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Abstract: The Normalized Difference Vegetation Index (NDVI), has been increasingly used to capture
spatiotemporal variations in cover factor (C) determination for erosion prediction on a larger landscape
scale. However, NDVI-based C factor (Cndvi) estimation per se is sensitive to various biophysical
variables, such as soil condition, topographic features, and vegetation phenology. As a result, Cndvi

often results in incorrect values that affect the quality of soil erosion prediction. The aim of this study is
to multi-temporally estimate Cndvi values and compare the values with those of literature values (Clit)
in order to quantify discrepancies between C values obtained via NDVI and empirical-based methods.
A further aim is to quantify the effect of biophysical variables such as slope shape, erodibility, and
crop growth stage variation on Cndvi and soil erosion prediction on an agricultural landscape scale.
Multi-temporal Landsat 7, Landsat 8, and Sentinel 2 data, from 2013 to 2016, were used in combination
with high resolution agricultural land use data of the Integrated Administrative and Control System,
from the Uckermark district of north-eastern Germany. Correlations between Cndvi and Clit improved
in data from spring and summer seasons (up to r = 0.93); nonetheless, the Cndvi values were generally
higher compared with Clit values. Consequently, modelling erosion using Cndvi resulted in two times
higher rates than modelling with Clit. The Cndvi values were found to be sensitive to soil erodibility
condition and slope shape of the landscape. Higher erodibility condition was associated with higher
Cndvi values. Spring and summer taken images showed significant sensitivity to heterogeneous soil
condition. The Cndvi estimation also showed varying sensitivity to slope shape variation; values on
convex-shaped slopes were higher compared with flat slopes. Quantifying the sensitivity of Cndvi

values to biophysical variables may help improve capturing spatiotemporal variability of C factor
values in similar landscapes and conditions.

Keywords: C factor; Landsat 7; Landsat 8; Sentinel 2; soil erodibility; slope shape; soil erosion;
IACS; Germany

1. Introduction

Soil erosion is a major global land degradation threat that can result in the loss of soil productivity
of agricultural land and in the reduction of the delivery of ecosystem services [1]. Although it is an
inevitable natural phenomenon, soil erosion is often aggravated by anthropogenic interference in land
use and changes in vegetation land cover [2,3]. Spatiotemporal monitoring of land cover status and
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estimation of the vulnerability of arable lands to soil erosion risk, especially for large agricultural
landscapes, have become paramount tasks in terms of resource requirements and efficiency [4,5].

Soil erosion risk is usually assessed through erosion prediction modelling. The Universal Soil
Loss Equation (USLE) and its revised form, the Revised Universal Soil Loss Equation, are the most
widely applied models. The USLE, an empirical model, was designed to estimate long-term average
annual soil erosion rates of agricultural land [4,6]. It predicts annual soil loss as a product of six factors:
rainfall erosivity, soil erodibility (K), topography (slope length (L) and slope steepness (S)), cover and
management (C), and support practice (P). Among these factors, the vegetation cover management
(C) factor is comparatively the most readily influenced by anthropogenic intervention and exhibits a
negative exponential relationship to soil loss rates [7,8]. Apart from the USLE, several process-based
models such as the Soil and Water Assessment Tool (SWAT) through the Modified Universal Soil Loss
Equation [9,10], and the Agricultural Non-Point Source Pollution model (Young et al. [11]) also employ
C factor for erosion prediction.

The C factor is expressed as a soil loss ratio (SLR) of a given plot of land covered with specified
vegetation to a bare seedbed-prepared plot ploughed up and down along the slope gradient [6,12].
For arable farming, the SLR is measured several times (periods) a year corresponding to the different
phenological stages of a given crop starting from seedbed preparation up to harvesting; these periodic
SLR values are weighted by their corresponding proportional R values and the final summation
(Equation (1)) yields the annual C value [13]:

C =
∑n

i
SLRi ·

Ri
R

(1)

where C is the dimensionless cover management factor, SLRi the soil loss ratio for the month i, Ri the
rainfall erosivity of the month i, R is the annual rainfall erosivity, and n is the number of months
(periods) used in the summation.

The C factor intrinsically does not assume static values, but rather reflects various spatial, temporal,
and cover-type conditions if constructed for multiple locations. For a large agricultural landscape scales
or regional scale, however, it is costly and less efficient to perform periodic SLR measurements [14].
Hence, in many cases the C values for large agricultural areas are estimated by traditionally assigning
uniform empirical values from literature to land use/land cover data [15,16]. This method is relatively
easy but fails to capture the actual spatiotemporal variations of the vegetation cover and hence induces
inaccuracy in the estimation of the C values [12]. Utilizing remotely sensed images for generating C
factor maps based on vegetation indices such as the Normalized Difference Vegetation Index (NDVI)
has become a common practice [4,7,14,17,18]. Comparatively, this method allows us to capture
vegetation cover status and spatiotemporal variation in estimating values [4]. However, the sensitivity
of the NDVI-derived C values to several biophysical variations, such as the vitality condition of the
vegetation cover, soil background differences, and variations in topographical features, could hinder
its full applicability [19–22]. This, as a result, entails optimizing the influence of such biophysical
variables on NDVI derived C value estimations for various agricultural landscapes.

In general, efforts to quantify the sensitivity of NDVI-derived C values to biophysical variables
are scant. Few studies have been conducted to quantify the influence of biophysical variables on NDVI
or on NDVI-derived C values. However, some studies employed single-time image analysis [19,23,24],
with less emphasis on the temporal variation of NDVI sensitivity. Despite using multi temporal
images, other studies lack finer scale and dynamic land use/land cover input data and/or appropriate
resolution satellite image data to indicate various cover types and their associated phenological
stage variations and to incorporate spatial heterogeneity [4,25]. Both spatial and temporal scales are
reported to have an influence on capturing the sensitivities in NDVI. Particular for spatial resolution,
Ding et al. [26] reported that spatial resolution beyond 120 m would smother spatial heterogeneity
in NDVI calculations. There is also limited information regarding the influence of the interactions
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of intra-annual variation of different crop cover types in relation to spatial heterogeneity on C value
calculations [27].

It is well documented that, even within similar land use types, species variation influences the
reflectance of different spectra due to the variation in canopy architecture, leaf orientation, etc. [28,29].
In the process of quantifying the sensitivity of NDVI-derived C values, finely resolved and temporally
dynamic land use information is imperative in order to identify plant cover to specific crop type level
and accurately estimate C values for large agricultural landscapes [27]. In addition, topographical
variations within a uniform land use type also affect the NDVI-derived C values. The effect of
topography on vegetation indices is explained by (i) the direct effect of the change landform (e.g., from
flat to hilly) on the spectrum reflectance property of the surface and (ii) by the indirect influence of
topographic features on vegetation cover status and subsequent greenness of the vegetation [19,26].

In the present research, we endeavored to combine multi-temporal high resolution remote sensing
data along with annually-updated land use data, the Integrated Administration and Control System
(IACS), and topographic and soil attributes data to quantify the sensitivity of NDVI-derived C values
in a large agricultural landscape. The first objective of this study is to temporally estimate NDVI-based
C factor values and compare the values with corresponding empirical values in order to quantify the
deviation between the values obtained via the NDVI and empirical based methods. The second objective
is to quantify the sensitivity of effect of biophysical variables such as soil condition, topographic
features, and crop phenological stage variation on Cndvi values and on soil erosion prediction on an
agricultural landscape scale.

2. Materials and Methods

2.1. Study Area

The Uckermark district of the Brandenburg region (53◦21”50′ N; 13◦48”10′E ), in north eastern
Germany, was the study area (Figure 1a). The land formation of the study region was shaped as a result
of the advancement and cessation of glaciers during the last glaciations [30] resulting in moderately
undulating topography with elevation ranging from 14 m to 132 m above sea level. The land formation
process influenced the pedogenesis in the region, which caused the heterogeneity in soil types across
different topographical forms [31,32]. The main soil type on hill tops and upper slopes ranges from
slightly eroded Luvisols to Calcaric Regosols. The soils at mid slopes and on plateau primarily consist of
Luvisol, Haplic Luvisol, while the depressions consist of Pseudogley (classified as Stagnosols, according
to WRB-IUSS [33] soil types [31,32]. The climate of the region can be characterized as temperate and
continental with an annual average air temperature ranging between 7.8 ◦C and 9.5 ◦C [34]. A mean
annual precipitation of 460.2 mm was recorded between the years 1992 to 2016 at Grünow weather
station [35]. Regarding the land use in the region, 75% is used for arable farming [30], predominantly
covered by winter cereals, winter rape, maize, and sugar beet (Figure 1b,c).
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Figure 1. (a) Overview and elevation of the study area (Source country border: http://www.diva-
gis.org/gdata); (b) and (c) IACS data representing the agricultural land use of the study area in the 
year 2015 and 2016 (masked out are forests, grasslands, and built up areas). WW, winter wheat; WB, 
winter barley; Mz, maize; SC, Summer cereals; WR, winter rape; WRy, winter rye; SB, sugar beets. 

 

Figure 1. (a) Overview and elevation of the study area (Source country border: http://www.diva-gis.
org/gdata); (b) and (c) IACS data representing the agricultural land use of the study area in the year
2015 and 2016 (masked out are forests, grasslands, and built up areas). WW, winter wheat; WB, winter
barley; Mz, maize; SC, Summer cereals; WR, winter rape; WRy, winter rye; SB, sugar beets.

2.2. Dataset and Processing

2.2.1. Satellite Imagery

Here, we combined Landsat 7 and 8 data with Sentinel 2 data in order to obtain temporally
representative cloud free images. Time series of satellite observations (in total 30 images) Landsat 7
and 8 (using path 193, row 23) and Sentinel 2 (using tile ID 33UVV) data acquisitions from 2013 to 2016
were downloaded from United States Geological Survey (https://earthexplorer.usgs.gov/) and from
the Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home), respectively. In order
to represent the different cropping stages (as depicted in Table 1), we included at least one image
from each season of the given considered year. For analysis, scenes were selected with cloud cover
of less than 30%. Most of the images covering the study area were cloud free and all images were
atmospherically corrected. Cloud and snow cover masks (obtained along with the images) were used
to exclude any cloud and snow-covered pixels from further analysis. With respect to the Landsat 7 data,
the Scan Line Corrector failure affected less than 3% of the study area and this did not influence the
result significantly, as indicated by a comparison of the NDVI values from two closely taken Landsat
7 and Landsat 8 images (see Appendix A Figure A1). Radiometric and phenological consistency
between two temporally close Landsat 8 and Sentinel 2 scenes was checked via simple per pixel
correlation analysis. A high correlation coefficient of 0.97 was determined between the mean values of
agricultural parcels and no significant mean variation (p = 0.47) between the two data was observed
(see Appendix A Figure A2).

http://www.diva-gis.org/gdata
http://www.diva-gis.org/gdata
https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/#/home
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Table 1. Different cropping stages of the considered crops along with their measured Soil Loss Ratio
(SLR) value used in the study.

Crop
Type

Cropping Stages
Annual C

Factor *Tillage (S1) Seedbed (S2) 10% Cover (S3) 50% Cover (S4) 75% Cover (S5) Harvest (S6)
Dates SLR Dates SLR Dates SLR Dates SLR Dates SLR Dates SLR

WW 09/20 0.32 09/22 0.46 10/20 0.38 04/01 0.03 04/15 0.01 08/05 0.02 0.09
WB 08/30 0.32 09/09 0.46 09/23 0.38 10/30 0.03 04/01 0.01 07/16 0.02 0.08
WRy 08/05 0.32 08/16 0.46 09/01 0.38 09/20 0.03 10/20 0.01 07/29 0.02 0.04
WR 08/10 0.32 08/20 0.46 09/01 0.38 09/20 0.03 10/10 0.01 08/05 0.02 0.11
Mz 10/20 0.32 04/15 0.94 05/20 0.45 06/05 0.12 06/20 0.09 09/15 0.44 0.34
SC 10/01 0.32 03/03 0.46 04/10 0.38 05/02 0.03 05/15 0.01 08/03 0.02 0.05
SB 10/01 0.32 04/05 0.85 05/18 0.45 06/05 0.05 06/15 0.03 10/01 0.44 0.22

Dates are expressed as Month/Date; * regional value obtained from Deumlich et al. [36].

2.2.2. Land Use/Land Cover Data

The IACS data provide high spatiotemporal resolution information on arable land use, crop type,
field size and shape, and related aspects in a single vector dataset [37,38]. The IACS data from 2014 to
2016 were rasterized and sampled to 30 m resolution. As the focus of this research is on arable land,
other land use types were excluded from the analysis. The major crops considered for the study are
displayed in Figure 1b,c.

2.3. C Factor Value Estimation

In this study, periodic SLR values for each specific crop types, determined by the IACS data, were
assigned from long term empirically measured SLR data, depicted in Table 1, as per DIN 19708 [39].
These SLR values were determined according to the corresponding cropping stages of individual
crops considered (Table 2). Then, these values were weighted by their corresponding monthly average
erosivity proportion values (Table 2, 2nd row) adapted from [40], to result in monthly C factor values
(ClitM). Finally, the annual literature-based C values (Clit) of each crop type were assigned from
Deumlich et al. [36], a regional average value for northeast Germany.

In order to estimate C values using NDVI, the index was computed for each image as described
by Tucker [41]:

NDVI =
(NIR−Red)
(NIR + Red)

(2)

The NDVI can take values between1 and +1 (soil: usually 0.1–0.4, vegetation: 0.2–0.9) and—if
observing vegetation—is an expression of the underlying LAI and photosynthetic activity: the higher
the NDVI value, the “greener” the vegetation (coverage), indicating that photosynthetically active
vegetation is reflecting much of the near-infrared radiation while absorbing the visible range of the
spectrum. The NDVI-based C value (Cndvi) was calculated for each image [42]:

Cndvi = exp
[
−α·

NDVI
(β−NDVI)

]
(3)

where α and β are empirical (dimensionless) fitting parameters. Good correlations were obtained when
using a value of 2 for α and 1 for β [42]. This particular equation has been used in several studies
worldwide to calculate C values [4,17,43–46]. Since the equation was developed using daily images by
comparing against monthly C factor values, it allows us to calculate monthly (CndviM), and annual C
values (Cndvi) by aggregating the average values of the scenes accordingly. Finally, the NDVI-derived
C factor outputs from Sentinel 2 (at 20 m resolution) were re-sampled to 30 m resolution using the
nearest neighborhood method, to maintain the original values, while aligning with the Cndvi from
Landsat 7 and Landsat 8 data for subsequent analysis.
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Table 2. Satellite images allocation in relation to the expected phenological stages of the various crop types considered in the analysis. The percentage of the ground
cover by respective crops’ canopy was determined as per Table 1.

Scene dates a

29
O

ct
ob

er
20

13
2

10
Fe

br
ua

ry
20

14
1

30
M

ar
ch

20
14

1

1
M

ay
20

14
1

10
Ju

ne
20

14
2 ;1

8
Ju

ne
20

14
1

4
Ju

ly
20

14
1

13
A

ug
us

t2
01

4
2

6
Se

pt
em

be
r

20
14

1b

8
O

ct
ob

er
20

14
1

17
M

ar
ch

20
15

1 ;2
5

M
ar

ch
20

15
2

10
A

pr
il

20
15

2

5
Ju

ne
20

15
1 ;1

3
Ju

ne
20

15
2

4
Ju

ly
20

15
3

3
A

ug
us

t2
01

5
3

15
Se

pt
em

be
r

20
15

3b

3
O

ct
ob

er
20

15
2

27
O

ct
ob

er
20

15
1

31
D

ec
em

be
r

20
15

3

2
A

pr
il

20
16

3

22
A

pr
il

20
16

3

2
M

ay
3 ;9

M
ay

3 ;1
2

M
ay

20
16

3

8
Ju

ne
2 ;1

1
Ju

ne
20

16
3

23
Ju

ne
20

16
1 ;2

1
Ju

ly
20

16
3

Monthly R proportion 0.03 0.05 0.05 0.1 0.17 0.2 0.14 0.11 0.03 0.05 0.02 0.17 0.2 0.14 0.11 0.03 0.03 0.05 0.02 0.02 0.1 0.17 0.17

Landcover data used 2014 IACS data 2015 IACS data 2016 IACS data

Crop types Expected cropping stages of the respective crops
WW S3 S3 S4 S5 S5 S5 S6 S6 S2 S3 S4 S5 S5 S6 S1 S2 S3 S3 S4 S5 S5 S5 S5
WB S3 S4 S5 S5 S5 S5 S6 S1 S3 S4 S5 S5 S5 S6 S2 S3 S4 S4 S5 S5 S5 S5 S5
WRy S5 S5 S5 S5 S5 S5 S1 S2 S4 S4 S5 S5 S5 S6 S3 S4 S5 S5 S5 S5 S5 S5 S5
WR S5 S5 S5 S5 S5 S5 S1 S2 S4 S5 S5 S5 S5 S6 S3 S4 S5 S5 S5 S5 S5 S5 S5
SC S2 S2 S3 S4 S5 S5 S6 S6 S1 S2 S3 S5 S5 S6 S6 S1 S1 S1 S2 S3 S4 S5 S5
Mz S1 S1 S1 S2 S4 S5 S5 S5 S1 S2 S2 S4 S5 S5 S6 S6 S1 S1 S2 S2 S3 S4 S5
SB S1 S1 S1 S3 S4 S5 S5 S5 S1 S1 S2 S4 S5 S5 S5 S6 S1 S1 S1 S2 S3 S4 S5

a Dates are expressed as month.date.year (mm.dd.yy); b The intersects of the consecutive IACS data were used to identify the crop types; 1 Landsat 7 data; 2 Landsat 8 data; 3 Sentinel 2
data; S1 to S6, are cropping stages of individual crops (see Table 1).
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2.4. Soil Erosion Prediction

Potential soil erosion risk was predicted by employing the USLE (Equation (4)) [6]. In Germany,
employing the USLE (or an adapted form of the equation named “ABAG”) to predict soil erosion
risk by water is a recommended practice, especially when precise soil loss rates are not required
but the demand is rather for trends and patterns of soil erosion for the purpose of agricultural land
management [47,48].

A = R·K·L·S·C·P (4)

where: A is the predicted average annual soil loss in t ha−1 y−1. R (N h−1, Newtons per hour,
a commonly used unit in Germany that can readily be converted to MJ mm ha−1 h−1 by multiplying
it by a factor of 10) is calculated as the mean annual sum (Figure 1a) of the product of a maximum
30 min rainfall intensity (I30) and energy (Ei) of a rainfall event (Equation (5)) [6,39]. Eight years
of radar rainfall data (RADOLAN from 2006 to 2013), with 5-min temporal and 1 × 1 km 2 spatial
resolution, obtained from the German Weather Service (DWD), were used to calculate EI30 according
to Wischmeier and Smith [6] as:

EI30 =
∑n

i=1
(Ei) ∗ I30


Ei = (11.89 + 8.73logIi) ∗ Pi ∗ 10−3, f or Ii ≥ 0.05 mm/h
Ei = 0 f or Ii < 0.05 mm/h
Ei = 28.33Pi ∗ 10−3 f or Ii > 76.2 mm/h

(5)

where i denotes the ith rainfall event, Ei is the kinetic energy (KJ m−2) of the ith rainfall event, Pi is the
total amount of rainfall (mm) of the ith rainfall event, and Ii is the rainfall intensity of the ith rainfall
event (mm h−1). Utilizing radar weather data for rainfall erosivity calculation and erosion prediction
has been found to be adequate [49]. K (Equation (6)) is the soil erodibility factor (t h ha−1 N−1)
calculated according to Wischmeier and Smith [6] using data available from the German Soil Appraisal
“Bodenschätzung” (Figure 2b).[

2.1 ∗ 10−4(12− a)M1.14 + 3.25(b− 2) + 2.5(c− 3)
]
/100 (6)

where M is the particle size parameter, a is the percentage of organic matter, b soil structure parameter,
and c is the soil profile permeability class. The topographic factor LS (Figure 2c) represents the slope
length (L) calculated according to Hickey [50] and slope steepness (S) calculated as per Nearing [51],
using a 5-m digital elevation model (DEM). The S and L (Equations (7) and (8)) are calculated as:

S = −1.5 + 17/
[
1 + e(2.3−6.1sinθ)

]
(7)

L = (l/22.13)m (8)

where θ is the slope angle, l is the cumulative slope length calculated according to Hickey [50], and m
is slope contingent variable, which takes a value of 0.5 if the slope angle is greater than 2.86◦, 0.4 on
slopes ranging between 1.72◦ and 2.86◦, 0.3 on slopes between 0.57◦ and 1.72◦, and 0.2 on slopes less
than 0.57◦. The dimensionless C factor is the ratio of soil loss under known vegetation cover to that
of bare soil. The C factor is the main manipulation factor in this study and potential soil erosion
prediction is done using both Cndvi (Equation (3)) and Clit values. For the soil-protecting practice factor,
P, a value of 1 was used because no support practice exists for the study region.
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Figure 2. (a) Eight-year annual average rainfall erosivity map, (b) Soil erodibility factor map (c) slope
length and steepness (LS) factor map, and (d) random points generated for the analysis overlaying the
2015 arable land use.

2.5. Statistical Analysis

In order to address the second objective, quantifying the influence of biophysical variables on
Cndvi values, a sample of 5000 spatially balanced random points (Figure 2d), constrained within the
arable land of the study area (using ArcMap, v10.2.2) were generated and further used to extract
multi-values from the considered biophysical explanatory variables (Table 3). The means and standard
deviations of the sample values were compared with the corresponding values from the entire study
area, to check the representativeness of samples, using a t-test analysis (see Appendix B Table A1).
Multiple linear regression analysis was performed using the extracted values against the corresponding
Cndvi values through R (package “stats”) software version 3.6.0 [52].

The biophysical variables used in the study (Table 3) are topographic features such as slope
steepness (degree), slope shape, slope position, slope aspect, edaphic conditions of the area (proxied
through K factor values), and seasonal and crop type variation. A digital elevation model (DEM) of
a 5-m resolution (Figure 1a), derived by airborne laser scanning, was used for the computation of
the topographic features. Slope position and slope shape were calculated through the topographic
positioning index [33]. Soil properties of the study area are proxied by soil erodibility condition in the
form of the K factor values for the reasons that K is calculated by taking into account the soil texture,
soil organic matter content, and particle size distribution of the area [39], in addition to its applicability
in quantitative analysis and explanation [53].
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Table 3. Description of explanatory variables used for regression analysis to investigate the influence
of spatiotemporal and crop type variations on Cndvi values.

Variables Description Data Type

Dependent variable

Cndvi
Cover management factor derived
from satellite images (Equation (3)) Continuous

Biophysical variables
Soil Soil erodibility (K value) (Equation (6)) Continuous

Slope Slope steepness (degree) calculated
from 5 m DEM using ArcMap 10.2.2 Continuous

Aspect Measure of north - south facing slopes Continuous

Slope positions Calculated based on topographic
position indexing [31].

Categorical (coded 1 as summit (reference);
2 is upper slope; 4, flat slope; 5, lower slope;
6, depression or valley)

Slope shapes Measure of land undulation [31]. Categorical (coded 0 as flat (reference); 1 as
convex; 2 as concave)

Crop types Type of Crops grown at a given data
point (identified using IACS data)

Categorical (1 is WW (reference); 2 is WB;
3 is Mz;4 is SC; 5 is WR; 6 is WRy; 7 is SB)

As the data set features some categorical variables such as slope shape, slope position, crop cover
type, the multiple regression model is expressed as:

y = β0 + β12α2 + β13α3 + Xβ2. . . .+ ε (9)

where β12, β13 represent the coefficient expression of the given categorical variables, α2 and α3,
respectively, as compared with a reference variable (α1 where its coefficient β11 is set to 0), α2 and
α3 represent categorical variables, X is a non-categorical variable, and β2 is the coefficient for the
non-categorical variable [54]. The categorical expression for the different crop types was performed by
taking winter wheat as a reference crop, because winter wheat occupied a large proportion of the study
area in all the considered years. For slope shape and slope position, flat land and the slope summit
categories were taken as reference categorical variables, respectively (Table 3). Changing reference
variables does not make any statistical difference in the final output of the regression analysis; rather,
it facilitates a simpler comparison between variables.

Finally, the performances of satellite-based C factor estimation and soil loss prediction were
assessed by employing root mean square error (RMSE) computation expressed as:

RMSEC =

√∑n
1(Clit −Cndvi)

2

n
and RMSESL =

√∑n
1(SLClit − SLCndvi)

2

n
(10)

where SLClit is the potential soil loss predicted using Clit, SLCndvi is the soil loss predicted using Cndvi,
and n is the number of pixels coinciding in the analysis. Furthermore, the erosion prediction accuracy
of using the USLE model in general, or through the two different C values (SLcndvi and SLclit) in
particular, was discussed by comparing the model output with long term (from 1982 to 1996) average
soil erosion values measured from field experiments at the Holzendorf (Latitude 53.386818, Longitude
13.780225) research station [55]. The experimental set up and measured erosion values can be referred
from Deumlich et al. [55].

3. Results and Discussion

3.1. Comparisons between Cndvi and Clit Estimation

Table 4 indicates the spatial correlation between monthly CndviM and ClitM values of the entire
landscape. Better correlation between CndviM and ClitM values was observed in images taken in the
months between spring and mid-summer, with the highest correlation coefficient (r = 0.93) computed
on the image taken on 09 May 2016. The lowest correlation, however, was observed in the months of
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late summer and autumn, while in a few of the images a negative relationship between CndviM and
ClitM values was observed. In particular, August, September, and October were the months where the
highest RMSE was computed. This can be due to variations in the vitality of many winter-sown crops
during these periods of the year; NDVI-based C factor values, as opposed to the SLR based values,
which mainly reflect the function of the protective ability of the crops in question, are highly influenced
by the vitality of the plants rather than the crop-cover percentage [20,42]. In these periods, large areas
of the landscape (see Figure 1b,c for proportion of crop cover) are expected to have either maturing
and senescing crops (e.g., August) or early-emerging and less-ground covering crops (e.g., October),
in which case the NDVI values were lower (Appendix A Figure A3), in turn resulting in elevated
monthly CndviM values. One possible solution could be to incorporate yellow vegetation indices such
as normalized difference tillage index (NDTI), and normalized difference senescent vegetation index
(NDSVI), in the process of formulating the C factor equation, for future in order to improve the C value
estimation across all seasons [7]. Overall, lower RMSEs were consistently computed on images taken
during the month of June in each of the three years considered.

Table 4. Comparison between monthly CndviM and ClitM values represented by scene dates, for the
entire study area.

Scene Dates
Monthly Mean

CndviM ClitM
Correlation

Coefficients (r) RMSE

10 October 2013 0.205 0.010 0.53 0.185
2 February 2014 0.252 0.010 0.70 0.144

3 March 2014 0.147 0.005 0.89 0.098
1 May 2014 0.158 0.013 0.88 0.119
10 June 2014 0.040 0.004 0.80 0.050
18 June 2014 0.066 0.004 0.67 0.084
4 July 2014 0.100 0.005 −0.05 0.136

8 August 2014 0.240 0.006 0.08 0.241
6 September 2014 0.312 0.011 0.42 0.251

8 October 2014 0.237 0.007 0.36 0.216
17 March 2015 0.284 0.004 0.74 0.144
25 March 2015 0.216 0.004 0.79 0.118
10 April 2015 0.159 0.003 0.80 0.132
5 June 2015 0.112 0.005 0.90 0.095

13 June 2015 0.083 0.005 0.88 0.076
4 July 2015 0.113 0.005 0.40 0.125

3 August 2015 0.381 0.004 −0.58 0.202
15 September 2015 0.350 0.020 −0.32 0.422

3 October 2015 0.295 0.008 0.39 0.229
27 October 2015 0.276 0.006 0.55 0.199

31 December 2015 0.205 0.008 0.56 0.186
2 April 2016 0.277 0.002 0.71 0.175
22 April 2016 0.166 0.004 0.74 0.167
2 May 2016 0.186 0.016 0.89 0.133
9 May 2016 0.177 0.016 0.93 0.107
12 May 2016 0.171 0.016 0.91 0.114
8 June 2016 0.092 0.005 0.84 0.094

11 June 2016 0.059 0.005 0.66 0.096
23 June 2016 0.058 0.007 −0.02 0.110

When comparing CndviM values of individual crop-cover types with corresponding ClitM values,
a better estimation for winter crops was observed in spring months and, to a lesser extent, in the beginning
of summer months (April to the mid of June), while for spring sown crops, better estimation was obtained
on images taken exclusively in summer months (June to September) of the year (Appendix A Figure A3),
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which closely coincided with the expected growth patterns of the crops in the study region. This can
indicate the applicability of the IACS data combining with remote sensing images to capture the temporal
variability in C value determination. In general, there was a tendency of high C value estimation using
NDVI as a tool compared with ClitM value estimation in all the months considered. Almagro et al. [56]
also reported that C values estimated via the NDVI (employing Equation (3)) resulted in over estimation
of C factor values compared with plot scale literature values in tropical conditions.

When it comes to annual C value computations, which is the required input factor for the USLE model,
average Cndvi calculations resulted in higher values compared with empirical Clit values specifically for
winter cereals and summer cereal (Figure 3). The highest discrepancies were observed on parcels covered
with SC (85%) and WRy (80%) while the lowest discrepancy, around 5% and 5.3%, appeared to be on
parcels covered with WR and Mz respectively. Bargiel et al. [57] also noted that C factor determination
through remote sensing application gives better accuracy for summer crops than winter grains (without
considering WR) in a similar condition in Poland. Annual C values of Mz and WR can be captured with a
better accuracy as indicated by the least discrepancy estimated here. Comparatively, the NDVI-derived C
value estimation also performed better for SB compared with winter and summer cereals. This could be
explained to some extent to the variation in patterns of foliar orientation of these crops. WR, Mz and SB
categorized as plagiophile and planophile, respectively, while most cereals categorized as erectophile crops
behave differently with respect to canopy spectral reflectance [58]. Erecophile canopy, leaves arranged in
vertical manner, could trap reflected radiation within the canopy and reduce the NDVI while the opposite
is true for planophile canopy orientation types [29].
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Figure 4 depicts the spatial distribution of C values computed with the two methods.
The classification of the study area indicates discrepancy between the two C value estimations.
In case of Clit, areas classified with C values below 0.1 accounted for 51% of the entire landscape, while
Cndvi values of the same category was computed on just 13% of the study area. However, proportions
of the landscape falling in the category between 0.1 and 0.2 were comparatively close to each other:
around 33% with Cndvi and 31% with Clit. One peculiar thing about the Cndvi calculation is that it
produced continuous and spatially varying C factor values within individual parcel as opposed to a
discrete representation by the Clit. This obviously can indicate the potential of the NDVI-based C factor
estimation for capturing spatially explicit variation of different cover types for possible implication of
spatially explicit erosion prediction models, provided that the appropriate adjustments are made (see
Sections 3.3 and 3.4 for a further discussion of adjustments).
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3.2. Potential Soil Erosion Risk Prediction Using the Two C Estimation Methods

Subsequent modelling of potential soil erosion risk reflected the variation of C factor values.
The three-year average annual potential soil loss rates predicted using Clit (SLclit) resulted in values
falling below the maximum tolerable soil loss limit (rates < 1.4 tha−1y−1) [59] set for European conditions,
as per Verheijen et al., for all crops, except Mz (Figure 5). On the other hand, in the case of SLcndvi, only
winter-sown crops fall below this limit. All the spring sown crops, however, predicted high potential soil
loss rates above the tolerable limit using Cndvi values inputted in the USLE model. WR- and Mz-covered
parcels gave quite close soil loss rates. In recent years, the coverage of bio-energy Mz and WR in the
study region has witnessed an incremental trend, which in turn requires to understand the associated
environmental impact at wider scale [34,60]. In this regard, we have indicated that remotely sensed data
can be reliable input for various environmental monitoring and modelling activities.

Spatially, the potential soil loss rates predicted using the two different C factor inputs revealed an
RMSE as high as 1.17 t ha−1 y−1, which was below the maximum tolerable soil erosion limit (Figure 6).
However, the spatial distribution of the potential soil erosion risk varied greatly. For example,
the proportion of the landscape classified below the maximum tolerable soil loss limit in the case of
SLcndvi was close to 85%, while the same classification in the case of SLclit accounted for close to 70%.
In aggregate, the soil loss rate obtained by employing Cndvi as a C-factor input for the USLE model
resulted in two times higher prediction than when using Clit.
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The accuracy of the USLE model in general was assessed by comparing the potential soil loss rates
against the measured long-term average annual soil loss rates. The measured values ranged from 0.5 to
5 t ha−1 y−1; the lowest value measured from WRy mono cultivation, while the highest was measured
from continuous fallow plots. The SLclit gave a comparatively closer estimation than the SLcndvi, with a
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three-year average of 1.11 t ha−1 y−1 predicted from the WW and WR sequenced parcels located near
the surrounding of the Holzendorf experimental station (see Appendix A Figure A4). The potential
soil loss rate predicted using Cndvi, however, yielded an average value of 2.13 t ha−1 y−1 for the same
cropping sequence. The closest comparison here is WRy monoculture. Given the fact that rainfall
erosivity increased over the recent years in the study area [61] and the variation in C values of the crop
types, WRy had low C factor values compared to WR and WW [36], the model output from SLclit can
be fairly taken as accurate. SLcndvi erosion prediction, on the contrary, overestimated (close to double)
the erosion rate as compared to SLclit. However, SLcndvi can improve spatially explicit identification
of soil erosion risks as opposed to SLclit. This can be inferred from the relatively higher coefficient
of variation (CV) of 91% computed in the case of SLcndvi as opposed to 84% in SLclit (Appendix A
Figure A4). This can indicate the potential of utilizing NDVI-based C factor estimation for physically
based erosion models such as SWAT.

3.3. Influence of Soil Heterogeneity on Cndvi

Multiple regression analysis revealed that C values estimated from the vegetation index were
affected by the biophysical variables considered (Table 5). The sensitivity of Cndvi estimations to soil
background variation can be explained through the spatial variability of soil erodibility (K) values
in the study area. This is in agreement with the findings of Wang et al. [53], who reported that the
spatial variability of K factor values can be represented by Landsat TM band 7 variability. In the
present study, an increase in the value of soil erodibility resulted in an invariable incremental change
in the values of Cndvi, although the magnitude varied in different months of a year. Sizeable impact, in
terms of magnitude, was observed during spring and the beginning of the summer months. These are
the periods when ground cover contrast is expected to be high. Huete et al. [62] indicated that the
influence of soil background on plant canopy spectral reflectance is more pronounced on soils with
75% ground cover than on either fully exposed or less ground-covered soils.

The variation in Cndvi values resulting from soil background heterogeneity could be well explained
through the Red and Near Infrared (NIR) bands reflectance variation, particularly on the highest soil
erodibility categories (Figure 7). Soil characteristics such as soil texture, organic matter content and
surface roughness are reported to influence the spectrum properties of a landscape [26]. Remarkably
consistent variations in the reflectance values of both Red and NIR spectrum were observed on soils
with an erodibility class of greater than 0.3 t h ha−1 N−1. The higher the K value, the higher the red
reflectance, but the lower the NIR reflectance, which could result in low NDVI values, as NDVI is the
normalized ratio of the two bands. This can be attributed to the fact that soils with lower erodibility
characteristics have relatively higher organic matter contents, which in turn gives the soils a darker
color. Soil with a darker color are reported to have higher greenness value than brighter colors [62].
This could, to a degree, explain how soil erosion risk predicted using Cndvi (SLcndvi) yielded higher
values, as opposed to SLclit, because of the compounding effect of the K and Cndvi values in the USLE
model (Figure 6).
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Table 5. Estimates of the multiple regression analysis of Cndvi values against biophysical variables across the multi temporal images.

Scene Dates

Biophysical Variables

Slope Positions Slope Shapes Crop Types (with Reference to WW)

K Factor Slope Aspect LS Factor Upper
Slope

Flat
Slope

Lower
Slope Valley Convex Concave WB Mz SC WR WRy SB Constant

R 2 Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef.

29 October 2013 0.4 0.06 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 −0.12 −0.11 * 0.03 * 0.14 *
−0.24 *

−0.02 0.21 * 0.25 *

10 February 2014 0.6 0.08 0.00 0.00 0.00 0.02 0.00 0.01 0.01 0.01 * 0.01 −0.10 * 0.23 * 0.25 *
−0.17 *

−0.13* 0.29 * 0.22 *

30 March 2014 0.8 0.05 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 * 0.01 −0.03 * 0.40 * 0.35 *
−0.05 *

−0.03 * 0.47 * 0.04 *

1 May 2014 0.8 0.16 *
−0.00 0.00 0.01 0.00 −0.00 −0.01 0.01 0.00 0.00 −0.02 * 0.49 * 0.02 0.06 *

−0.01 0.55 *
−0.01

10 June 2014 0.7 0.11 * 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 * 0.00 0.02 * 0.19 * 0.01 −0.00 0.02 * 0.02 *
−0.02 *

4 July 2014 0.5 0.09 *
−0.00 0.00 0.01 −0.00 −0.01 −0.02 0.01 0.01 −0.02 * 0.31 * 0.01 −0.01 0.08 * 0.26 *

−0.06 * 0.05 *

13 August 2014 0.6 0.07 −0.00 0.00 0.04 *
−0.00 0.00 0.00 0.01 0.02 −0.01 −0.03 *

−0.45 *
−0.30 *

−0.25 *
−0.11 *

−0.45 * 0.42 *

6 September 2014 0.7 0.08 0.00 0.00 0.01 −0.01 −0.01 0.00 0.01 0.04 * 0.00 0.04 *
−0.43 *

−0.21 * 0.12 * 0.13 *
−0.41 * 0.40 *

08 October 2014 0.4 0.02 −0.00 * 0.00 0.01 −0.01 −0.01 −0.02 −0.02 0.01 −0.01 0.00 −0.17 *
−0.27 *

−0.32 *
−0.17 *

−0.19 * 0.38 *

25 March 2015 0.7 0.17 * 0.00 0.00 0.01 0.01 −0.01 −0.00 0.01 0.02 * 0.01 −0.06 * 0.33 * 0.36 *
−0.06 * 0.17 * 0.39 * 0.10 *

10 April 2015 0.8 0.16 * 0.00 0.00 0.00 0.00 −0.01 −0.00 0.00 0.01 * 0.00 −0.05 * 0.44 * 0.47 *
−0.05 * 0.15 * 0.51 * 0.03 *

13 June 2015 0.8 0.14 *
−0.00 0.00 −0.00 0.00 −0.00 −0.01 −0.00 0.01 −0.00 0.03 * 0.39 * 0.01 −0.00 0.03 * 0.20 *

−0.02 *

4 July 2015 0.5 0.09 * 0.00 0.00 0.00 −0.00 −0.00 −0.01 −0.00 0.01 *
−0.01 * 0.27 * 0.15* −0.02 −0.04 * 0.09 * 0.00 0.05 *

3 August 2015 0.8 0.09 *
−0.00 0.00 0.01 *

−0.01 −0.00 0.00 0.00 −0.01 −0.02 * 0.02 *
−0.50 *

−0.14 *
−0.06 *

−0.02 −0.52 * 0.53 *

3 October 2015 0.4 0.13 −0.01 * 0.00 0.02 −0.01 −0.02 −0.02 −0.01 0.01 0.00 0.02 −0.30 *
−0.24 *

−0.31 *
−0.09 *

−0.06 * 0.46 *

31 December 2015 0.4 0.28 * 0.00 0.00 0.00 0.00 −0.01 0.00 0.01 0.03 *
−0.01 −0.14 * 0.16 * 0.41 *

−0.16 * 0.06 * 0.33 * 0.14 *

2 April 2016 0.6 0.16 * 0.00 0.00 0.01 −0.01 −0.01 −0.01 0.00 0.05 * 0.01 −0.06 * 0.31 * 0.42 *
−0.14 *

−0.14 * 0.42 * 0.19 *

22 April 2016 0.7 0.15 * 0.00 0.00 −0.02 0.00 0.00 −0.01 0.00 0.03 * 0.00 0.00 0.49 * 0.42 *
−0.05 *

−0.09 * 0.54 * 0.06 *

12 May 2016 0.9 0.15 * 0.00 0.00 0.00 −0.01 −0.01 −0.01 0.00 0.01 * 0.00 0.00 0.60 * 0.06 * 0.04 *
−0.03 0.66 *

−0.01
8 June 2016 0.8 0.21 * 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.02 *

−0.01 0.01 * 0.38 * 0.00 0.00 −0.01 0.14 *
−0.04 *

23 June 2016 0.5 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 −0.01 0.26 * 0.04 *
−0.02 0.00 0.04 *

−0.02 0.01

* indicates coefficients statistically significant at P < 0.01; Coef. denotes regression coefficient; Adj.R 2 is adjusted coefficient of determination; (−0.00) is due to the rounding off of small
values, but the sign is kept indicating directional impact.
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K categories: 1, ≤ 0.15; 2, = 0.15 to 0.3; 3, ≥ 0.3. The notches in the boxes indicate statistical significance in
median reflectance of Red and Near Infrared (NIR) along the K categories at a 95% confidence interval.

The Cndvi values responded differentially to soil background heterogeneity across different
crop-cover types and seasons; during winter and spring, the association of Cndvi with soil condition
was pronounced on lands covered with winter sown crops (with the exception of WR) more during
summer on the lands covered with spring sown crops (Figure 8). This could be explained in relation to
the growth stages of the crops in question, whereby during winter and spring periods, parcels covered
with winter-sown crops, or with spring sown crops during the summer period, would exhibit mixed
spectral characteristics of both the exposed soil and vegetation of not fully-closed canopies. However,
as time proceeded, the canopies of the respective crops in the respective seasons would fully cover the
parcels; hence, the radiometric signal is less dominated by the soil background reflectance [26].
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Figure 8. Impact of soil heterogeneity (categorized as 1, K ≤ 0.15; 2, K = 0.15 to 0.3; 3, K ≥ 0.3) on NDVI
values across different crop cover types and seasons in the study area (notches indicate a significant
variation in median NDVI along the K category at a 95% confidence interval).

The least pronounced impact of heterogeneous soil background reflectance on parcels covered with
WR can be explained by the nature of the architectural orientation of the crop canopy. WR, plagiophile
canopy, is reported to have a higher plant area index compared with WW (belonging to erectophile),
even at the same phenological stage [58]. This can also be inferred from Figure 8 in our study, where,
despite both WR and WRy being expected to cover around 75% of the ground in the images dated
02 April 2016 (Table 2), their NDVI values and response to K value categories varied significantly.
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Land surfaces covered with WR showed no significant response to soil heterogeneity and had
comparatively higher NDVI values consistently (Figure 8). However, a further investigation with
ground measurements needs to be done to further understand the relationship of crop canopy structure
and C factor value estimation for future.

Other spectral indices such as the enhanced vegetation index (EVI) and soil adjusted vegetation
index (SAVI) have been developed to increase sensitivity to changes in biomass while reducing the
impact of soil background noise on vegetation spectral property [63]. However, these indices may
introduce a higher sensitivity to topographic variability, which might take effect in rugged/mountainous
areas [19]. Therefore, consideration of all biophysical variables in calibrating spectral indices for the
purpose of environmental monitoring such as erosion prediction remains imperative.

3.4. Influence of Topographic Features on Cndvi

The regression analysis also revealed that Cndvi values showed consistently significant response
to varying slope shapes of the landscape (Table 5). Slope aspect, however, did not show any significant
relationship with Cndvi estimation. Matsushita et al. [19] also reported that topographical features
such as aspect do not exhibit significant influence on band ratio indices such as NDVI. Although slope
steepness showed a significant impact on Cndvi values in just two images, the regression coefficient
was a very small number close to zero; hence, it is not discussed here.

Convex shaped slope, as compared to flat slope, demonstrated significant incremental implications
on Cndvi values, with the highest coefficient of 0.05 (P < 0.01; R 2 = 0.57) predicted on the image taken
on 02 April 2016 (Table 5). Concave shaped slope, on the other hand, revealed to have a negative
relationship with the estimated Cndvi values compared with the flat slope. The impact of concaved
slope on Cndvi values was predominantly observed on images taken from the end of June to August.
This can be due to the indirect influence of topographic attributes on vegetation status, as concave
slopes, located towards the depression parts of the study area [31], are most likely assumed to be cooler
in summer as compared to flat land; hence, the crops could senescence late and could remain vital for
a longer time. In addition, this could also be due to the fact that drainage patterns vary with slope
shape, bearing implications on soil moisture conditions of a landscape, in such a way that concave
slopes produce less runoff compared with flat and convex slopes [64,65]. In the study area the different
slope shapes also have a complex interaction with prevailing soil types, due to erosion and deposition
processes [55]. Concave part of slope act as depositional sites while the convex parts of the slope are
dominated by eroded soils. These attributes of the landscape could also play a role in the status of crop
growth and subsequently in Cndvi estimates.

Convex slopes seemed to increase Cndvi value estimations, with considerable magnitude recorded
on images taken in winter and early springtime. The impact of varying slope shape varied with crop
growth stages (Figure 9). During springtime (e.g., image 02 April 2016), the impact of slope shape on
the NDVI values was more evident for winter crops, parcels covered with summer crops exhibiting a
typical NDVI value for bare soil. In the middle of the summer season (04 July 2014), when most winter
crops were approaching maturity stage, the impact of slope shape, specifically concave slope, exerted
an influence on the NDVI values of winter crops. Towards August (03 August 2015), the influence of
slope shape variation was entirely limited to summer crops because winter crops had most likely been
harvested. In general, while using NDVI for C factor estimation, considerations must be taken into
account to accommodate for land formation influence on the status of the vegetation.
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4. Conclusions

In the present study, we used annually updated high resolution land use data, high resolution
multi-temporal remote sensing data, and topographic and soil attribute data to quantify deviations
between NDVI based C value estimations (Cndvi) and traditional literature-based C values (Clit) in
addition to quantifying the sensitivity of Cndvi estimation in large agricultural landscape. Combining
these datasets enhanced the quantification of the discrepancies between Cndvi and Clit. A higher
discrepancy was observed among winter cereals than summer crops. The discrepancy in C values
between Cndvi and Clit was also found to be season dependent with a closer relation observed in
early spring to midsummer, with consistently lowest RMSE values for data from June. Subsequently
modelling soil erosion using Cndvi as input factor could yield higher annual mean soil loss rate values,
while it could potentially improve the spatially explicit erosion risk identification.

In quantifying the sensitivity of Cndvi, the K factor was reliable and consistent to explain the response
of Cndvi values to soil background heterogeneity. Higher erodibility condition, particularly K values above
0.3 t h ha−1N−1, was associated with significantly higher Cndvi value estimation: up to 0.28 times higher.
It was also indicated that the relationship between Cndvi estimates and heterogeneous soil conditions can
be further dissected according to the canopy structure of different crops; namely, Plagiophile crops, found
to be less response to background soil conditions than erectophile types. Identifying land cover type
to specific species level, by coupling remote sensing data with the IACS data, allowed quantifying the
sensitivity of Cndvi to soil background heterogeneity in relation to crops’ growth stage.

The research also indicated that variable slope shape can be reliably used in quantifying the
sensitivity of Cndvi estimates to topographical variations. Convex and concave slopes were found
to have opposite implications on Cndvi values, in that the concave slope was associated with lower
Cndvi values (up to 0.01 times smaller values compared with flat slope), while the convex slope had
an incremental implication (up to 0.05 times higher values compared with flat slope). The impact of
different slope shapes also showed variability according to season; a more evident implication of the
concave slope was in late summer, while the association of convex slope with higher Cndvi values
spread from spring to the beginning of autumn. The results can be useful inputs in improving the
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capacity of Cndvi estimation for landscapes as complex as the present study region. In addition, utilizing
remote sensing data for the purpose of capturing spatiotemporal variation in C factor determination
and subsequently serving as input factor for process-based soil erosion modelling can be enhanced
by considering the quantified sensitivity of Cndvi estimations. The information obtained from such
modelling practice could also benefit the evaluation of several agricultural land management options
in large and complex agricultural landscapes efficiently and more accurately.

For future research, we suggest to explicitly study C factor determination, including spatially
distributed climatic data along with yellow vegetation indices in order to improve the applicability
and transferability of the Cndvi method to regions with similar conditions.
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experimental station: (a) land cover type from 2014 to 2016 cropping year identified through the IACS 
data; (b) and (c) erosion predicted using Clit (SLclit) and using Cndvi (SLcndvi), respectively. Compared to 
the long-term experimental results, which ranged from 0.5 to 5 t ha-1 y-1, the values predicted using 
the USLE can fairly be taken as representative. 
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to the long-term experimental results, which ranged from 0.5 to 5 t ha−1 y−1, the values predicted using
the USLE can fairly be taken as representative.

Appendix B

Table A1. Data comparison between randomly extracted data points (samples) and the whole scene
statistics (population). The t-test indicated no statistical difference between the two groups (p = 0.92,
t value = 2.0 for the means; and p = 0.99, t value = 2.0 for standard deviations).

Variables
Mean Standard Deviation

Sample (n = 5000) Population Sample (n = 5000) Population

Slope 2.52 2.58 1.95 2.14
K value 0.2 0.19 0.07 0.07
LS factor 0.36 0.37 0.38 0.40
Cndvi by scene dates
29 October 2013 0.21 0.19 0.21 0.21
10 February 2014 0.26 0.25 0.20 0.19
30 March 2014 0.14 0.13 0.21 0.20
1 May 2014 0.17 0.14 0.25 0.23
18 June 2014 0.07 0.07 0.12 0.11
4 July 2014 0.12 0.11 0.15 0.15
13 August 2014 0.25 0.24 0.24 0.24
6 September 2014 0.32 0.31 0.27 0.27
8 October 2014 0.24 0.23 0.23 0.23
17 March 2015 0.29 0.29 0.21 0.20
25 March 2015 0.22 0.21 0.19 0.18
10 April 2015 0.16 0.15 0.22 0.21
5 June 2015 0.12 0.10 0.23 0.21
13 June 2015 0.09 0.08 0.17 0.16
4 July 2015 0.11 0.11 0.14 0.14
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Table A1. Cont.

Variables
Mean Standard Deviation

Sample (n = 5000) Population Sample (n = 5000) Population

7 July 2015 0.12 0.11 0.14 0.14
3 August 2015 0.38 0.37 0.25 0.25
3 October 2015 0.30 0.29 0.25 0.25
27 October 2015 0.28 0.27 0.24 0.24
31 December 2015 0.21 0.2 0.22 0.22
2 April 2015 0.28 0.26 0.25 0.24
22 April 2015 0.21 0.18 0.26 0.25
2 May 2015 0.22 0.17 0.30 0.28
9 May 2015 0.21 0.16 0.30 0.28
12 May 2015 0.20 0.16 0.28 0.26
8 June 2015 0.09 0.08 0.17 0.17
23 June 2015 0.06 0.06 0.11 0.11
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