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Abstract: In the context of global warming, the land surface temperature (LST) from remote sensing data
is one of the most useful indicators to directly quantify the degree of climate warming in high-altitude
mountainous areas where meteorological observations are sparse. Using the daily Moderate Resolution
Imaging Spectroradiometer (MODIS) LST product (MOD11A1 V6) after eliminating pixels that might
be contaminated by clouds, this paper analyzes temporal and spatial variations in the mean LST on
the Purog Kangri ice field, Qinghai–Tibetan Plateau, in winter from 2001 to 2018. There was a large
increasing trend in LST (0.116 ± 0.05 ◦C·a−1) on the Purog Kangri ice field during December, while
there was no evident LST rising trend in January and February. In December, both the significantly
decreased albedo (−0.002 a−1, based on the MOD10A1 V6 albedo product) on the ice field surface
and the significantly increased number of clear days (0.322 d·a−1) may be the main reason for the
significant warming trend in the ice field. In addition, although the two highest LST of December
were observed in 2017 and 2018, a longer data set is needed to determine whether this is an anomaly
or a hint of a warmer phase of the Purog Kangri ice field in December.
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1. Introduction

Land surface temperature (LST), which is an essential variable of the terrestrial energy budget,
is a key variable of the surface–atmosphere interface that drives mass and energy exchange between
the atmosphere and land surface [1–5], thereby playing a critical role in hydrological, meteorological,
environmental, and climate change studies [6–10]. Compared with traditional in situ LST observations
that are limited to a small area with relatively homogeneous land-cover types, the thermal infrared
satellite remote sensing data available since the 1970s can offer surface temperature information with
large spatial coverage and a long time series (depending on the revisit cycle of the satellites). These
satellite data have become one of the most important data sources for assessing climate change at
regional and global scales [11].

Currently, the sensors most commonly used for LST retrieval include Advanced Very High
Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Thematic
Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Thermal Infrared Sensor (TIRS) [12–15].
MODIS thermal infrared data have been available since 2000 with ~1 km spatial resolution, and view the
entire surface of the Earth every one to two days [16]. Due to its high spatiotemporal resolution, MODIS

Remote Sens. 2020, 12, 1133; doi:10.3390/rs12071133 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-0843-6912
http://www.mdpi.com/2072-4292/12/7/1133?type=check_update&version=1
http://dx.doi.org/10.3390/rs12071133
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 1133 2 of 17

LST has been widely used to study spatial and temporal variations in regional surface temperature,
especially for polar regions and alpine mountainous areas with harsh environments and sparse
observation networks. Many studies have been performed to estimate temperature variations on
the Antarctic and Greenland ice sheets using MODIS LST, revealing a warming trend and extreme
melting events (LST extremes) in recent years [17–20]. For the Qinghai–Tibetan Plateau, the MODIS
LST product has been applied to the lower-altitude regions (<5000 m) with meteorological observation
station data in terms of near-surface temperature estimation, delimitation of permafrost extent, and lake
surface temperature analysis [21–24].

The accuracy of the MODIS LST product on snow/ice surfaces has been extensively studied in
the Arctic regions, revealing substantial discrepancies among different regions with diverse altitude
and climate conditions, as well as different versions of MODIS LST products [25–28]. However,
the ground-based validation of MODIS LST products is comparatively rare in the high-altitude glaciers
of the Qinghai-Tibetan Plateau, possibly due to the very sparse meteorological station network and the
relatively small area (mostly <1 km2) of mountain glaciers that are generally represented as mixed
pixels of MODIS data. Although Zhang et al. [29] validated the errors of MOD11A1 and MYD11A1
for the Xiaodongkemadi Glacier and the Palongzangbo Glacier on the Qinghai–Tibetan Plateau, their
results were based on only two mixed pixels (non-glacier parts accounting for 28% and 32%), which
may result in spurious accuracy evaluation of MODIS LST products on mountain glaciers. Currently,
it is generally believed that the errors in the MODIS LST product on snow or ice surfaces mainly result
from failures in determining cloud contamination, especially of thin clouds. Therefore, when the
MODIS LST product is applied on snow or ice surfaces, it is essential to eliminate the pixels affected by
cloud via statistical methods [30].

Since the 1980s, mountain glaciers on the Qinghai–Tibetan Plateau have generally suffered from a
retreating and thinning trend [31,32]. The role of the EDW effect (elevation-dependent warming) in
high-altitude mountainous areas [33,34] is still in question owing to the sparse station distribution
and to the errors of both remote sensing surface temperature products and climate models. With the
global warming in recent decades, rising temperature has led to intensified glacier ablation on
the Qinghai–Tibetan Plateau and consequently unstable runoff of downstream rivers, which might
jeopardize the livelihood of hundreds of millions of people in the region [35–37]. Moreover, the warming
of high-altitude areas is directly related to the occurrence of mountain glacial disasters, such as glacier
debris flows, glacial lake outburst floods, and glacier avalanches [38–41]. Therefore, understanding the
warming rate of high-altitude glacial areas has a practical significance for water resources management
and safety in the downstream area of glaciers [31]. Although Wu et al. [4] retrieved high-precision
mountain glacier surface temperatures from Landsat ETM+ data on the Qinghai–Tibetan Plateau, it is
difficult to analyze the interannual variations and trends in the LST retrieved from Landsat thermal
infrared data because of 16 day revisit time of the satellite.

As the largest glacier on the Qinghai–Tibetan Plateau of China, the Purog Kangri ice field is an
ideal area to study the variations in glacier surface temperature using MODIS LST products. An ice
core drilled in the Purog Kangri ice field revealed an evident warming since the 20th century [42];
recent data from optical remote sensing satellites show that the Purog Kangri ice field has shrunk by
15.29 km2 (about 3.6%) from 1992 to 2014 [43], and multi-source Digital Elevation Model (DEM) data
indicate an increasing thinning rate of the glacier from −0.049 ± 0.200 m·a−1 from 2000 to 2012 [44] to
−0.317 ± 0.027m·a−1 from 2012 to 2016 [45]. All these findings reflect the fact that the high-altitude
mountainous areas of the Qinghai–Tibetan Plateau are influenced by global warming, but there remains
a lack of quantitative knowledge of the specific rate of warming. It is predicted that the warming rate
in the Qinghai–Tibetan Plateau will increase until the end of the 21st century, with more pronounced
increases in winter than in summer [46]. The rapid wintertime warming could lead to a reduced glacier
cold storage and an earlier glacier ablation season [47]. In addition, the glacier LST will stop increasing
after reaching 0 ◦C during the ablation season, which will affect the calculation of the trends of summer
glacier LST. Therefore, this paper attempts to analyze the interannual variations in winter LST on the
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glacier from 2001 to 2018 using MODIS LST products after eliminating cloud-contaminated pixels,
in order to understand the trend of winter LST on the Purog Kangri ice field in the 21st century.

2. Study Site

The Purog Kangri ice field (33◦44´N–34◦03´N, 89◦00´E–89◦20´E) in the north-central part of
the Qinghai–Tibetan Plateau (Figure 1a) covers an area of 422.58 km2 and is the largest ice field in
China [48,49]. The ice field is relatively flat over its central part, and is surrounded by more than
50 glacier tongues extending outwards along the mountain valleys, with the longest tongue reaching
the foothills (Figure 1). The elevation of the ice field is between 5345 m and 6450 m, and the mean
equilibrium-line altitude (ELA is the altitude at which glacier surface accumulation and ablation equal
in a year, i.e., the glacier mass balance is equal to 0) during 2001 to 2012 was 5748 ± 37 m [50]. Due to
the high altitude and relatively large area, there have only been minor changes in the ice area since the
Little Ice Age; in particular the area of the southeastern and western parts is relatively stable, while
there is a more obvious shrinkage in the northern part [48].
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Figure 1. (a) Location of the Purog Kangri ice field (red star) and two weather stations (black triangles)
and (b) extent of the Purog Kangri ice field. Blue grids denote MODIS (Moderate Resolution Imaging
Spectroradiometer) LST (land surface temperature) pixels with underlying surface covered purely by
snow/ice.

3. Data and Process

3.1. MODIS LST Products and Processing

The MODIS/Terra and Aqua Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid
product is used in this study, which was downloaded from the NASA DAAC (Distributed Active Archive
Center) at EROS (Earth Resources Observation and Science) Data Center. Both MODIS/Terra and Aqua
pass over the Purog Kangri ice field twice a day, and their overpass times are ~10:30 (MOD11A1_day
data)/22:30 (MOD11A1_night data) and ~1:30 (MYD11A1_night data)/13:30 (MYD11A1_day data),
respectively. The MOD11A1 and MYD11A1 products are produced with the generalized split-window
algorithm that uses MODIS bands 31 and 32 [51] (10.78–11.28 µm and 11.77–12.27 µm, respectively).
In 2017, NASA provided a new MODIS LST product (V6), which included the elimination of
cloud-contaminated data in MODIS Level 2 and 3, an update of the coefficients of the split-window
algorithm, and the adjustment of emissivity values based on ground classification [52]. The detailed
information of MODIS LST products and their interactions with other MODIS products can be found
in Wan [53,54].
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The MOD11A1 and MYD11A1 tile h25v05 provides complete coverage of the Purog Kangri ice
field, and data from this tile for the three winter months (December, January, and February) from 2001
to 2018 are used here. The MODIS LST product is reprojected onto a geographic projection using
the MODIS Reprojection Tool (MRT) from the original sinusoidal projection, and a total of 212 pixels
within the Purog Kangri ice field (according to the Second Glacier Inventory Dataset of China [55])
were used for further study, excluding mixed pixels of glacier and bare rock (Figure 1b). Each grid of
MODIS LST product has a quality control (QC) flag ranging from 0 to 3 indicating average errors of <1,
1–2, 2–3, and >3 K. Only pixels which passed quality control at the QC 0/1 level were included for
analysis. Cloud contaminated pixels (2) or pixels contaminated for another reason (3) were omitted.
The monthly mean available days of four MODIS LST products after quality control (QC) (Figure 2)
show that the MOD11A1_day data (red bars) is more appropriate to analyze the variations in LST,
while the insufficient availability of the other three data makes it difficult to retrieve a convincing LST
trend, the reason for which is also discussed in Section 5.2.
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Figure 2. Monthly average (DJF) of the available days of MOD11A1_Day (red), MOD11A1_Night
(grey), MYD11A1_Day (blue), and MYD11A1_Night data (orange) over the Purog Kangri ice field from
2001 to 2018 after quality control.

The cloud identification algorithm for the MOD11A1_day products still misses some pixels that are
affected by cloud contamination, which is primarily related to thin clouds, cloud shadow contamination,
or large view angles [56]. To further improve the data quality and reduce the impact of other sources of
uncertainty on the data, following Williamson et al. [30], a 3 × 3 grid cell moving window was used to
compare values between each central pixel and its 8 surrounding pixels; the central pixel was excluded
if the difference between the central value and the mean (or mean plus standard deviation) of all the
surrounding pixels exceeded 5 ◦C (or 3 ◦C). After screening for “abnormal” data, the three months have
different numbers of valid days with sufficient remaining MODIS pixels. To determine the number of
valid days required to adequately represent the monthly mean LST value, the pixel with the greatest
number of valid days was selected to calculate the RMSE between the LST averages of randomly
selected days and the monthly averages based on the entire dataset. The sample size for each number
of days is 10,000. From Figure 3, the RMSE shows a rapid decline when the number of days increases
from 1 day to 6 days, and then begins to level off. When the number of days is set to 6 as the threshold
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for the pixels to be used in this study, the RMSE is around 1. This provides acceptable accuracy for
monthly average temperature, while permitting more pixels to be studied. Therefore, in this study,
those pixels with at least 6 valid days per month are used to calculate the monthly average LST.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 18 

 

 

Figure 3. Variations in RMSE (Root Mean Square Error) with the number of valid days and its error 
bar (±1 standard deviation). 

The number of pixels available (more than 6 days of data) from 2001 to 2018 is shown in Figure 
4. In some years, excessive cloud cover has reduced the number of pixels, such as 2008 with only 6 
pixels available, which may cause large uncertainty in the LST analysis. Therefore, the years of 2005, 
2008, 2010, 2012, 2014, and 2016 with too few pixels are excluded in the analysis of LST variations. 
After data screening, there are 26 pure snow/ice pixels with six days or more of data in December, 
January, and February together. The analysis of the LST trend in this paper is carried out on those 26 
pure ice pixels (shown in Figure 5). 

 
Figure 4. Number of pixels with more than 6 days data available from the 2001 to 2018 winter monthly 
average LST (land surface temperature) of the Purog Kangri ice field. 

3.2. MODIS Albedo Products 

In this study, the MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid product (MOD10A1 
V6) was employed to analyze the trend of albedo; this is available from the NASA DAAC at the 
National Snow and Ice Data Center (NSIDC). The MOD10A1(V6) contains snow extent, snow albedo, 
fractional snow cover, and quality assessment data at 500 m resolution and the albedo algorithm 
within the MOD10A1 algorithm suite was developed by Klein et al. [57]. The MOD10A1 product is 
generated when the viewing and illumination angles are at the best conditions in a day [58]. The 
MOD10A1 albedo substantially improved in relative accuracy from V5 to V6 [59]. A description of 
the MOD10A1(V6) and algorithm can be found in Riggs et al. [60]. The MOD10A1 has been widely 

Figure 3. Variations in RMSE (Root Mean Square Error) with the number of valid days and its error bar
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The number of pixels available (more than 6 days of data) from 2001 to 2018 is shown in Figure 4.
In some years, excessive cloud cover has reduced the number of pixels, such as 2008 with only 6 pixels
available, which may cause large uncertainty in the LST analysis. Therefore, the years of 2005, 2008,
2010, 2012, 2014, and 2016 with too few pixels are excluded in the analysis of LST variations. After
data screening, there are 26 pure snow/ice pixels with six days or more of data in December, January,
and February together. The analysis of the LST trend in this paper is carried out on those 26 pure ice
pixels (shown in Figure 5).
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3.2. MODIS Albedo Products

In this study, the MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid product (MOD10A1
V6) was employed to analyze the trend of albedo; this is available from the NASA DAAC at the
National Snow and Ice Data Center (NSIDC). The MOD10A1(V6) contains snow extent, snow albedo,
fractional snow cover, and quality assessment data at 500 m resolution and the albedo algorithm within
the MOD10A1 algorithm suite was developed by Klein et al. [57]. The MOD10A1 product is generated
when the viewing and illumination angles are at the best conditions in a day [58]. The MOD10A1 albedo
substantially improved in relative accuracy from V5 to V6 [59]. A description of the MOD10A1(V6)
and algorithm can be found in Riggs et al. [60]. The MOD10A1 has been widely validated and is
commonly used in the analysis of albedo variation for the surface of snow/ice [61,62]. The MODIS
Albedo product is preprocessed with the same method as the MODIS LST data sets.

3.3. Meteorological Data

As there are no long-term meteorological observation data on the Purog Kangri ice field, the monthly
mean 2 m air temperatures calculated by averaging the hourly measurements of the two nearest
meteorological stations, Nagqu (33◦30′N, 92◦00′E, altitude 4507 m, 380 km from the ice field) and Tuotuohe
(33◦12′N, 92◦24′E, altitude 4533 m, 310 km from the ice field), was utilized in this study (2001–2018);
these data are available from the China Meteorological Science Data Sharing Service Network.

3.4. The High Asia Refined Data

The LST product of High Asia refined (HAR) data is also utilized to be compared with the
MODIS LST, which is provided by the Technical University of Berlin [63]. The HAR used a daily
reinitialization strategy to prevent drift from observed synoptic conditions during its total simulation
period (from October 2000 to October 2014) over the Qinghai–Tibetan Plateau region. The 10-km
resolution HAR Surface Skin Temperature (i.e., LST) dataset was dynamically downscaled from the
global analysis data using the Weather Research Forecasting model. Although the estimation of the LST
trend using HAR data may have some uncertainty, it can still enrich our understanding of temperature
variations over the Purog Kangri ice field with no in situ observation.

3.5. Digital Elevation Data

The Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation
Model (ASTER GDEM) V2.0 product (2011) with a spatial resolution of 30 m was employed to analyze
the relationship between LST and altitude in order to determine if there is an EDW effect in the
temperature increase of the Purog Kangri ice field. These data have been widely used for glacier height
extraction and topographic analysis in High Mountain Asia [64].

4. Results

4.1. Spatial Pattern in LST Trends of the Purog Kangri Ice Field

The trend in the wintertime monthly LST during clear daytime over the Purog Kangri ice field is
shown in Figure 5, and the nonparametric Mann–Kendall test was used to estimate the significance
of the LST trend. December showed the highest rate of warming, with 26 pixels of the ice field
having an increasing LST trend of over 0.1 ◦C·a−1 (22 pixels are significant, p < 0.05). In comparison,
although LSTs in January showed increasing trends, they were less than 0.05 ◦C·a−1 and were not
statistically significant (p > 0.05). In February, the increasing trends in LST of most pixels ranged
between 0.05 ◦C·a−1and 0.07 ◦C·a−1, with only one pixel showing a statistically significant increase
(p < 0.05).
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4.2. Variations in the Regional Mean LST of the Purog Kangri Ice Field

The regional mean of all the selected December LST pixels in the Purog Kangri ice field showed
an increasing trend of 0.1585 ± 0.053 ◦C·a−1 (black dashed line in Figure 6a) from 2001 to 2018, with
the maximum December LST occurring in 2017, 2.83 ◦C higher than the 2001–2018 annual average.
To avoid the influence of this LST extreme heat on the LST trend, December 2017 was excluded from
the trend calculation, and the resultant LST trend still reached 0.1152 ± 0.052 ◦C·a−1 (red dashed line in
Figure 6a), showing a relatively robust trend. In comparison, the LST trend in January was smaller
(0.0535 ± 0.106 ◦C·a−1) and was not statistically significant (black dashed line in Figure 6b). When
the year with the maximum January LST (i.e., 2018) was removed, there was even a cooling trend in
January (red dashed line in Figure 6b). In February, the overall LST trend of the Purog Kangri ice
field was 0.0735 ± 0.077 ◦C·a−1, which was not statistically significant (black dashed line in Figure 6c),
and the temperature trend approached 0 ◦C·a−1 when the maximum February LST (i.e., 2017) was
removed (red dashed line in Figure 6c). Therefore, the warming trends in January and February were
sensitive to extremes and were not robust. Of note, although during the period 2001–2018 the LST
maximum of all three wintertime months was observed in 2017 or 2018 (Figure 6), a longer data set is
needed to determine whether this was an anomaly or just a hint of a warmer phase of Purog Kangri ice
field in winter.

Figure 6 shows more available days in December than in January and February, meaning that the
monthly mean LSTs of the three winter months are calculated by MODIS LST with different numbers
of days, which might affect the consistency of calculated trends among different months. To investigate
this issue, the mean LST of 6 random days from December, January, and February for each available
pixel was used to represent the corresponding monthly mean LST (gray circles in Figure 6). In fact,
there were only small differences (within ±0.2 ◦C) between the original and the 6-day monthly LST
with the exception of some February months that had differences of approximately 0.5 ◦C, which
indicates that using a different number of days (≥6 days) in the calculations of monthly LST has little
effect on the calculated trends.
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Figure 6. Variations in LST (land surface temperature) anomalies (dots) and their linear trend (dashed
lines) in (a) December, (b) January, and (c) February over the Purog Kangri ice field. The monthly mean
LSTs of all available days during the entire study period are shown in black dots, while those excluding
the year with the maximum value are shown in red dots. The histogram indicates the number of days
used to calculate the monthly average LST for each month, and the mean LST anomalies calculated
from 6 randomly selected days in the month are shown by gray circles.

4.3. Influence of Albedo and Number of Clear Days on LST of the Purog Kangri Ice Field

LST is determined partly by surface albedo as it can change the surface energy flux by altering the
amount of solar radiation absorbed by the glacier surface [13]. Previous studies (e.g., Nolin et al. [65])
on the Greenland ice sheet indicate that a slight change in ice/snow albedo can trigger substantial
fluctuations in the energy flux on the ice surface. From Figure 7, the surface albedo was significantly
(p < 0.05) and negatively correlated with LST in all three months of winter during 2001–2018, and the
coefficients of determination were 0.53, 0.49, and 0.35 for December, January, and February, respectively.
The surface albedo showed a significant decreasing trend in December at a rate of –0.0026 a−1,
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corresponding with the significant rising trend in LST, whereas for January and February there were
no significant trends in either albedo or LST.
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In addition, as the main energy source of the ice field, solar radiation (net shortwave radiation)
was also controlled by the number of clear days during daytime. From Figure 7, there are positive
correlations between the number of clear days and LST for all three months, and the coefficients
of determination for December, January, and February were 0.48, 0.19, and 0.10, respectively. Only
in December, with a significant LST rising trend, did the number of clear days show a significant
increasing trend (about 0.32 d·a−1), whereas in January and February with insignificant LST change
trends, the calculated trend of the number of clear days was not statistically significant (p > 0.05).
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Therefore, from 2000 to 2018 the significant increasing trend in December LST was evidently
affected by the decreasing albedo and the increasing number of clear days, both of which contributed
to the increase in solar radiation absorbed by the glacier surface. During the similar time period of our
study, the declining trend in winter cloud cover fraction was also consistent with the increasing trend
in the number of clear sky days [66,67]. The higher coefficient of determination (0.53) between albedo
and LST than that of the number of clear days (0.48) indicated that the LST warming trend in December
was more affected by albedo, while the increase of clear days enhanced the effect of the albedo on
LST. However, it remains unclear whether the decrease of albedo is the dominant reason for the rising
winter LST on glaciers, which needs further field investigation and energy/mass balance simulations.

4.4. Variation of December LST with Elevation on the Purog Kangri Ice Field

To investigate whether there are variations of LST with elevation in winter for the Purog Kangri ice
field, December was taken as an example because it showed a significant warming trend. The altitude
range of the Purog Kangri ice field (5600–6200 m) was divided into intervals of 150 m, 200 m, and 300 m
so as to separately calculate the LST trend at different altitudes. Note that there are 115 temporally
continuous pixels (yellow grid in Figure 8) available in December because they were extracted separately
from the MODIS LST product according to the data screening rules (≥6 days). The surface temperature
trend was between 0.106 ± 0.012 ◦C·a−1 and 0.133 ± 0.012 ◦C·a−1, which decreased slightly with increase
in elevation regardless of the interval used in the altitude division.
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Figure 8. Variations in December LST (land surface temperature) with altitude in the Purog Kangri
ice field. (a) The yellow grid shows the 115 temporally continuous pixels of the MODIS LST selected
in December. (b) LST trend as a function of altitude of the ice field for three intervals: 150 m, 200 m,
and 300 m. Error bars are the ± 1 standard error.

5. Discussion

5.1. Impact of Data Screening Rules on LST Trends

The spatial pattern in the mean number of clear days per winter month (December, January,
and February) from 2001 to 2018 shows that the western part of the Purog Kangri ice field is strongly
affected by clouds, with only 3–5 clear days available, while the eastern and southern parts are relatively
less affected by clouds and thus have 26 pixels selected to study LST variations for all three months
(Figure 9).

In this study area, the available MODIS data in December was more than in January and February,
and 115 pixels were available throughout the period from 2001 to 2018 after data screening. However,
the shortage of available MODIS data in January and February meant that six years with too few pixels
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were removed from trend calculations, which will introduce some errors in the trend analysis when
comparing all three winter months. Therefore, the December LST with more available MODIS data was
used to estimate the potential influence of data screening with six years missing during the calculation of
the LST trend. Comparisons of LST employing three different data sources (using 115 pixels with no years
missing, 115 pixels with six years missing, and 26 pixels with six years missing as used in January and
February) show almost no difference between the LST variations using 115 pixels and those using 26 pixels
(blue and red dots in Figure 10). Therefore, LST using 26 pixels adequately represents the December
LST of the corresponding year over the Purog Kangri ice field. However, comparisons show that the
December LST trend was overestimated by 0.04 ◦C·a−1 (the increasing trend was 0.116 ± 0.050 ◦C·a−1)
after excluding six years (black and blue dots in Figure 10). The years with less data availability were
often accompanied by an increase of cloud cover. Cloud cover can affect the surface energy balance via
radiation forcing, and sometimes increases solar radiation at the surface through multiple reflections
between high albedo surface and clouds. Therefore, excluding some years with insufficient data might
introduce an error in the LST trend.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 18 
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Figure 10. Variations in the December LST (land surface temperature) anomalies (dots) and their linear
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shown in black (a1 and a2), those using 115 pixels with six years missing are shown in red (b1 and b2),
and those using 26 pixels (as used in January and February) with six years missing are shown in blue
(c1 and c2).
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5.2. Impact of the Cloud Detection Algorithm of the MODIS LST Product

The cloud detection algorithm in the MODIS LST product cannot identify all types of clouds.
Previous research has indicated about 15% undetected cloud contamination in MODIS LST products [68].
Studies on the Arctic Svalbard Archipelago suggest that >40% of the cloud contamination was
mistakenly considered as clear sky conditions in the MODIS products, resulting in a large error between
the MODIS temperature value and the measured value [27]. The accuracy of the MODIS LST product is
mainly limited by the errors from the cloud detection algorithm, and thus it is necessary to employ data
screening rules to eliminate potential cloud-contaminated pixels before the trend calculations [25,69].

From Figure 2, it is difficult to retrieve convinced LST trends from the other three MODIS LST
products with such insufficient available data, and therefore, only the MOD11A1_day could be used
to analyze the LST variations in winter. The availability of MODIS LST products is closely related
with cloud cover over the Qinghai–Tibetan Plateau, where there are frequent convective clouds
that can blur the glacier LST retrieved from thermal infrared remote sensing. Over the Tibetan
plateau, the convective clouds occur primarily at the period of 14:00–20:00, around 02:00, and around
08:00 [70,71], which are basically close to the overpass time of the other three MODIS LST products
(i.e., 22:30, 13:30, and 01:30 for MOD11A1 night, MYD11A1_Day, and MYD11A1_night, respectively),
while the MOD11A1_Day passes over the ice field (i.e., 10:30) in the period with relatively less
convective clouds. Yu et al. [72] found that the mean daily cloud coverage exceeds 45% over the
Qinghai–Tibetan Plateau, and the MODIS quality control (QC) data are related to the cloud detection
calculation, while Zhang et al. [73] found that high-quality data account for 50%–70% of the total
MODIS data. Even with more stringent data quality controls, such as excluding data with errors >1 K,
cloud contamination still exists in MODIS LST products. In this paper, the data screening method is
only a compromise to remove some of the influence of cloud contamination and will inevitably reduce
the amount of available data. Therefore, eliminating the influence of cloud pollution when applying
the MODIS LST product in the Qinghai–Tibetan Plateau remains a major challenge.

5.3. Comparisons Between MODIS LST and Station Observations/HAR Dataset

Although the LST trends of the present study were obtained by excluding cloud contamination
effects, it is still necessary to check whether they can capture the actual LST variations over the Purog
Kangri ice field. As the near-surface temperature is believed to show consistent variations with LST at
regional scales [74–76], here we compared the 2 m mean air temperature from stations and MODIS LST
data with/without data screening, to check if there is a closer relationship between them. In addition,
we also added the comparisons between the HAR LST data (10 km) and MODIS LST data on the
ice field. Although the estimation of LST trend using HAR data may have some uncertainty, it can
still enrich our understanding of temperature variations over the Purog Kangri ice field with no in
situ observations. From Figure 11, when the data screening method was utilized, there were obvious
increases in correlation coefficients between MODIS LST and the near-surface temperature at both
stations and HAR data, especially for February (the month with the most cloud days), which highlights
the necessity of a data screening method.
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Figure 11. Comparisons of anomalies in regional mean MODIS LST (land surface temperature) and
HAR (High Asia refined) data over the Purog Kangri ice field as well as the near-surface temperature
from two nearby stations (Nagqu and Tuotuohe) in three winter months. Left column: the regional
MODIS LSTs are obtained from all the available data after quality control, (a1–c1) for December, January
and February; right column: the regional mean MODIS LSTs are obtained from the available data after
quality control and data screening, (a2–c2) for December, January and February.

6. Conclusions

Using the MODIS (MOD11A1) daily LST product, this study analyzed the temporal and spatial
variations in winter monthly (DJF) LST over the Purog Kangri ice field from 2001 to 2018 by removing
MODIS LST pixels that might be contaminated by clouds. The results showed a substantial increasing
LST trend (0.116 ± 0.050 ◦C·a−1) in the ice field during December, while there was no significant LST
trend in January and February. The significant reduction in surface albedo of the ice field and the
significant increase in the number of clear days may have led to increased solar radiation absorption by
the glacier surface, which may be the main reason for the significant warming trend over the ice field
in December. This study also showed no evident changes in December LST in different altitude range
(5600–6200 m) of the ice field, with only a slight decreasing trend as elevation increases. In addition,
the number of pixels available for LST trend calculations was proven to have a limited impact on
the trend results, while the elimination of years that were strongly affected by clouds might cause a
non-negligible error in the LST trend. Therefore, when using MODIS LST products to analyze LST
variations, it is necessary to pay attention to the impact of the eliminated years, and special caution
is warranted for results based solely on the years with more clear days. In addition, comparisons
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between the MODIS LST and near-surface temperature of two nearby stations/HAR LST data showed
that it is very necessary to do data screening (6-days cut off and cloud contamination) for MODIS LST
products. Given that MODIS LST of only clear days are employed in this study, it is relatively more
reliable that December LST was less affected by cloud contamination over the Purog Kangri ice field,
while those of other winter months may have some uncertainty. Nevertheless, in the absence of in situ
data, the MODIS LST product still offers a valuable data source for us to understand LST variations in
high mountain glaciers.
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