of a specific area or the entire crop field to estimate plant N
status [7,10–12]. However, reflectance sensors are usually influenced by light conditions, soil and
water background, and often saturate under high biomass conditions. Proximal fluorescence sensing is
insensitive to soil backgrounds, environmental light, or biomass conditions and may overcome some
of the problems in N status diagnosis [7,13]. As a traditional and standard indicator of plant N status,
plant N concentration (PNC) is closely related to yield performance [14–16]. Therefore, PNC has been
widely estimated through various sensing methods, and used as a reference in different N diagnostic
methods, with critical PNC values established for different crops and growth stages [7,17,18]. Most
importantly, unlike reflectance indices, fluorescence signals have stronger relationships with PNC as
they are mainly affected by leaf Chl concentration but not by biomass or leaf area index (LAI) [13,19–21].

Dualex 4 (Force-A, Orsay, France) is a portable leaf fluorescence sensor and has been used in the
past few years to monitor crop physiology and study N status diagnosis [22]. Apart from measuring
Chl concentration through leaf transmittance, Dualex 4 can also measure leaf epidermal flavonoids
(Flav) by comparing the Chl fluorescence induced by ultra-violet (UV) excitation at 375 nm to that
induced by red light at 650 nm wavelength [23–25], and provides a new Chl/Flav ratio called N balance
index (NBI). Numerous recent studies have focused on utilizing Dualex 4 to estimate N status in
a variety of crops, and have revealed a significant relationship between Dualex 4 readings and N
indicators. For example, Dualex 4-based Chl readings were found to be highly related to leaf Chl
concentrations in four crops including corn, soybean (Glycine max L. Merr.), spring wheat (Triticum
aestivum L.), and canola (Brassica napus L.) (R2 = 0.69–0.90) [26]. Cartelat et al. [27] showed a strong
linear relationship between phenolics (Phen) measured by Dualex sensor and leaf N concentration
(LNC) (R2 = 0.76) and further displayed the correlation between Phen and N nutrition index (NNI)
(r = −0.60) for wheat. It was found that NBI calculated using a chlorophyll metercombined with an
older version Dualex sensor could predict PNC and NNI most accurately for muskmelon (Cucumis
melo L. cv. Tezac) (R2 = 0.79–0.93 and 0.80–0.95) [28].

However, it is sometimes difficult to successfully use various proximal and remote sensors,
including fluorescence sensors, because spectral data may vary due to different factors, such as soil
conditions, crop growth stages, and leaf positions [7,9,21,29–32]. The variations of different soils in
terms of quality, water, nutrition, and temperature often affect crop growth and lead to changes in crop
properties [33–36]. Stress events resulting from environmental situations may eventually change the
content of some compounds like leaf pigments [37–39]. This could modify leaf optical and fluorescence
properties and be monitored by proximal or remote sensing technologies.

It has been a great challenge to use proximal and remote sensing technologies to reliably estimate
PNC across growth stages [40]. The active canopy sensor GreenSeeker-based vegetation indices
(VIs) could be used to predict LAI and aboveground biomass well (R2 = 0.83–0.89), but had a poor
performance for PNC estimation (R2 = 0.47) across V5–V10 growth stages for spring maize in Northeast
China [41]. Different VIs and prediction models will be needed to estimate PNC at different growth
stages [40,42]. PNC can be more reliably estimated at later growth stages, but at early growth stages
before crop canopy closure, the performance of most prediction models has been quite poor, even with
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hyperspectral remote sensing data [40,42]. Gabriel et al. [43] compared two leaf chlorophyll sensors
(SPAD-502 and Dualex) for estimating maize LNC on two different dates, and demonstrated similar
performance of the two sensors, with R2 = 0.43 and 0.62 for SPAD and R2 = 0.42 and 0.68 for Dualex.
Tremblay et al. [29] found that Dualex could be used to diagnose maize N status successfully within
21 days after topdressing but lost sensitivity at later stages. A hand-held canopy fluorescence sensor
Multiplex has been used to detect N status in early growth stages of maize and it was proven that
the Multiplex parameters were strongly influenced by N dose [20,44]. Moreover, strong relationships
between fluorescence indices and N indicators of rice at different growth stages were revealed by
Huang et al. [45]. To overcome the influence of growth stage or other factors, N sufficiency index
(NSI) or response index (RI) is generally calculated by using a well-fertilized area as the reference to
diagnose crop N status [41,45,46], but such approach will require a well-fertilized area or N rich plot,
and generally cannot improve the prediction of PNC across growth stages [45]. Therefore, more studies
are still needed to develop methods for reliable prediction of PNC across growth stages.

Several studies have reported the use of fluorescence sensing technology to evaluate crop N
status. For example, Yang et al. [47] showed that there were consistent positive correlations between
fluorescence parameters and LNC for different rice cultivars with R2 varying from 0.70 to 0.90. Another
study demonstrated that NBI and NBI1 based on the Multiplex 2 fluorescence sensor were linearly
related to LNC with a high coefficient of determination for two turfgrass cultivars (R2 = 0.85–0.87
and R2 = 0.75–0.78, respectively) [48]. A study using a Dualex sensor calibrated three optical indices
(Chl, Flav and NBI) against LNC of grapevine (Vitis vinifera L.) and verified that NBI was optimal for
estimating LNC with a root-mean-square error (RMSE) smaller than 2 mg of N g−1 dry weight. The
threshold values of NBI from 11 to 18 at flowering and 8 to 11 at bunch closure were proposed [17].
Recently, Zhang et al. [49] found Dualex 4 sensor parameters were significantly correlated with rice
PNC at different growth stages (R2 = 0.43–0.77) or across growth stages (R2 = 0.52–0.69).

To date, few studies have reported on how to use leaf fluorescence sensors to accurately estimate
crop PNC, especially developing strategies to effectively overcome the influence of different growth
stages. Therefore, the objectives of this study were to (1) determine the relationship of maize LNC and
PNC, (2) evaluate the main factors influencing the variations of leaf fluorescence sensor parameters,
and (3) develop a practical strategy to reliably estimate maize PNC using leaf fluorescence sensor
across different growth stages.

2. Materials and Methods

2.1. Study Site and Soil Description

The study was conducted in Lishu County (43◦02′–43◦46′N, 123◦45′–124◦53′E), Jilin Province
in Northeast China from 2016 to 2017. Located in North Temperate Zone with four distinct seasons,
this region has a semi-humid continental monsoon climate. The mean annual average temperature is
6.6 ◦C, and the annual average precipitation is 556 mm, about 80% of which occurs during the crop
growing season from May to September. Figure 1 shows the precipitation distribution and mean
temperature during the growing season in 2016–2017 in Lishu.
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Figure 1. Daily precipitation (mm) and mean temperature (◦C) during the growing season at the study
site in 2016 and 2017.

Two sites with different soil types were selected for this study. Site 1 has Aeolian sandy soil
(loamy sand), which is classified as typic Cryopsamments. Site 2 has Black soil (loamy clay), which is
classified as typic Haploboroll in the United States Department of Agriculture (USDA) Soil Taxonomy.

2.2. Experimental Design

All the treatments of the experiment were the same in both fields. Using a split-plot design
with three replications, a local maize cultivar Liangyu 66 was sown in early May each year with
planting densities of 55,000, 70,000 and 85,000 plant ha−1 as the main plots, and six N treatments were
established as the subplots, with total N doses of 0, 60, 120, 180, 240, and 300 kg ha−1, respectively.
The N fertilizers were applied in two split applications: 1/3 was broadcasted and incorporated into
the soil with rotary tillage as basal N using ammonium sulfate before sowing, and 2/3 was banded as
side-dress N using urea at around V8–V9 growth stage in early July. The subplots in a wide-narrow
row planting pattern were 9 × 12 m with 1 m wide alley between the subplots. Sufficient phosphate
(90 kg P2O5 ha−1) and potash (90 kg K2O ha−1) fertilizers were applied before sowing to make sure P
and K nutrients were not limiting for each plot.

There was no irrigation at Site 2, while about 50 mm of water was irrigated into the soil around
mid-July at Site 1 in each year due to water stress in sandy soil. All plots were kept free of weeds,
insects, and diseases with pesticides based on local standard practices. Detailed information about the
experiments conducted in this study in 2016 and 2017 is listed in Table 1.



Remote Sens. 2020, 12, 1139 5 of 21

Table 1. Experimental set-up, plant sampling, and sensing stages in the experiment conducted in 2016
and 2017.

Site Planting
Date

Side Dressing
Date

Harvest
Date Irrigation Date Sampling and Sensing Stage

2016

Site 1 May 7th Jul. 3rd (57
DAS) Oct. 6th Jul. 13–16th

(70–73 DAS)

V8 (49 DAS *, 50 DAS), V12 (70
DAS *, 73 DAS), VT (78 DAS *,

81 DAS)

Site 2 May. 5th Jul. 4th (60
DAS) Sep. 29th No irrigation V8 (50 DAS, 51 DAS *), V13 (72

DAS *), VT (78 DAS, 80 DAS *)

2017

Site 1 May. 4th Jul. 3rd (60
DAS) Oct. 3rd Jul. 11–13th

(69–71 DAS)

V4 (30 DAS *), V6 (40 DAS), V8
(56 DAS), V11 (65 DAS *), VT (84

DAS, 86 DAS *)

Site 2 May. 3th Jul. 2nd (60
DAS) Oct. 2nd No irrigation

V4 (29 DAS *), V6 (38 DAS), V8
(52 DAS), V11 (64 DAS *), VT (83

DAS, 85 DAS *)

* Data acquired at these stages were used to plot the relationships between SLNC and TLNC or PNC.

2.3. Dualex 4 Sensor Data Collection, Plant Sampling, and Measurements

Three representative plants located in the center rows of each plot of six N treatments at the
70,000 plants ha−1 density in the two fields were selected to be cut at the ground level at V8, V12,
and VT in 2016, and V4, V11, and VT in 2017. Each single leaf was separated from the whole plant,
and leaves in the same position of the three plants in each plot were mixed together. The stems were
also mixed together.

The Dualex 4 sensor (Force-A, Orsay, France) was used in this study for proximal sensing.
Three representative plants located in the inner rows of each plot of six N treatments at three densities
were selected to be sampled and measured by the sensor. In particular, this sensor measures a leaf
surface area of 20 mm2. The plant samples and sensor readings were obtained at V6, V8, V12, and VT
growth stages in 2016 and at V6, V8, and VT growth stages in 2017 in each field. Dualex 4 values were
measured at around the leaf blade midpoint to avoid midribs or physical damage on the adaxial side
(upper side) of the uppermost, second, and third fully expanded leaves before VT stage, as well as the
leaf above the panicle, panicle leaf, and the leaf below the panicle at the VT growth stage for each plant
in each plot. After sensing, all plant samples in each plot were separated into leaves and stems except
for the V6 growth stage.

All samples were oven-dried at 105 °C for 30 min, then dried at 70 °C to a constant weight,
and ground into fine powders to determine N concentration using a modified Kjeldahl digestion
method [50]. The total NLC (TLNC) is the sum of the product of the N concentration of each leaf and
its proportional weight, while PNC is calculated by adding the product of the N concentration of each
organ and its proportional weight. As the leaves were the main component of the plant at the V6
growth stage, the TLNC at this stage was also used as PNC in this study.

The data acquisition dates and days after sowing (DAS) are shown in Table 1. For the convenience
of discussion, the first, second, and third leaves counted from the top of the maize plant selected
for sensor measurement in this research were abbreviated as Leaf 1, Leaf 2, and Leaf 3, respectively.
The three Dualex 4 parameters (Chl, Flav, and NBI) at the same leaf position of three plants in each
plot were averaged and used as the mean reading of that leaf position for the plot. The details of the
Dualex 4 parameters are shown in Table 2.
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Table 2. The details of Dualex 4-based parameters.

Parameters Abbreviation Algorithm

Chlorophyll Chl FRFR/RFR
Flavonoids Flav Log (FRFR/FRFUV)

Nitrogen balance index NBI Chl/Flav
Modified chlorophyll mChl Chl/DAS
Modified flavonoids mFlav Flav × DAS

Modified nitrogen balance index mNBI NBI/DAS2

2.4. Statistical Analysis

The data collected were pooled together to establish the relationships between single LNC (SLNC)
and TLNC and PNC. In addition, the data collected by fluorescence sensing for each site, year, growth
stage, and N rate were divided into a calibration dataset (two replications of the observations) and a
validation dataset (one replication of the observations). The mean, standard deviation (SD), coefficient
of variation (CV, %) of SLNC, TLNC, and PNC were calculated using Microsoft Excel (Microsoft
Corporation, Redmond, WA, USA).

Besides three raw Dualex 4 parameters, three modified parameters derived from them based
on DAS were used in this study: modified Chl (mChl), modified Flav (mFlav), and modified NBI
(mNBI) were computed as the ratio of Chl to DAS, the product of Flav and DAS, and the ratio of NBI
to the square of DAS (Table 2). The coefficient of determination (R2) values for all relationships were
calculated using SPSS 21.0 (SPSS Inc., Chicago, IL, USA), and the model with the highest R2 between
the Dualex parameters and the two N indices (TLNC and PNC) was selected and listed in this paper,
and was used for further estimation of PNC. The performance of the established relationship models
for predicting PNC was evaluated by comparing R2, RMSE, and relative error (RE). The higher the R2

and the lower the RMSE and RE, the higher the accuracy of the prediction models. Agronomic and
proximal sensing data were subjected to the least significant difference (LSD) test at a 5% significance
level to assess differences between the means of treatments using SPSS 21.0.

3. Results

3.1. Interrelationships of SLNC, TLNC, and PNC

We plotted SLNC against TLNC and PNC in Figure 2. The SLNC was highly related to both TLNC
and PNC with R2 varying from 0.91 to 0.98. The best relationships appeared in the results for Leaf 1
(R2 = 0.98 and 0.96), followed by Leaf 2 and finally Leaf 3. As the sum of each single leaf, the TLNC
was more related to SLNC than that of the whole plant, because the PNC was also affected by the stem
N concentration. However, the strong correlations of TLNC and PNC to SLNC indicated the high
probability to use information acquired from a single leaf, especially Leaf 1, to understand the N status
of maize through the prediction of TLNC or PNC.



Remote Sens. 2020, 12, 1139 7 of 21Remote Sens. 2020, 1, x FOR PEER REVIEW 7 of 22 

 

 232 

Figure 2. Relationships between single leaf N concentration (SLNC) obtained from three different 233 
leaves of a plant and total leaf N concentration (TLNC) and plant N concentration (PNC). 234 

3.2. Effects of Soil Type, Growth Stage, and N Rate on Maize TLNC and PNC  235 
Figure 3 indicated that PNC was slightly lower than TLNC, and both were significantly affected 236 

by the growth stage and N rate. Different soil types only resulted in different TLNC values (mean = 237 
22.91 and 23.93 g kg-1 for Aeolian sandy soil field (Site 1) and Black soil field (Site 2), respectively). For 238 
PNC, there was no significant difference between the two fields, with 20.07 and 20.69 g kg-1 for 239 
Aeolian sandy soil field (Site 1) and Black soil field (Site 2), respectively (Figure 3a). In contrast, TLNC 240 
of four growth stages differed significantly, from 17.06 g kg-1 at the V12 growth stage to 31.03 g kg-1 241 
at the V6 growth stage, while PNC ranged from 12.10 g kg-1 at the VT growth stage to 31.28 g kg-1 at 242 
the V6 growth stage, without a significant difference between the V12 and VT growth stages (Figure 243 
3b). The mean values of TLNC and PNC increased with N rates from the lowest under 0 kg ha-1 N 244 
rate treatment (18.10 g kg-1 for TLNC and 16.25 g kg-1 for PNC) to the highest under 300 kg ha-1 N rate 245 
treatment (27.09 g kg-1 for TLNC and 23.44 g kg-1 for PNC). The values of TLNC were significantly 246 
different under low N treatments (0 and 60 kg ha-1), but not under high N treatments (240 and 300 kg 247 
ha-1). However, the values of PNC were not significantly different under either low or high N 248 
treatments (Figure 3c). 249 

 250 
 251 
 252 
 253 

Figure 2. Relationships between single leaf N concentration (SLNC) obtained from three different
leaves of a plant and total leaf N concentration (TLNC) and plant N concentration (PNC).

3.2. Effects of Soil Type, Growth Stage, and N Rate on Maize TLNC and PNC

Figure 3 indicated that PNC was slightly lower than TLNC, and both were significantly affected by
the growth stage and N rate. Different soil types only resulted in different TLNC values (mean = 22.91
and 23.93 g kg−1 for Aeolian sandy soil field (Site 1) and Black soil field (Site 2), respectively). For PNC,
there was no significant difference between the two fields, with 20.07 and 20.69 g kg−1 for Aeolian sandy
soil field (Site 1) and Black soil field (Site 2), respectively (Figure 3a). In contrast, TLNC of four growth
stages differed significantly, from 17.06 g kg−1 at the V12 growth stage to 31.03 g kg−1 at the V6 growth
stage, while PNC ranged from 12.10 g kg−1 at the VT growth stage to 31.28 g kg−1 at the V6 growth
stage, without a significant difference between the V12 and VT growth stages (Figure 3b). The mean
values of TLNC and PNC increased with N rates from the lowest under 0 kg ha−1 N rate treatment
(18.10 g kg−1 for TLNC and 16.25 g kg−1 for PNC) to the highest under 300 kg ha−1 N rate treatment
(27.09 g kg−1 for TLNC and 23.44 g kg−1 for PNC). The values of TLNC were significantly different
under low N treatments (0 and 60 kg ha−1), but not under high N treatments (240 and 300 kg ha−1).
However, the values of PNC were not significantly different under either low or high N treatments
(Figure 3c).
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3.3. Effects of Soil Type, Growth Stage, and N Rate on Dualex 4 Parameters

The differences in Chl, Flav, and NBI measured with a Dualex 4 sensor as influenced by soil types,
growth stages, and N rates were analyzed and displayed in Figure 4. The Dualex 4 sensor-based
fluorescence parameter values obtained from the three differently positioned leaves did not exhibit
significant variability under the two soil types, except for Chl values of Leaf 2, with 41.70 for Aeolian
sandy soil field (Site 1) and 43.14 for Black soil field (Site 2) (Figure 4a,d,g). Fluorescence parameter
values changed less significantly with growth stages than TLNC and PNC (Figures 3b and 4b,e,h).
For Chl, there was no consistent trend as maize grew, although there was a significant difference at
late growth stages for Leaf 1 and at early stages for Leaf 2 and Leaf 3 (Figure 4b). Flav values showed
a constant decreasing trend with the growth of maize, similar to the changes of TLNC and PNC,
but with less variation. Comparatively, the variation trend of Leaf 1 was the same as that of PNC,
while the values of the other two leaves changed significantly with growth stages (Figures 3b and 4e).
NBI also showed significant differences among different growth stages, particularly for Leaf 2 and Leaf
3, but NBI and TLNC and PNC exhibited opposite trends from Flav, increasing with the increase of
DAS (Figures 3b and 4h). Besides, the Chl and NBI values increased with N rate up to 240 kg ha−1 for
all three differently positioned leaves (Figure 4c,i). There was a negative relationship between Flav and
N rate, with higher levels of Flav found in low N treatments and lower levels of Flav found in high N
treatments. However, Flav did not vary much from 180 to 300 kg ha−1 N rates (Figure 4f). Moreover,
the readings of the three fluorescence parameters of the three differently positioned leaves were very
similar in different fields and under different growth stages and N rates (Figure 4).
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Figure 4. Dualex 4 parameters (chlorophyll concentration (Chl), leaf epidermal flavonoids (Flav), and
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The results above indicated that growth stage was the main factor that influences the general
model’s estimation of maize N concentration. To overcome the problem of the high inconsistency
between the Dualex 4 parameters and the TLNC and PNC across growth stages, the modified Dualex
4 parameters incorporating the information of DAS were computed and the variations of these new
parameters are displayed in Figure 5. It was evident that changes in these new parameters of differently
positioned leaves varied markedly among different growth stages after combining with DAS, although
a reverse trend was observed in mFlav compared with the original Flav. The mNBI showed a similar
trend as mChl with the growth stage.
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3.4. Relationships between Dualex 4 Parameters and TLNC or PNC

All data acquired from the two study sites across growth stages were gathered together and
divided into calibration and validation datasets to establish a general model for PNC estimation
(Table 3).

Table 3. Descriptive statistics for TLNC and PNC for calibration and validation datasets.

Dataset
TLNC (g kg−1) PNC (g kg−1)

Mean SD CV (%) Mean SD CV (%)

Calibration dataset
n = 504 23.59 7.24 31 20.61 8.73 42

Validation dataset
n = 252 23.08 7.07 31 19.91 8.68 44

The mean values of TLNC (23.08–23.59 g kg−1) were larger than those of PNC (19.91–20.61 g kg−1)
in both datasets. For the calibration dataset, across all growth stages, the PNC was more variable
(CV = 42%) than the TLNC (CV = 31%), and the validation dataset had similar variability as the
calibration dataset with a CV of 44% for PNC and of 31% for TLNC.

The original Dualex 4 readings, Chl, Flav, and NBI, demonstrated poor relationships with TLNC
or PNC across growth stages, with R2 ranging from 0.01 to 0.34 (Table 4). The mean values of Chl,
Flav, and NBI for the three differently positioned leaves were calculated and their relationships with
TLNC and PNC at four growth stages are displayed in Figure 6. The impact of growth stages on these
relationships were significant.

Table 4. Coefficients of determination (R2) for the relationships between Dualex 4-based parameters of
three differently positioned leaves and two N status indicators (TLNC and PNC).

N Concentration
(g kg−1)

Leaf
Position

Chl Flav NBI mChl mFlav mNBI

Model R2 Model R2 Model R2 Model R2 Model R2 Model R2

TLNC
Leaf 1 Q 0.34 Q 0.11 P 0.03 P 0.80 P 0.53 P 0.77
Leaf 2 Q 0.34 Q 0.16 P 0.01 P 0.78 P 0.49 P 0.76
Leaf 3 P 0.18 Q 0.10 Q 0.01 P 0.75 E 0.50 P 0.74

PNC
Leaf 1 Q 0.20 Q 0.22 Q 0.03 Q 0.84 P 0.56 P 0.80
Leaf 2 Q 0.18 Q 0.33 Q 0.07 P 0.83 P 0.49 P 0.79
Leaf 3 Q 0.10 Q 0.25 Q 0.09 P 0.78 P 0.50 P 0.75

Note: Q: Quadratic model; P: Power model; E: Exponential model.
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Q (d) indicating linear, power, and quadratic models, respectively.

However, after combining with DAS, which was directly connected to the growth stage,
the modified Dualex 4 parameters (mChl, mFlav, and mNBI) were highly related to TLNC and
PNC (Table 4 and Figure 7). As maize grew, the values of mChl and mNBI decreased with the increase
of TLNC and PNC (Figure 7a,c,d,f), while the values of mFlav increased with the growth stages and
exhibited negative relationships with both TLNC and PNC accordingly (Figure 7b,e).

The mChl was most related to TLNC and PNC with R2 ranging from 0.75 to 0.84 for single-position
leaves. mNBI also performed very well, with R2 ranging from 0.74 to 0.80. Nevertheless, the result
for mFlav (R2 = 0.49–0.56) was not as good as the above-mentioned two parameters, but it was
much better than that of the original Flav (Table 4). A power function relationship was found for the
models established based on the values measured on every single leaf for mChl, mFlav, and mNBI.
Leaf 1 showed the best potential to estimate PNC with the highest R2 values (Table 4). Moreover,
by calculating the mean values of each parameter of the three leaves, the correlations between the
modified Dualex 4 parameters and TLNC or PNC were improved to a certain extent, especially for
mFlav (Figure 7b,e and Table 4). Compared with TLNC, PNC was more related to the modified Dualex
4 parameters (mChl, mFlav, and mNBI). This indicated that the modified Dualex 4 parameters had
greater potential for direct estimation of PNC accurately (Figure 7 and Table 4).
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Figure 7. Relationships between modified Dualex 4 parameters (mChl, mFlav, and mNBI) for the
mean values of three differently positioned leaves and two N status indicators (TLNC and PNC) across
growth stages.

3.5. The Estimation of PNC Using Different Modified Dualex 4 Parameters

In order to establish good relationships between modified Dualex 4 parameters and PNC as well
as TLNC, the above models describing their relationships were further evaluated with the validation
dataset. The validation results of mChl for estimating TLNC and PNC were the best with the highest
R2 (0.71–0.79 and 0.73–0.84) and the lowest RMSE (3.27–0.81 and 3.46–4.48) and RE (14%–16% and
17–23%) (Table 5). Although the mFlav showed a better relationship with TLNC and PNC than the
original Flav, it still did not perform as well as the other two modified Dualex parameters in predicting
TLNC and PNC, with the lowest R2 (0.42–0.53 and 0.40–0.53) and the highest RMSE (4.83–5.38 and
5.96–6.73) and RE (21%–23% and 30%–34%) (Table 5). For single leaf, mChl obtained from Leaf 1
predicted TLNC and PNC most accurately, while mFlav and mNBI obtained from Leaf 3 showed
the highest accuracy among the three positioned leaves (Table 5). Besides, the results were further
improved by averaging the mFlav and mNBI readings measured from three differently positioned
leaves (Table 5 and Figure 8b,c,e,f). The data distribution for the V6 growth stage deviated from the 1:1
line more significantly than the other growth stages, which would influence the estimation results to
some extent (Figure 8). Above all, the modified Dualex 4 parameters showed a better performance for
direct PNC estimation across growth stages, but not for TLNC estimation, which implied that it was
needless to estimate maize PNC by estimating TLNC using sensor readings acquired primarily from
single leaves.
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Table 5. Validation results for the estimation of TLNC and PNC using modified Dualex 4 parameters
for single-position leaves by the general estimation models across growth stages.

N Concentration
(g kg−1)

Leaf
Position

mChl mFlav mNBI

R2 RMSE RE(%) R2 RMSE RE(%) R2 RMSE RE(%)

TLNC
Leaf 1 0.79 3.27 14 0.45 5.22 23 0.72 3.76 16
Leaf 2 0.76 3.45 15 0.42 5.38 23 0.71 3.77 16
Leaf 3 0.71 3.81 16 0.53 4.83 21 0.73 3.65 16

PNC
Leaf 1 0.84 3.46 17 0.41 6.66 33 0.73 4.52 23
Leaf 2 0.82 3.68 18 0.40 6.73 34 0.74 4.37 22
Leaf 3 0.73 4.48 23 0.53 5.96 30 0.75 4.29 22
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Figure 8. Validation results for the prediction of TLNC (a–c) and PNC (d–f) using the mean values
of modified Dualex 4 parameters for three single-position leaves. Black and red lines indicate the
regression and the 1:1 line, respectively.

4. Discussion

4.1. Feasibility of Estimating Maize N Status Using Single Leaf-based Dualex 4 Parameters

The SLNC of the fully expanded three leaves selected in our study was linearly related to both
TLNC and PNC, with high R2 values. Considering the good relationships between SLNC and TLNC
and PNC (Figure 2), and the significant change trend of Dualex 4 parameters with the increase of N
rate (Figures 3c and 4c,f,i), this study verified that it would be possible to predict maize N status using
the information from a single leaf of maize and be possible to predict PNC directly or indirectly by
predicting TLNC first.

The Chl values elevated with an increasing N rate (Figure 4c), which conforms to the finding
that leaf chlorophyll is strongly affected by leaf N [51–53]. Leaf N contributed a large proportion
to plant photosynthesis [54]. However, as an indicator of epidermal flavonoids, a carbon-based
secondary metabolite, Flav exhibited a reverse trend with the changes of N rate (Figure 4f) because
the carbon-based metabolite would be produced under low N level and would consequently cause
the enhanced synthesis of flavonoids [55,56]. As the ratio of Chl to Flav, NBI increased with N rate
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(Figure 4i) and has been considered to be a sensitive indicator of crop N status [13,28,44,57]. The results
of this study indeed showed that the range of NBI variation was greater than that of Chl and Flav
under different N rates (Figure 4c,f,i).

The Dualex 4 parameters’ good discrimination ability of different N rates and the saturation
at high N levels (240 and 300 kg ha−1) (Figure 4) was in agreement with other studies using the
fluorescence-based method [58]. The suggested optimal N rate for the experimental sites in our study
was approximately 180–200 kg ha−1 [59], so the N rates of 240 and 300 kg ha−1 exceeded the optimal
level. Some previous studies have concluded that fluorescence indices were insensitive to high crop
N content in the range of optimal to excessive N levels [58,60]. In this study, as shown in Figure 3c,
both TLNC and PNC varied clearly with the changes of N rate from 0 through 240 kg ha−1, but there
was no significant difference between 240 and 300 kg ha−1 N rates. Thus, in this study, the saturation
of Dualex 4 parameters on high N rates was closely related to the N status of maize, and we could not
draw a similar conclusion that the fluorescence indices were insensitive to high N content here.

4.2. Main Factor(s) Affecting the Establishment of the General Model and the Best Parameter(s) for
PNC Estimation

Compared with stems, leaves are more important for photosynthesis. However, maize plants
grown in the Aeolian sandy soil field (Site 1) were much more vulnerable to water deficiency than
maize plants grown in the Black soil field (Site 2). Due to the N accumulation in stems, the PNC
obtained in the Aeolian sandy soil field increased when the N concentration of stems was taken into
account. Therefore, the difference in PNC between the two fields vanished (Figure 3a). The significant
variation observed in TLNC values but the similarity observed in PNC values in the two study sites
(Figure 3a) implies that it may be more difficult to evaluate TLNC from different soil fields, and it would
be more feasible to establish a PNC predicting model neglecting the effect of soil types. Nevertheless,
it is necessary to distinguish soil types when estimating PNC indirectly by estimating TLNC first
(Figure 4a,d,g).

The changes of TLNC or PNC as affected by growth stages (Figure 3b) have been verified in
diverse crops in other studies [28,61,62]. This is why growth stages must be strictly defined and
distinguished for N status evaluation in most studies. Thus, the growth stage plays an important role
in establishing general models for PNC estimation according to the findings of this study.

Chl measured by Dualex 4 has been calibrated in µg cm−2 units [22], which means Chl is a proxy
of surface-based N. However, the TLNC and PNC mentioned in this study were both calculated based
on mass. The area-based LNC changes very little during the growing season due to the expression of
area-based LNC forces changes in specific leaf areas [63]. The time we selected to conduct the sensing
was before the reproductive phase, and there was no obvious redistribution of N from the leaves to the
ears that would result in the significant reduction of LNC. Furthermore, the Dualex 4 only measures
a green leaf surface area of 20 mm2 that would not exhibit too much variation of N concentration.
Thus, the surface-based parameter Chl is relatively more stable than the mass-based TLNC and PNC
(Figures 3b and 4b).

Different from Chl, the epidermal Flav estimated by Dualex 4, which is the representative of
total leaf Flav [27,64], is considered as a surrogate of dry leaf mass per area with no units [22].
Meyer et al. [23] reported the positive correlations between mass-based polyphenols (mainly Flav) and
leaf mass per area for woody plants, which revealed the regularity of the decrease in Flav was caused
by the increase in leaf dry mass. Thicker leaves had a larger leaf mass per area, and the accumulation
of organic matter in leaves played the role of Flav dilution. In addition, a previous study has reported
that the accumulation of Flav was highly sensitive to light intensity [65]. As the maize grows, the leaf
area and canopy closure of the uppermost leaves gradually increase, resulting in increased degree of
shading. This may limit the expression of Flav synthetic genes and lead to a reduction in flavonoid
content in these leaves during later growth stages. More studies are still needed on the periodic
changes of Flav.
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As the ratio of Chl to Flav, NBI is equivalent to mass-based Chl (Chl g−1 dry mass). Since Chl
is relatively stable and Flav showed a downward trend as the maize grew, it is easy to understand
the reverse trend of NBI to Flav (Figure 4h). The inconsistent relationships between the original
Dualex 4 parameters (Chl, Flav, and NBI) and TLNC or PNC at different growth stages led to poor
model performance across the growth stages (Table 4 and Figure 6). This makes the original Dualex 4
parameters unfeasible for estimating TLNC and PNC across growth stages.

Varvel et al. [46] pointed out that it is effective to evaluate crop N status by calculating growing
degree days (GDD) when a specific growth stage cannot be determined. Following the idea of
Teal et al. [66], who predicted maize yield using normalized difference vegetation index (NDVI) and
GDD, DAS was used together with Dualex 4 parameters in this study to explore the potential of
real-time PNC estimation across growth stages. The results of this study indicated the relationships
between the DAS-based modified Dualex 4 parameters and TLNC and PNC across growth stages
were significantly improved and were simulated by power function models. Furthermore, this study
revealed a stronger relationship between the modified parameters and PNC than TLNC. In addition,
the good relations between SLNC and PNC implied that PNC could be directly estimated well using a
leaf sensor instead of indirect estimation through TLNC (Table 5 and Figure 8). This indicates the great
potential of leaf-based Dualex 4 for assessing plant N status, not just maize leaf N status.

It has been reported that polyphenols (Phen, including Flav) may be a more specific indicator
of crop N status than Chl because of the sensitivity of Chl to sulfur stress [67]. Padilla et al. [58]
demonstrated the strong linear relationships between Flav, measured by a Multiplex sensor, and
cucumber (Cucumis sativus ‘Strategos’) N concentration (R2 = 0.87–0.95). Besides, some studies pointed
out the superiority of NBI (or Chl/Phen) in N status estimation in a variety of crops, including
maize [28,29,31,44,48,57,68]. However, mChl (Chl) performed best while mFlav (Flav) performed
worst in this study.

The relatively poor performance of mFlav indicated the difficulty of estimating PNC accurately
using Flav, while the difficulty for estimating Phen in leaves has been attributed to different solubility,
distribution locations, and species varieties [23]. Flav has previously been shown to perform well in N
status estimation for other crops such as vegetable, rice, and sweet cherry (Prunus avium L.) [49,52,68,69].
However, the relatively thick maize leaves could affect the transmittance of the light emitted by the
sensor and then lead to the change of the parameter [22]. Measurements taken from both the adaxial
(top) and abaxial (bottom) sides of the leaves may help improve maize PNC estimation by Flav, although
the flavonoid contents in the adaxial and abaxial sides of the leaves are highly correlated in some
crops [27,57]. Moreover, the change of Flav content is influenced by various factors in addition to N
such as leaf thickness, light condition, water stress, pathogen attack, low temperature, and the onset of
senescence [17,30,65,70]. Although affected by the poor performance of mFlav, the estimation results of
mNBI-based models showed similar R2 values with mChl, indicating the good performance of NBI for
N indices estimation. These results conform to the findings of some previous studies [27–29,31,44,49,57].

4.3. The Most Suitable Leaf Position for Sensing Measurements and PNC Estimation

We tested three differently positioned leaves at each growth stage in this study in order to
understand their effects on evaluating maize N status. The changes of the Dualex 4-based parameters
with leaf positions were relatively smaller than that with the growth stage and N rate. Nevertheless, there
were slight differences among the three leaves, which consequently displayed different performance in
PNC prediction.

It was noted that leaf Chl and Flav contents depended on leaf age (leaf position) induced by
light conditions [71,72]. The photosynthetic photon flux density would decrease with increasing
canopy depth during crop growth and canopy development [73]. The priority supplement of
N in younger leaves (upper leaves) re-translocated from older leaves (lower leaves) leads to the
preferential distribution of N to the upper leaves [74] and consequently leads to higher rates of canopy
photosynthesis, which needs a higher content of Chl. The finding of higher Chl values in Leaf 1 (the
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uppermost leaf) than in Leaf 3 (the lowest leaf) was similar to the study results for rice [74,75]. Higher
Flav contents in older leaves have been reported [71,76,77], similar to the results of this study. Besides,
the decrease of leaf mass per area along with leaf thickness as leaf position declines, the limited sunlight
in the lower leaves mentioned above caused the change of Flav with the leaf position. However,
there was a slightly increasing tendency of Chl measurement in Leaf 2, which may be caused by the
close locations of the three leaves. As the uppermost leaf (Leaf 1) was newly expanded soon after
Leaf 2, the N concentration of these two leaves would not differ too much. In addition, the average
values used in this analysis may help reduce some variations. The Flav is an N-free compound, so its
continuous change with leaf positions was more distinct.

To diagnose crop N status quickly and effectively, the test frequency of a leaf sensor must be
reduced. Thus, selecting the most appropriate leaf rather than several leaves of a plant for sensing
measurement with high accuracy and reliability is important. The measurements taken from Leaf 1 for
all three modified Dualex parameters provided the highest model R2 in TLNC and PNC predictions.
The best performance of mFlav appeared in Leaf 3 in PNC estimation, and the mean values of three
leaves improved the results significantly, but the results were not as good as the other two parameters.
For mNBI, although the best result appeared in Leaf 3 too, it did not show a significant superiority over
the results of the other two leaves. Thus, in conclusion, the measurement of Leaf 1 may be sufficient
to estimate maize N status using Dualex 4-based mChl and mNBI whereas Leaf 3 is preferred to
accurately estimate PNC using mFlav.

4.4. Implications for Practical Application and Future Research Needs

This study found that combining with DAS, the Dualex 4 leaf fluorescence sensor could be used
to reliably estimate maize PNC across growth stages, even if only one leaf (uppermost) was sampled.
The estimated PNC can then be compared with threshold or critical PNC values to diagnose maize
N status by calculating N nutrition index (NNI) [41]. For this purpose, maize aboveground biomass
will be needed and can be reliably estimated using active canopy sensors, like GreenSeeker or Crop
Circle sensors [41,78]. Research is needed to develop methods to use Dualex 4 sensor to estimate NNI
directly, as demonstrated for SPAD chlorophyll meter [79]. Based on the relationship between SPAD
chlorophyll meter readings and PNC and the critical N concentration curve for maize, Yang et al. [80]
established the critical or optimal chlorophyll meter (SPAD) reading curve. Measured chlorophyll
meter readings can then be compared with critical chlorophyll meter readings at specific biomass to
calculate NNI, without the need to estimate PNC. This is an innovative idea and should be tested with
the Dualex sensor.

The relationship between leaf and canopy fluorescence parameters could be further investigated
through the use of a simple model taking into account leaf fluorescence profile inside the canopy,
structural variations of the canopy, and background reflection [81]. Such information can be useful to
evaluate the possibility to use the proposed method in conjunction with remote sensing fluorescence
measurements obtained from an unmanned aerial vehicle (UAV) [82], aerial or satellite remote
sensing [83,84].

In theory, NBI combining both Chl and Flav should be more sensitive to crop N status than using
Chl or Flav alone, as found by previous research [28,29,31,44,48,57,68]. However, NBI did not perform
better than Chl in this study. Those previous studies either used an earlier model of Dualex sensor
(cannot measure Chl) and chlorophyll meter to calculate NBI or used canopy fluorescence sensor
Multiplex or studied other crops. Therefore, more studies are needed to confirm our results with
maize and further evaluate the potential of improving corn N status diagnosis using both Chl and Flav
information, as well as other related soil, weather, and management data.

5. Conclusions

This study demonstrated the reliability of maize PNC estimation by fluorescence parameters
obtained from single leaves using a leaf sensor Dualex 4. The fluorescence parameter values did not
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exhibit significant variability under the two different soil conditions, which indicated the needlessness
of establishing a soil-specific predicting model in this study, while the variations between the PNC and
Dualex 4 parameters at different growth stages make it difficult to estimate PNC across all growth
stages using the original Dualex 4 parameters. Nevertheless, the modified Dualex 4 parameters using
the information of DAS overcame the problem caused by growth stage changes and allowed accurate
estimation of PNC using a general model across growth stages. Among the three parameters obtained
by Dualex 4, mChl and mNBI were more reliable indicators for PNC estimation. It was sufficient to
take the fluorescence measurement from the uppermost leaf of maize. Further research needs to focus
on improving the accuracy of PNC estimation in early growth stages and practical methods for maize
N status diagnosis using proximal leaf fluorescence sensors.

Author Contributions: Y.M. and H.L. designed the experiment. R.D. conducted the experiment, performed the
analysis, and wrote the original paper, X.W., Z.C., and W.Z. assisted in the experiment, plant and soil sampling,
and sample processing. Y.M. and F.Y. reviewed and revised the manuscript. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Key National Research and Development Program (2016YFD0200600;
2016YFD0200602), Norwegian Ministry of Foreign Affairs (SINOGRAIN II, CHN-17/0019), the Internationalization
Training and Promotion Project of Graduate Students in China Agricultural University, and the UK Biotechnology
and Biological Sciences Research Council (BB/P004555/1).

Acknowledgments: We would like to thank Guohua Mi, Zheng Fang, Xuezhi Yue, and Hainie Zha for their
assistance during this study. We also would like to thank the local farmers for their cooperation in this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. FAO. Cultured Aquatic Species Information Programme, Epinephelus Coioides. Available online: http:
//www.fao.org (accessed on 28 June 2019).

2. Gu, B.; Ju, X.; Wu, Y.; Erisman, J.W.; Bleeker, A.; Reis, S.; Smith, R.I. Cleaning up nitrogen pollution may
reduce future carbon sinks. Glob. Environ. Chang. 2018, 48, 56–66. [CrossRef]

3. Zhang, F.; Chen, X.; Vitousek, P. An experiment for the world. Nature 2013, 497, 33–35. [CrossRef] [PubMed]
4. Jin, Z.; Archontoulis, S.V.; Lobell, D.B. How much will precision nitrogen management pay off? An evaluation

based on simulating thousands of corn fields over the US corn-belt. Field Crop. Res. 2019, 240, 12–22.
[CrossRef]

5. Wang, X.; Miao, Y.; Dong, R.; Chen, Z.; Guan, Y.; Yue, X.; Fang, Z.; Mulla, D.J. Developing active canopy
sensor-based precision nitrogen management strategies for corn in Northeast China. Sustainability 2019, 11,
706.

6. Kyveryga, P.M.; Blackmer, A.M.; Zhang, J. Characterizing and classifying variability in corn yield response
to nitrogen fertilization on subfield and field scales. Agron. J. 2009, 101, 269–277. [CrossRef]

7. Muñoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Prado-Olivarez, J.;
Ocampo-Velazquez, R.V. A review of methods for sensing the nitrogen status in plants: Advantages,
disadvantages and recent advances. Sensors 2013, 13, 10823–10843. [CrossRef] [PubMed]

8. Corti, M.; Cavalli, D.; Cabassi, G.; Gallina, P.M.; Bechini, L. Does remote and proximal optical sensing
successfully estimate maize variables? A review. Eur. J. Agron. 2018, 99, 37–50. [CrossRef]

9. Pinter, P.J.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote
sensing for crop management. Photogramm. Eng. Remote. Sens. 2003, 69, 647–664. [CrossRef]

10. Mulla, D.J. Twenty-five years of remote sensing in precision agriculture: Key advances and remaining
knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [CrossRef]

11. Nigon, T.J.; Mulla, D.J.; Rosen, C.J.; Cohen, Y.; Alchanatis, V.; Rud, R. Evaluation of the nitrogen sufficiency
index for use with high resolution, broadband aerial imagery in a commercial potato field. Precis. Agric.
2014, 15, 202–226. [CrossRef]

12. Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral
bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote. Sens. Environ. 2018,
216, 245–261. [CrossRef]

http://www.fao.org
http://www.fao.org
http://dx.doi.org/10.1016/j.gloenvcha.2017.10.007
http://dx.doi.org/10.1038/497033a
http://www.ncbi.nlm.nih.gov/pubmed/23636381
http://dx.doi.org/10.1016/j.fcr.2019.04.013
http://dx.doi.org/10.2134/agronj2008.0168
http://dx.doi.org/10.3390/s130810823
http://www.ncbi.nlm.nih.gov/pubmed/23959242
http://dx.doi.org/10.1016/j.eja.2018.06.008
http://dx.doi.org/10.14358/PERS.69.6.647
http://dx.doi.org/10.1016/j.biosystemseng.2012.08.009
http://dx.doi.org/10.1007/s11119-013-9333-6
http://dx.doi.org/10.1016/j.rse.2018.06.037


Remote Sens. 2020, 12, 1139 18 of 21

13. Tremblay, N.; Wang, Z.; Cerovic, Z.G. Sensing crop nitrogen status with fluorescence indicators. A review.
Agron. Sustain. Dev. 2012, 32, 451–464. [CrossRef]

14. Kovács, P.; Vyn, T.J. Relationships between ear-leaf nutrient concentrations at silking and corn biomass and
grain yields at maturity. Agron. J. 2017, 109, 2898–2906. [CrossRef]

15. Gaju, O.; Allard, V.; Martre, P.; Le Gouis, J.; Moreau, D.; Bogard, M.; Hubbart, S.; Foulkes, M.J. Nitrogen
partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in
wheat cultivars. Field Crop Res. 2014, 155, 213–223. [CrossRef]

16. Isfan, D.; Zizka, J.; D’Avignon, A.; Deschênes, M. Relationships between nitrogen rate, plant nitrogen
concentration, yield and residual soil nitrate-nitrogen in silage corn. Commun. Soil Sci. Plant Anal. 1995, 26,
2531–2557. [CrossRef]

17. Cerovic, Z.G.; Ghozlen, N.B.; Milhade, C.; Obert, M.; Debuisson, S.; Moigne, M.L. Nondestructive diagnostic
test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on Dualex leaf-clip measurements in the field.
J. Agric. Food Chem. 2015, 63, 3669–3680. [CrossRef] [PubMed]

18. Duan, D.; Zhao, C.; Li, Z.; Yang, G.; Yang, W. Estimating total leaf nitrogen concentration in winter wheat by
canopy hyperspectral data and nitrogen vertical distribution. J. Integr. Agric. 2019, 18, 1562–1570. [CrossRef]

19. Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, B.; Tan, C.; Yu, W.; Gnyp, M.L.; Lenz-Wiedemann, V.I.S.;
Rascher, U.; et al. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast
China. Remote Sens. 2015, 7, 10646–10667. [CrossRef]

20. Longchamps, L.; Khosla, R. Early detection of nitrogen variability in corn using fluorescence. Agron. J. 2014,
106, 511–518. [CrossRef]

21. Heege, H.J.; Reusch, S.; Thiessen, E. Prospects and results for optical systems for site-specific on-the-go
control of nitrogen-top-dressing in Germany. Precis. Agric. 2008, 9, 115–131. [CrossRef]

22. Cerovic, Z.G.; Masdoumier, G.; Ghozlen, N.B.; Latouche, G. A new optical leaf-clip meter for simultaneous
non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 2012, 146, 251–260.
[CrossRef] [PubMed]

23. Meyer, S.; Cerovic, Z.G.; Goulas, Y.; Montpied, P.; Demotes-Mainard, S.; Bidel, L.P.; Moya, I.; Dreyer, E.
Relationships between optically assessed polyphenols and chlorophyll contents, and leaf mass per area ratio
in woody plants: A signature of the carbon-nitrogen balance within leaves? Plant Cell Environ. 2006, 29,
1338–1348. [CrossRef] [PubMed]

24. Cerovic, Z.G.; Ounis, A.; Cartelat, A.; Latouche, G.; Khosla, R. The use of chlorophyll fluorescence excitation
spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ.
2002, 25, 1663–1676. [CrossRef]

25. Barnes, P.W.; Searles, P.S.; Ballaré, C.L.; Ryel, R.J.; Caldwell, M.M. Non-invasive measurements of leaf
epidermal transmittance of UV radiation using chlorophyll fluorescence: Field and laboratory studies.
Physiol. Plant. 2000, 109, 274–283. [CrossRef]

26. Dong, T.; Shang, J.; Chen, J.; Liu, J.; Qian, B.; Ma, B.; Morrison, M.J.; Zhang, C.; Liu, Y.; Shi, Y.; et al.
Assessment of portable chlorophyll meters for measuring crop leaf chlorophyll concentration. Remote Sens.
2019, 11, 2706. [CrossRef]

27. Cartelat, A.; Cerovic, Z.G.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.L.; Barbottin, A.; Jeuffroy, M.H.; Gate, P.;
Agati, G.; et al. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen
deficiency in wheat (Triticum aestivum L.). Field Crop Res. 2005, 91, 35–49. [CrossRef]

28. Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Evaluation of optical sensor measurements of
canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon.
Eur. J. Agron. 2014, 58, 39–52. [CrossRef]

29. Tremblay, N.; Wang, Z.; Bélec, C. Evaluation of the Dualex for the assessment of corn nitrogen status. J. Plant
Nutr. 2007, 30, 1355–1369. [CrossRef]

30. Goulas, Y.; Cerovic, Z.G.; Cartelat, A.; Moya, I. Dualex: A new instrument for field measurements of
epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl. Opt. 2004, 43, 4488–4496. [CrossRef]

31. Tremblay, N.; Wang, Z.; Bélec, C. Performance of Dualex in spring wheat for crop nitrogen status assessment,
yield prediction and estimation of soil nitrate content. J. Plant Nutr. 2009, 33, 57–70. [CrossRef]

32. Apostol, S.; Viau, A.A.; Tremblay, N.; Briantais, J.-M.; Prasher, S.; Parent, L.-E.; Moya, I. Laser-induced
fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants. Can. J.
Remote Sens. 2003, 29, 57–65. [CrossRef]

http://dx.doi.org/10.1007/s13593-011-0041-1
http://dx.doi.org/10.2134/agronj2017.02.0119
http://dx.doi.org/10.1016/j.fcr.2013.09.003
http://dx.doi.org/10.1080/00103629509369466
http://dx.doi.org/10.1021/acs.jafc.5b00304
http://www.ncbi.nlm.nih.gov/pubmed/25801210
http://dx.doi.org/10.1016/S2095-3119(19)62686-9
http://dx.doi.org/10.3390/rs70810646
http://dx.doi.org/10.2134/agronj2013.0218
http://dx.doi.org/10.1007/s11119-008-9055-3
http://dx.doi.org/10.1111/j.1399-3054.2012.01639.x
http://www.ncbi.nlm.nih.gov/pubmed/22568678
http://dx.doi.org/10.1111/j.1365-3040.2006.01514.x
http://www.ncbi.nlm.nih.gov/pubmed/17080955
http://dx.doi.org/10.1046/j.1365-3040.2002.00942.x
http://dx.doi.org/10.1034/j.1399-3054.2000.100308.x
http://dx.doi.org/10.3390/rs11222706
http://dx.doi.org/10.1016/j.fcr.2004.05.002
http://dx.doi.org/10.1016/j.eja.2014.04.006
http://dx.doi.org/10.1080/01904160701555689
http://dx.doi.org/10.1364/AO.43.004488
http://dx.doi.org/10.1080/01904160903391081
http://dx.doi.org/10.5589/m02-076


Remote Sens. 2020, 12, 1139 19 of 21

33. Xu, J.; Cai, H.; Wang, X.; Ma, C.; Lu, Y.; Ding, Y.; Wang, X.; Chen, H.; Wang, Y.; Saddique, Q. Exploring
optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving
crop yield and reducing water and nitrogen leaching. Agric. Water. Manage. 2020, 228, 105904. [CrossRef]

34. Carolina, S.P.; Crossa, J.L.; Bonnett, D.; Yamaguchi-Shinozaki, K.; Reynolds, M.P. Phenotyping transgenic
wheat for drought resistance. J. Exp. Bot. 2012, 63, 1799–1808. [CrossRef]

35. Scharf, P.C.; Kitchen, N.R.; Sudduth, K.A.; Davis, J.G. Spatially variable corn yield is a weak predictor of
optimal nitrogen rate. Soil Sci. Soc. Am. J. 2006, 70, 2154–2160. [CrossRef]

36. Power, J.F.; Willis, W.O.; Grunes, D.L.; Reichman, G.A. Effect of soil temperature, phosphorus and plant age
on growth analysis of barley. Agron. J. 1967, 59, 231–234. [CrossRef]

37. Sarker, U.; Oba, S. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid
and antioxidant activity in selected vegetable amaranth under four soil water content. Food Chem. 2018, 252,
72–83. [CrossRef]

38. Lea, U.S.; Slimestad, R.; Smedvig, P.; Lillo, C. Nitrogen deficiency enhances expression of specific MYB and
bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta 2007, 225,
1245–1253. [CrossRef]

39. Shapiro, C. Using a chlorophyll meter to manage nitrogen applications to corn with high nitrate irrigation
water. Commun. Soil Sci. Plant Anal. 1999, 30, 1037–1049. [CrossRef]

40. Li, F.; Miao, Y.; Hennig, S.D.; Gnyp, M.L.; Chen, X.; Jia, L.; Bareth, G. Evaluating hyperspectral vegetation
indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis. Agric. 2010,
11, 335–357. [CrossRef]

41. Xia, T.; Miao, Y.; Wu, D.; Shao, H.; Khosla, R.; Mi, G. Active optical sensing of spring corn for in-season
diagnosis of nitrogen status based on nitrogen nutrition index. Remote Sens. 2016, 8, 605. [CrossRef]

42. Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving estimation
of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Res. 2014, 157,
111–123. [CrossRef]

43. Gabriel, J.L.; Quemada, M.; Alonso-Ayuso, M.; Lizaso, J.; Martín-Lammerding, D. Predicting N status in
maize with clip sensors: Choosing sensor, leaf sampling point, and timing. Sensors. 2019, 19, 3881. [CrossRef]
[PubMed]

44. Zhang, Y.; Tremblay, N.; Zhu, J. A first comparison of Multiplex®for the assessment of corn nitrogen status.
J. Food. Agric. Environ. 2012, 10, 1008–1016.

45. Huang, S.; Miao, Y.; Yuan, F.; Cao, Q.; Ye, H.; Lenz-Wiedemann, V.I.S.; Bareth, G. In-Season diagnosis of rice
nitrogen status using proximal fluorescence canopy sensor at different growth stages. Remote Sens. 2019, 11,
1847. [CrossRef]

46. Varvel, G.E.; Wilhelm, W.W.; Shanahan, J.F.; Schepers, J.S. An algorithm for corn nitrogen recommendations
using a chlorophyll meter-based sufficiency index. Agron. J. 2007, 99, 701–706. [CrossRef]

47. Yang, J.; Gong, W.; Shi, S.; Du, L.; Sun, J.; Song, S.; Chen, B.; Zhang, Z. Analyzing the performance of
fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice. Sci. Rep. 2016, 6, 28787.
[CrossRef]

48. Agati, G.; Foschi, L.; Grossi, N.; Guglielminetti, L.; Cerovic, Z.G.; Volterrani, M. Fluorescence-based versus
reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses.
Eur. J. Agron. 2013, 45, 39–51. [CrossRef]

49. Zhang, K.; Liu, X.; Ma, Y.; Zhang, R.; Cao, Q.; Zhu, Y.; Cao, W.; Tian, Y. A comparative assessment of measures
of leaf nitrogen in rice using two leaf-clip meters. Sensors 2020, 20, 175. [CrossRef]

50. Nelson, D.W.; Sommers, L.E. Determination of total nitrogen in plant material. Agron. J. 1973, 65, 109–112.
[CrossRef]

51. Roca, L.F.; Romero, J.; Bohórquez, J.M.; Alcántara, E.; Fernández-Escobar, R.; Trapero, A. Nitrogen status
affects growth, chlorophyll content and infection by Fusicladium oleagineum in olive. Crop Prot. 2018, 109,
80–85. [CrossRef]

52. Padilla, F.M.; de Souza, R.; Peña-Fleitas, M.T.; Gallardo, M.; Giménez, C.; Thompson, R.B. Different responses
of various chlorophyll meters to increasing nitrogen supply in sweet pepper. Front Plant Sci. 2018, 9, 1752.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.agwat.2019.105904
http://dx.doi.org/10.1093/jxb/err385
http://dx.doi.org/10.2136/sssaj2005.0244
http://dx.doi.org/10.2134/agronj1967.00021962005900030007x
http://dx.doi.org/10.1016/j.foodchem.2018.01.097
http://dx.doi.org/10.1007/s00425-006-0414-x
http://dx.doi.org/10.1080/00103629909370266
http://dx.doi.org/10.1007/s11119-010-9165-6
http://dx.doi.org/10.3390/rs8070605
http://dx.doi.org/10.1016/j.fcr.2013.12.018
http://dx.doi.org/10.3390/s19183881
http://www.ncbi.nlm.nih.gov/pubmed/31505810
http://dx.doi.org/10.3390/rs11161847
http://dx.doi.org/10.2134/agronj2006.0190
http://dx.doi.org/10.1038/srep28787
http://dx.doi.org/10.1016/j.eja.2012.10.011
http://dx.doi.org/10.3390/s20010175
http://dx.doi.org/10.2134/agronj1973.00021962006500010033x
http://dx.doi.org/10.1016/j.cropro.2017.08.016
http://dx.doi.org/10.3389/fpls.2018.01752
http://www.ncbi.nlm.nih.gov/pubmed/30542364


Remote Sens. 2020, 12, 1139 20 of 21

53. Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote
estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs.
2013, 25, 47–54. [CrossRef]

54. Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19.
[CrossRef] [PubMed]

55. Bragazza, L.; Freeman, C. High nitrogen availability reduces polyphenol content in Sphagnum peat. Sci.
Total Environ. 2007, 377, 439–443. [CrossRef]

56. Liu, W.; Zhu, D.W.; Liu, D.H.; Geng, M.J.; Zhou, W.B.; Mi, W.J.; Yang, T.W.; Hamilton, D. Influence of nitrogen
on the primary and secondary metabolism and synthesis of flavonoids in Chrysanthemum morifolium
Ramat. J. Plant Nutr. 2010, 33, 240–254. [CrossRef]

57. Li, J.; Zhang, J.; Zhao, Z.; Lei, X.; Xu, X.; Weng, D.; Gao, Y.; Cao, L. Use of fluorescence-based sensors to
determine the nitrogen status of paddy rice. J. Agric. Sci. 2013, 151, 862–887. [CrossRef]

58. Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Proximal optical sensing of cucumber crop N
status using chlorophyll fluorescence indices. Eur. J. Agron. 2016, 73, 83–97. [CrossRef]

59. Cui, Z.L.; Zhang, H.Y.; Chen, X.P.; Zhang, C.C.; Ma, W.Q.; Huang, C.D.; Zhang, W.F.; Mi, G.H.; miAo, Y.X.;
Li, X.L.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555,
363–366. [CrossRef]

60. Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar
chlorophyll content. New Phytol. 2002, 153, 185–194. [CrossRef]

61. Romero, I.; García-Escudero, E.; Martín, I. Leaf blade versus petiole analysis for nutritional diagnosis of Vitis
vinifera L. cv. Tempranillo. Am. J. Enol. Vitic. 2012, 64, 50–64. [CrossRef]

62. Romero, I.; García-Escudero, E.; Martín, I. Effects of leaf position on blade and petiole mineral nutrient
concentration of Tempranillo grapevine (Vitis vinifera L.). Am. J. Enol. Vitic. 2010, 61, 544–550. [CrossRef]

63. Ziadi, N.; Bélanger, G.; Gastal, F.; Claessens, A.; Lemaire, G.; Tremblay, N. Leaf nitrogen concentration as an
indicator of corn nitrogen status. Agron. J. 2009, 101, 947–957. [CrossRef]

64. Kolb, C.A.; Pfündel, E.E. Origins of non-linear and dissimilar relationships between epidermal UV absorbance
and UV absorbance of extracted phenolics in leaves of grapevine and barley. Plant Cell Environ. 2005, 28,
580–590. [CrossRef]

65. Agati, G.; Cerovic, Z.G.; Pinelli, P.; Tattini, M. Light-induced accumulation of ortho-dihydroxylated flavonoids
as non-destructively monitored by chlorophyll fluorescence excitation techniques. Environ. Exp. Bot. 2011,
73, 3–9. [CrossRef]

66. Teal, R.K.; Tubana, B.; Girma, K.; Freeman, K.W.; Arnall, D.B.; Walsh, O.; Raun, W.R. In-season prediction
of corn grain yield potential using normalized difference vegetation index. Agron. J. 2006, 98, 1488–1494.
[CrossRef]

67. Samson, G.; Tremblay, N.; Dudelzak, A.E.; Babichenko, S.M.; Dextraze, L.; Wollring, J. Nutrient stress of
corn plants: Early detection and discrimination using a compact multiwavelength fluorescent lidar. In
Proceedings of the 4th EARSeL Workshop Lidar Remote Sensing of Land and Sea held during the 20th
EARSeL Symposium, Dresden, Germany, 14–16 June 2000.

68. Overbeck, V.; Schmitz, M.; Tartachnyk, I.; Blanke, M. Identification of light availability in different sweet
cherry orchards under cover by using non-destructive measurements with a Dualex™. Eur. J. Agron. 2018,
93, 50–56. [CrossRef]

69. Padilla, F.M.; Gallardo, M.; Peña-Fleitas, M.T.; De Souza, R.; Thompson, R.B. Proximal optical sensors for
nitrogen management of vegetable crops: A review. Sensors 2018, 18, 2083. [CrossRef]

70. Agati, G.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Pollastri, S.; Tattini, M. Functional roles of flavonoids in
photoprotection: New evidence, lessons from the past. Plant Physiol. Biochem. 2013, 72, 35–45. [CrossRef]

71. Louis, J.; Meyer, S.; Maunoury-Danger, F.; Fresneau, C.; Meudec, E.; Cerovic, Z.G. Seasonal changes in
optically assessed epidermal phenolic compounds and chlorophyll contents in leaves of sessile oak (Quercus
petraea): Towards signatures of phenological stage. Funct. Plant Biol. 2009, 36, 732–741. [CrossRef]

72. Louis, J.; Genet, H.; Meyer, S.; Soudani, K.; Montpied, P.; Legout, A.; Dreyer, E.; Cerovic, Z.G.; Dufrêne, E.
Tree age-related effects on sun acclimated leaves in a chronosequence of beech (fagus sylvatica) stands. Funct.
Plant Biol. 2012, 39, 323–331. [CrossRef]

73. Yang, H.; Li, J.; Yang, J.; Wang, H.; Zou, J.; He, J. Effects of nitrogen application rate and leaf age on the
distribution pattern of leaf SPAD readings in the rice canopy. PLoS ONE 2014, 9, e92509. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jag.2013.04.003
http://dx.doi.org/10.1007/BF00377192
http://www.ncbi.nlm.nih.gov/pubmed/28311896
http://dx.doi.org/10.1016/j.scitotenv.2007.02.016
http://dx.doi.org/10.1080/01904160903434287
http://dx.doi.org/10.1017/S0021859612001025
http://dx.doi.org/10.1016/j.eja.2015.11.001
http://dx.doi.org/10.1038/nature25785
http://dx.doi.org/10.1046/j.0028-646X.2001.00289.x
http://dx.doi.org/10.5344/ajev.2012.11004
http://dx.doi.org/10.5344/ajev.2010.09091
http://dx.doi.org/10.2134/agronj2008.0172x
http://dx.doi.org/10.1111/j.1365-3040.2005.01302.x
http://dx.doi.org/10.1016/j.envexpbot.2010.10.002
http://dx.doi.org/10.2134/agronj2006.0103
http://dx.doi.org/10.1016/j.eja.2017.11.006
http://dx.doi.org/10.3390/s18072083
http://dx.doi.org/10.1016/j.plaphy.2013.03.014
http://dx.doi.org/10.1071/FP09010
http://dx.doi.org/10.1071/FP11248
http://dx.doi.org/10.1371/journal.pone.0088421
http://www.ncbi.nlm.nih.gov/pubmed/24520386


Remote Sens. 2020, 12, 1139 21 of 21

74. Wang, S.; Zhu, Y.; Jiang, H.; Cao, W. Positional differences in nitrogen and sugar concentrations of upper
leaves relate to plant N status in rice under different N rates. Field Crop Res. 2006, 96, 224–234. [CrossRef]

75. Lin, F.F.; Qiu, L.F.; Deng, J.S.; Shi, Y.Y.; Chen, L.S.; Wang, K. Investigation of SPAD meter-based indices for
estimating rice nitrogen status. Compu. Electron. Agric. 2010, 71S, 60–65. [CrossRef]

76. Abdallah, S.B.; Rabhi, M.; Harbaoui, F.; Zar-kalai, F.; Lachâal, M.; Karray-Bouraoui, N. Distribution of
phenolic compounds and antioxidant activity between young and old leaves of Carthamus tinctorius L. and
their induction by salt stress. Acta Physiol. Plant. 2013, 35, 1161–1169. [CrossRef]

77. Vagiri, M.; Conner, S.; Stewart, D.; Andersson, S.C.; Verrall, S.; Johansson, E.; Rumpunen, K. Phenolic
compounds in blackcurrant (Ribes nigrum L.) leaves relative to leaf position and harvest date. Food Chem.
2014, 172, 135–142. [CrossRef] [PubMed]

78. Mulla, D.J.; Miao, Y. Precision Farming. In Land Resources Monitoring, Modeling, and Mapping with Remote
Sensing; Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2016.

79. Ziadi, N.; Brassard, M.; Bélanger, G.; Claessens, A.; Tremblay, N.; Cambouris, A.N.; Nolin, M.C.; Parent, L.E.
Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status. Agron. J.
2008, 100, 1264–1273. [CrossRef]

80. Yang, Y.; Timlin, D.J.; Fleisher, D.H.; Lokhande, S.B.; Chun, J.A.; Kim, S.H.; Staver, K.; Reddy, V.R. Nitrogen
concentration and dry-matter accumulation in maize crop: Assessing maize nitrogen status with an allometric
function and a chlorophyll meter. Commun. Soil Sci. Plant Anal. 2012, 43, 1563–1575. [CrossRef]

81. Olioso, A.; Méthy, M.; Lacaze, B. Fluorescence as a Function of Canopy Structure and Leaf Fluorescence.
Remote. Sens. Environ. 1992, 41, 239–247. [CrossRef]

82. Garzonio, R.; di Mauro, B.; Colombo, R.; Cogliati, S. Surface reflectance and sun-induced fluorescence
spectroscopy measurements using a small hyperspectral UAS. Remote Sens. 2017, 9, 472. [CrossRef]

83. Coppo, P.; Taiti, A.; Pettinato, L.; Francois, M.; Taccola, M.; Drusch, M. Fluorescence imaging spectrometer
(FLORIS) for ESA FLEX mission. Remote Sens. 2017, 9, 649. [CrossRef]

84. Miao, Y.; Mulla, D.J.; Randall, G.W.; Vetsch, J.A.; Vintila, R. Combining chlorophyll meter readings and high
spatial resolution remote sensing images for in-season site-specific nitrogen management of corn. Precis.
Agric. 2009, 10, 45–62. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.fcr.2005.07.008
http://dx.doi.org/10.1016/j.compag.2009.09.006
http://dx.doi.org/10.1007/s11738-012-1155-z
http://dx.doi.org/10.1016/j.foodchem.2014.09.041
http://www.ncbi.nlm.nih.gov/pubmed/25442534
http://dx.doi.org/10.2134/agronj2008.0016
http://dx.doi.org/10.1080/00103624.2012.675393
http://dx.doi.org/10.1016/0034-4257(92)90081-T
http://dx.doi.org/10.3390/rs9050472
http://dx.doi.org/10.3390/rs9070649
http://dx.doi.org/10.1007/s11119-008-9091-z
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Site and Soil Description 
	Experimental Design 
	Dualex 4 Sensor Data Collection, Plant Sampling, and Measurements 
	Statistical Analysis 

	Results 
	Interrelationships of SLNC, TLNC, and PNC 
	Effects of Soil Type, Growth Stage, and N Rate on Maize TLNC and PNC 
	Effects of Soil Type, Growth Stage, and N Rate on Dualex 4 Parameters 
	Relationships between Dualex 4 Parameters and TLNC or PNC 
	The Estimation of PNC Using Different Modified Dualex 4 Parameters 

	Discussion 
	Feasibility of Estimating Maize N Status Using Single Leaf-based Dualex 4 Parameters 
	Main Factor(s) Affecting the Establishment of the General Model and the Best Parameter(s) for PNC Estimation 
	The Most Suitable Leaf Position for Sensing Measurements and PNC Estimation 
	Implications for Practical Application and Future Research Needs 

	Conclusions 
	References

