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Abstract: Leaf photosynthetic parameters are important in understanding the role of photosynthesis
in the carbon cycle. Conventional approaches to obtain information on the parameters usually involve
long-term field work, even for one leaf sample, and are, thus, only applicable to a small area. The
utilization of hyperspectral remote sensing especially of various vegetation indices is a promising
approach that has been attracting increasing attention recently. However, most hyperspectral indices
are only applicable to a specific area and specific forest stands, depending heavily on the conditions
from which the indices are developed. In this study, we tried to develop new hyperspectral indices for
tracing the two critical photosynthetic parameters (the maximum rate of carboxylation, Vcmax and the
maximum rate of electron transport, Jmax) that are at least generally applicable for alpine deciduous
forests, based on original hyperspectral reflectance, first-order derivatives, and apparent absorption
spectra. In total, ten types of hyperspectral indices were screened to identify the best indices, and
their robustness was determined using the ratio of performance to deviation (RPD) and Akaike’s
Information Criterion corrected (AICc). The result revealed that the double differences (DDn) type
of indices using the short-wave infrared (SWIR) region based on the first-order derivatives spectra
performed best among all indices. The specific DDn type of indices obtained the RPD values of
1.43 (R2 = 0.51) for Vcmax and 1.68 (R2 = 0.64) for Jmax, respectively. These indices have also been
tested using the downscaled dataset to examine the possibilities of using hyperspectral data derived
from satellite-based information. These findings highlight the possibilities of tracing photosynthetic
capacity using hyperspectral indices.

Keywords: photosynthetic capacity; temperate forest; hyperspectral remote sensing; vegetation
indices; ratio of performance to deviation (RPD)

1. Introduction

Global climate change has been projected to reduce global net primary production (NPP) and
carbon stocks from soil [1], and has become a global threat to humans. To date, tremendous efforts
have been made to reduce the impact of global climate change, for which the control of greenhouse
gases (GHGs) emissions has become a popular solution [2]. Such an effort could be more effective
if supported by increased reforestation, as tree species and all chlorophyll plants are important for
mitigation purposes, since leaves capture CO2 from the atmosphere, and combine it with water and
energy from the sun to produce carbohydrates, a well-known process called photosynthesis that is
critical for the carbon cycle [3,4].

To understand the role of photosynthesis in the carbon cycle, a comprehensive study of the
dynamics of photosynthesis parameters is necessary. The proposed model by Farquhar et al. [5]
has become a basic tool for assessing the photosynthetic capacity of each species [6]. Its two
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critical parameters, the maximum rate of rubisco carboxylation (Vcmax), and the maximum rate
of photosynthesis electron transport (Jmax), are essential to the model, and are, thus, important to
understand the exchange of carbon between the atmosphere and the terrestrial ecosystem [7].

Conventional approaches to obtain information on these two parameters usually involve long-term
field work, even for one leaf sample [8,9], and can only be done on a small scale due to the
time-consuming and highly labor-intensive work required. Alternatively, the approach of utilizing
remote sensing information has increasingly attracted attention, and may potentially be used for
estimating plant physiological, biochemical, and biophysical properties [10,11].

The utilization of remote sensing information generally involves two common approaches:
empirical ways based on multispectral or hyperspectral information obtained from satellites, such
as Hyperion, TianGong-1, EnMAP (Environmental Mapping and Analysis Program) and HyspIRI
(Hyperspectral Infrared Imager) [12], or a radiative-transfer-model-based inversion like using SCOPE
(Soil Canopy Observation, Photochemistry and Energy fluxes) [13], 4-Scale [14], or ProSAIL (Prospect
+ Scattering by Arbitrarily Inclined Leaves) [15]. However, most of the currently available radiative
transfer models (RTMs) have not included photosynthesis parameters, especially Vcmax and Jmax, as
input variables, meaning that they are impossible to retrieve inversely. As an exception, the SCOPE
model incorporated both radiative transfer and physiological processes, with Vcmax as one of the dozens
(more than 30) inputting parameters [13,16]. Recent work by Camino et al. estimated Vcmax in wheat
phenotyping trials using airborne hyperspectral-based solar-induced chlorophyll fluorescence (SIF)
retrievals through SCOPE model inversions [17]. Their work involved the determination of numerous
parameters, including the meteorological, leaf biophysical and structural parameters, leaf inclination
angle distribution function (LIDF) parameters, and the broadband incoming shortwave radiation.
As SCOPE is a very complex model, which has integrated different modules, the parameterization
complexities can induce large errors in its application [16,18]. In addition, rather than obtained directly
from reflectance, Vcmax used for the model was estimated from a previously established relationship
with SIF. Therefore, directly remote sensing retrieval of physiological parameters to date has relied
more on empirical approaches.

Since Rouse et al. proposed the popularly applied normalized difference vegetation index
(NDVI) [19], the empirical approach has been widely followed and a number of indices have been
developed for diverse purposes, including Gamon et al.’s photochemical reflectance index (PRI) [20] for
physiological parameters [21–25]. To date, a large number of indices have been developed to fulfill the
needs for monitoring and assessing plant structural and biochemical aspects [26–28], and most of the
well-known indices reported were developed in multispectral information but with certain adjustments,
such that these indices could potentially be used for hyperspectral reflectance. However, even though
the use of vegetation indices for a quick assessment of photosynthesis or photosynthetic parameters
has been attempted in several previous works [29–33], no consensus has yet been reached [34], and
is dramatically behind the indices for structural or biochemical parameters. Furthermore, the few
reported indices are generally only applicable to a specific area and specific forest stands depending on
the condition for the index developed, or for specific leaf groups [35]. Our previous efforts to filter a
universal index to trace photosynthetic parameters failed and no hyperspectral index has ever been
applicable, especially for trees in alpine deciduous forests.

The aim of this study, therefore, is to develop a robust index for tracing photosynthetic parameters
using hyperspectral information for alpine deciduous forests. We used a dataset composed of six species
that dominate in the habitat of the alpine temperate forest in Japan. The dataset includes synchronous
measurements of photosynthetic parameters (Vcmax and Jmax) and reflectance from two distinctive leaf
groups, sunlit leaves, and shaded leaves of each species. A downscaled dataset is also attempted to
investigate the possibilities of using satellite-borne hyperspectral data for future assessment.
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2. Materials and Methods

2.1. Study Site

The study site is located in Nakakawane, one of the forestry research facilities of Shizuoka
University (35◦04′ N and 138◦06’ E, Shizuoka Prefecture, Japan). The land cover in this study site
is a deciduous temperate forest, dominated by Acer shirasawanum Koidz. The elevations vary from
390 to 1560 m with an annual precipitation of approximately 2153 mm. Meanwhile, the annual mean
temperature is around 17 ◦C [36]. The location of this site is shown in Figure 1.
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2.2. Measurements and the Dataset

A detached leaf sampling strategy has been followed in this study [37,38]. Leaf samples were
collected in the years 2014, 2015, 2016, and 2018. All samples were taken pre-dawn by cutting the
leaves from the branches and re-cutting underwater and were transported as soon as possible from the
field to the laboratory under dark conditions. Measurements were taken with the dark-adapted leaves
as soon as possible (no later than three days maximum) after the leaf samples were collected.

Gas exchange measurements were made for each sample following the standard method [8].
The LI-6400 (LI-COR Bioscience Inc., Lincoln, NE, USA) equipped with a leaf chamber was used.
For dark-adapted samples, we took light response curves first in 2018, starting from a PAR
(Photosynthetically Active Radiation) level of 0 µmol·m−2

·s−1 and an ambient CO2 (Ca) concentration
of 400 µmol mol−1. After all the graphs became stable, we gradually tuned the PAR to 100, 200, 400,
700, 850, 950, and 1000 µmol·m−2

·s−1 for about two minutes each to reach stably. The A/Ci curve (net
CO2 assimilation rate, A, versus calculated substomatal CO2 concentration, Ci) measurements were
made after having obtained the light saturation points from the light response curves. However, for the



Remote Sens. 2020, 12, 1124 4 of 19

years from 2014 to 2016 light response curves were not taken regularly, the A/Ci curve measurements
were made with the PAR set to 1000 µmol·m−2

·s−1, a light-saturated point as determined from previous
light response curves. Then we decreased the Ca concentrations gradually from 400 µmol·mol−1 to 300,
200, 100 (but to 300, 250, 200, 150, 100 in 2018), and then finally to 50. Each step took about 2 minutes to
stabilize. After that, we gradually increased the Ca back to 400 µmol mol−1, and then to 1200, 1500,
1800 in 2014-2016 while to 550, 650, 750, 850, 1000, 1200, 1500, 1700 in 2018, before finally reaching 2000
µmol·mol−1. The A/Ci curves were fitted using the plantecophys package [39] in R software [40] for
Vcmax and Jmax.

For each sample, once the gas exchange measurements finished, leaf scale reflectance was
immediately taken using a field spectrometer (Analytical Spectral Devices Inc., Boulder, CO, USA)
equipped with a leaf clip. Reflectance measurements were done with both white and dark backgrounds,
repeated three times for each measurement. The average values of the three repeats were used for
further analysis.

The dominant species in our study site is A. shirasawanum, which has unique leafy periods. This
species comes into leaf earlier than other species but matures at the almost same time as the others and
has a longer leaf senescence period. On the other hand, one of the target species in this study is Fagus
crenata. This species is native to Japan and is categorized as an endemic Fagus species from Japan
together with Fagus japonica. The species is usually widespread and even the dominant tree of Japanese
deciduous forest. In total, six species were used for this study. The list of species is presented in Table 1.
These species were all easy-to-access trees surrounding the towers. Shaded and sunlit leaves were
taken from each species separately, and their positions were recorded. Only mature leaves were used
for this study (from June to the middle of September in each year). This is also to eliminate outliers,
since a typhoon hit the study site at the end of September 2018. An exception was only found for A.
shirasawanum since the species has a longer leaf senescence period and suffered more serious stress
from the typhoon than the other species. Therefore, we excluded all September data from each year of
measurements for this species. However, for the year 2017 only F. crenata was measured. The dataset
used in this study finally contained 170 leaf samples (Table 1). Besides F. crenata and A. shirasawanum,
the other four species have a small number of leaf samples due to the small number of trees within our
study site.

Table 1. List of species used in this study.

No. Species Name Number of Leaf Samples

1. Acer shirasawanum Koidz. 46
2. Betula grossa Siebold & Zucc. 14
3. Carpinus tschonoskii Maxim. 11
4. Fagus crenata Blume 84
5. Stewartia monadelpha Siebold & Zucc. 6
6. Stewartia pseudocamellia Maxim. 9

2.3. Reported Indices

We collected a number of reported indices to validate their applicability for estimating
photosynthetic parameters. The results were also compared with the new indices developed in
this study. We tested a series of well-known vegetation indices of hyperspectral remote sensing. The
formulae of the reported indices are shown in Table 2.

The wavelengths used for the Moderate Resolution Imaging Spectroradiometer (MODIS)-like
indices were 858 nm for NIR (near infrared) and 645 nm for red. We also tried another combination
of using the center Sentinel 2A wavelengths, in which the NIR was 833 nm and the red was 741 nm
(vegetation red edge, Band 6). The reported indices were examined for their original reflectance
form only.



Remote Sens. 2020, 12, 1124 5 of 19

Table 2. Formulae of reported indices used in this study.

No. Name of Index Formula of Index

1. Photochemical Reflectance Index, PRI [20] PRI = R531−R570
R531+R570

2. Red-edge Vegetation Stress Index, RVSI [27] RVSI =
[
(R714+R752)

2

]
−R733

3. Structure-Insensitive Pigment Index, SIPI [41] SIPI = R800−R445
R800−R680

4. Chlorophyll Absorption Ratio Index, CARI [26] CARI = (R700 −R670) − 0.2 ∗ (R700 −R550)

5. modified Chlorophyll Absorption Ratio Index,
mCARI [42]

mCARI =
[(R700 −R670) − 0.2 ∗ (R700 −R550)] ∗

(
R700
R670

)
6. Normalized Difference Nitrogen Index, NDNI [28] NDNI =

[
log
(

1
R1510

)
−log

(
1

R1680

)]
[
log
(

1
R1510

)
+log

(
1

R1680

)]
7. Normalized Difference Vegetation Index, NDVI

[43] (Hyperspectral) NDVI = R860−R690
R860+R690

8.

Normalized Difference Vegetation Index, NDVI
[19] (Moderate Resolution Imaging

Spectroradiometer (MODIS)-like & Sentinel
2A-like)

NDVI = NIR−Red
NIR+Red

9. 2-band Enhanced Vegetation Index, EVI 2
(Hyperspectral)

EVI 2 = 2.5 ∗ R860−R690
R860+(2.4∗R690)+1

10. 2-band Enhanced Vegetation Index, EVI 2 [44]
(MODIS-like & Sentinel 2A-like)

EVI 2 = 2.5 ∗ NIR−Red
NIR+(2.4∗Red)+1

2.4. New Indices Development

Several reported index types were used in this study for developing new indices, including the
given wavelength (R), simple ratio (SR), wavelength difference (D), a normalized difference (ND),
and inverse differences (ID). Besides these five types, we also included the double differences (DDn),
modified simple ratio 1 (mSR1), modified simple ratio 2 (mSR2), modified normalized difference (mND)
and modified inverse differences (mID) to the list (Table 3). Furthermore, all types using original
reflectance, first-order derivatives spectra and apparent absorption were screened to identify the best
index and the best type of reflectance forms. The first-order derivatives and apparent absorption spectra
were used to reduce background noise and the possibilities of overlapping spectral features [45,46].
The calculations of the first-order derivatives and the apparent absorption spectra are listed in Equation
(1) and Equation (2), respectively.

1stDerλn = (Rλn+1−Rλn−1)/2 (1)

Abs = log
( 1

Rλn

)
(2)

The value of Rλn was the original reflectance value at wavelength λn.
In addition, we also examined the consistency of the developed indices with different spectral

resolutions. This was done by downscaling the original spectral resolution to 5 nm, 10 nm, 20 nm,
and 50 nm, with the purpose of investigating the possibilities of applying the developed indices
using airborne or satellite-borne data. The screening was done using the MATLAB software
(The MathWorks, Inc.).
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Table 3. Index types used for developing new indices: Spectra at given wavelength (R), simple ratio
(SR), wavelength difference (D), normalized difference (ND), inverse differences (ID), double differences
(DDn), modified simple ratio 1 (mSR1), modified simple ratio 2 (mSR2), modified normalized difference
(mND) and modified inverse differences (mID).

No. Index Type Formula of Index

1. R(λ1) = Rλ1

2. SR(λ1, λ2) = Rλ1
Rλ2

3. D(λ1, λ2) = Rλ1−Rλ2

4. ND(λ1, λ2) =
(Rλ1−Rλ2)
(Rλ1+Rλ2)

5. ID(λ1, λ2) = 1
Rλ1
−

1
Rλ2

6. DDn(λ1, ∆λ) = 2Rλ1−Rλ1−∆λ−Rλ1+∆λ

7. mSR1(λ1, ∆λ) =
(Rλ1−∆λ−Rλ1)

Rλ1+∆λ

8. mSR2(λ1, ∆λ) =
(Rλ1−∆λ−Rλ1)

(R λ1+∆λ− Rλ1)

9. mND(λ1, ∆λ) =
(Rλ1−∆λ−Rλ1)

(Rλ1−∆λ+Rλ1−2Rλ1+∆λ)

10. mID(λ1, ∆λ) = Rλ1−∆λ

(
1

Rλ1
−

1
Rλ1+∆λ

)
2.5. Statistical Criteria

The premier criterion used in this study to evaluate the performance of an index is the ratio of
performance to deviation (RPD) (Equation (3)) to observe the goodness of fit. It is expressed as a ratio
of the standard error in prediction to the standard deviation of the samples. The RPD is calculated
as follows:

RPD =
SD
SEP

(3)

where SEP is the standard error prediction and SD is the standard deviation of photosynthetic capacity
(Vcmax or Jmax).

Based on the RPD results, the indices are then categorized into three different groups (A, B, or
C). The category of each group refers to Chang et al. [47]. Category A means the indices can be used,
while category B means the indices can be used with several improvements. Category C means the
indices cannot be reliably applied.

However, the Akaike’s information criterion corrected (AICc) (Equation (4)) served as the
determinative criterion for the final selection of the candidates especially when several different indices
give the same RPD value. The AICc is used due to its capability to address potential overfitting caused
by a small sample size.

AICc = (2k− 2 ln(L̂)) +
2k2 + 2k
n− k− 1

(4)

where L̂ is the maximum value of the likelihood function, n is the sample size, and k is the number of
parameters. In addition, the coefficient of determination (R2) and the root mean square error (RMSE)
were also calculated.

3. Results

3.1. Properties of Leaf Photosynthetic Parameters and Hyperspectral Reflectance

Six species from Nakakawane were measured for photosynthesis activities from 2014 until 2018.
The mean value of Vcmax was estimated to be 33.48 µmol m−2 s−1, ranging from 10.01 µmol m−2 s−1

to 61.21 µmol m−2 s−1, with a median of 31.95 µmol m−2 s−1. Meanwhile, the Jmax data varied from
26.15 µmol m−2 s−1 to 160.80 µmol m−2 s−1, with the mean of 71.80 µmol m−2 s−1 and the median of
67.61 µmol m−2 s−1. Descriptive statistical results revealed that the Vcmax had a skewness of 0.284,
a kurtosis of –0.851, and a standard deviation of 12.18 µmol m−2 s−1. On the other hand, the Jmax
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had 0.668 for skewness, –0.369 for kurtosis, and 29.98 µmol m−2 s−1 for the standard deviation. The
distributions of every photosynthetic parameter are shown in Figure 2.
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Figure 2. Distribution of photosynthetic parameters: (a) the maximum rate of carboxylation (Vcmax),
and (b) the maximum rate of electron transport (Jmax).

Species-based descriptive statistics for photosynthetic parameters are shown in Figure 3. The
highest values for Vcmax and Jmax were both found in Fagus crenata, of 61.21 µmol m−2 s−1 and
160.80 µmol m−2 s−1, respectively. In contrast, the lowest value for Vcmax was observed in Acer
shirasawanum (10.01 µmol m−2 s−1), while the lowest value for Jmax was found in Betula grossa
(26.15 µmo m−2 s−1). The highest variance of Vcmax was found in B. grossa, which reached
146.41 µmol m−2 s−1 (14 samples). This was followed by Carpinus tschonoskii (135.09 µmol m−2 s−1; 11
samples), and F. crenata (112.73 µmol m−2 s−1; 84 samples). However, different trends were noted for
the Jmax, for which F. crenata had the highest variance of 780.98 µmol m−2 s−1, followed by C. tschonoskii
(713.10 µmol m−2 s−1) and B. grossa (668.18 µmol m−2 s−1).

On the other hand, the reflectance data also varied among different species (Figure 4). The S.
monadelpha had the highest standard deviations of reflectance spectra at the range of red-edge to
NIR. Nevertheless, F. crenata had the highest mean reflectance in most wavelengths, especially for the
domain of short-wave infrared (SWIR). For different leaf groups, there is no significant variation of
reflectance from 400 to 1400 nm. However, the standard deviations of sunlit leaves were higher at
700 nm (red edge) to 1100 nm (NIR area), while shaded leaves were higher at 1400 to 2500 nm (SWIR
area). The result is presented in Figure 5.
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3.2. Performance of Reported Indices

The results from indices screening based on the original reflectance for both parameters using the
reported indices are shown in Table 4. The reported indices used for this study gave poor performance,
judged from their low RPD values and coefficients of determination (R2).

Table 4. Result of reported indices screening based on original reflectance spectra.

Reported Indices
Vcmax Jmax

RPD R2 RPD R2

PRI 1.02 0.04 1.08 0.13
RSVI 1.09 0.15 1.05 0.09
SIPI 1.02 0.04 1.00 0.00

CARI 1.05 0.09 1.02 0.03
mCARI 1.05 0.08 1.02 0.03
NDNI 1.08 0.14 1.12 0.19

NDVI_Hyp 1.04 0.07 1.02 0.04
NDVI_MOD 1.03 0.05 1.01 0.01

NDVI_2A 1.13 0.22 1.11 0.19
EVI2_Hyp 1.12 0.19 1.09 0.16

EVI2_MOD 1.12 0.20 1.14 0.23
EVI2_2A 1.15 0.23 1.17 0.26

*bold type indicates the best ratio of performance to deviation (RPD), coefficient of determination (R2), and type of
indices used.

3.3. Development of New Indices

3.3.1. All Data

We developed new indices based on the original reflectance, the first-order derivatives, and
the apparent absorption for both parameters. The screening of all indices using the original spectra
suggested that the double difference (DDn) type of indices gave the best performance for quantifying
both Vcmax and Jmax. The best index of this type used the first wavelength at 1652 nm and had an
interval of 9 nm for Vcmax, which had an RPD of 1.42 and an R2 of 0.50. It also had the minimum AICc
(=5.34) among all index types. In comparison, the best index identified for Jmax of this type used the
nearby wavelength of 1644 nm with an interval of 16 nm and had an RPD of 1.75. Furthermore, its R2

reached 0.67.
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Similar analysis on the indices calculated from the first-order derivatives spectra again suggested
that the DDn type index performed best for predicting Vcmax (R2 = 0.51 and RPD = 1.43), with the
central wavelength at 1831 nm and an interval of 419 nm. However, the wavelength difference (D) type
index performed best for Jmax, which used the wavelengths of 1629 nm and 1658 nm. This index also
had an R2 of 0.68 and its RPD was estimated as 1.78. The DDn type index with the central wavelength
at 1600 nm and an interval of 65 nm was also effective to trace Jmax with an R2 of 0.64 and RPD of 1.68.

Furthermore, indices based on the apparent absorption spectra were also examined for their
performance. The results suggested the mID type indices performed best for Vcmax while the DDn type
for Jmax. The R2 between the mID index and Vcmax was higher than the SR, ND, and mSR1 indices
(0.514 versus 0.513 for the other three indices, not shown in Table 5). The best mID index (R2 = 0.51,
RPD = 1.44) used the wavelength of 2199 nm with an interval of 9 nm, while the best DDn index (R2 =

0.65, RPD=1.68) used 1651 nm with an interval of 11 nm for wavelengths before and after that.

Table 5. RPD and coefficient of determination based on different spectral types.

Spectral Type
Index Type

R SR D ND ID DDn mSR1 mSR2 mND mID

Maximum rate of rubisco carboxylation (Vcmax)

Original
reflectance

RPD 1.17 1.35 1.41 1.35 1.18 1.42 1.35 1.30 1.30 1.35
R2 0.26 0.45 0.49 0.45 0.28 0.50 0.45 0.41 0.40 0.45

First-order
derivatives

RPD 1.30 1.29 1.41 1.31 1.32 1.43 1.32 1.30 1.31 1.27
R2 0.41 0.40 0.50 0.42 0.43 0.51 0.42 0.40 0.41 0.38

Apparent
absorption

RPD 1.17 1.44 1.35 1.44 1.34 1.39 1.44 1.29 1.29 1.44
R2 0.26 0.51 0.45 0.51 0.44 0.48 0.51 0.40 0.39 0.51

Maximum rate of photosynthesis electron transport (Jmax)
Original

reflectance
RPD 1.20 1.41 1.44 1.41 1.29 1.75 1.41 1.48 1.48 1.41
R2 0.30 0.49 0.52 0.49 0.39 0.67 0.50 0.54 0.54 0.49

First-order
derivatives

RPD 1.41 1.44 1.78 1.46 1.45 1.68 1.51 1.53 1.58 1.45
R2 0.50 0.52 0.68 0.53 0.52 0.64 0.56 0.57 0.60 0.52

Apparent
absorption

RPD 1.19 1.51 1.41 1.51 1.41 1.68 1.51 1.47 1.47 1.51
R2 0.29 0.56 0.49 0.56 0.49 0.65 0.56 0.53 0.53 0.56

*bold type indicates the best RPD, coefficient of determination (R2), and type of wavelength used.

Further, for all indices based on the different types of spectral forms, the indices based on
first-order derivatives spectra gave the best performance, which had the highest RPD values for
first-order derivatives of both Vcmax and Jmax.

3.3.2. Different leaf groups

We also explored the best indices for different leaf groups (sunlit and shaded) based on the original
reflectance spectra, the first-order derivatives spectra and the apparent absorption spectra as well. The
results for sunlit and shaded leaves are shown in Table 6. The bold type indicates the best RPD and
coefficient of determination (R2).

As illustrated in Table 6, for sunlit leaves, the best performance indices based on the original
reflectance form for Vcmax and Jmax are both the DDn type. Similarly, the best indices based on the
first-order derivatives spectra are also the DDn type of indices for Jmax and for Vcmax. Further, the
DDn type index using the apparent absorption spectra also performed best for Jmax. Although the
SR type index based on apparent absorption performed best for Vcmax (with maximum RPD value,
not shown in Table 6), the R2 values of SR, ND, DDn, mSR1, and mID were very similar (0.47 for SR,
ND, mSR1 and mID indices, while 0.46 for DDn index). In addition, we also found that the RPD
values generally increased from the indices based on original reflectance to indices based on first-order
derivatives spectra.

For shaded leaves, the performance of indices based on the original reflectance mimicked that of
sunlit leaves. The DDn type of indices were effective to trace both Vcmax and Jmax of shaded leaves.
Although the D type index based on the original reflectance performed best for Vcmax, the DDn type
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index gave similar R2 values (0.55 versus 0.57). Similarly, the D type of index based on the first-order
derivatives spectra performed best for Jmax and the DDn type index gave similar R2 values (0.62 versus
0.65). For apparent absorption spectra based indices, the performance of the DDn type index to trace
Vcmax was comparable with the identified best index mID (R2 = 0.56 versus 0.57). Overall, the DDn
type of indices based on all three spectra forms were effective to trace Vcmax and Jmax of both sunlit
and shaded leaves.

Table 6. RPD and R2 from developed indices using different leaf group datasets.

Leaf
Groups

Spectral Type Index Type
R SR D ND ID DDn mSR1 mSR2 mND mID

Sunlit

Maximum rate of rubisco carboxylation (Vcmax)

Original
reflectance

RPD 1.16 1.29 1.38 1.29 1.17 1.40 1.29 1.39 1.39 1.29
R2 0.25 0.39 0.47 0.39 0.26 0.48 0.39 0.47 0.47 0.39

First-order
derivatives

RPD 1.32 1.37 1.40 1.35 1.41 1.45 1.37 1.37 1.37 1.36
R2 0.42 0.46 0.48 0.45 0.49 0.51 0.46 0.46 0.46 0.45

Apparent
absorption

RPD 1.17 1.39 1.29 1.39 1.32 1.37 1.39 1.33 1.33 1.39
R2 0.25 0.47 0.39 0.47 0.42 0.46 0.47 0.43 0.43 0.47

Maximum rate of photosynthesis electron transport (Jmax)
Original

reflectance
RPD 1.24 1.42 1.57 1.42 1.33 1.75 1.42 1.60 1.60 1.42
R2 0.34 0.50 0.59 0.50 0.42 0.67 0.50 0.60 0.60 0.50

First-order
derivatives

RPD 1.56 1.59 1.84 1.59 1.65 1.87 1.58 1.74 1.76 1.72
R2 0.58 0.60 0.70 0.60 0.63 0.71 0.60 0.67 0.67 0.66

Apparent
absorption

RPD 1.23 1.57 1.42 1.57 1.56 1.66 1.57 1.50 1.49 1.57
R2 0.33 0.59 0.50 0.59 0.58 0.63 0.59 0.55 0.54 0.59

Shaded

Maximum rate of rubisco carboxylation (Vcmax)
Original

reflectance
RPD 1.20 1.44 1.53 1.44 1.25 1.50 1.45 1.40 1.41 1.44
R2 0.30 0.51 0.57 0.51 0.36 0.55 0.52 0.48 0.49 0.51

First-order
derivatives

RPD 1.41 1.43 1.51 1.49 1.43 1.62 1.46 1.50 1.55 1.43
R2 0.49 0.51 0.55 0.55 0.51 0.62 0.53 0.55 0.58 0.50

Apparent
absorption

RPD 1.19 1.48 1.44 1.50 1.47 1.52 1.48 1.39 1.40 1.52
R2 0.29 0.54 0.51 0.55 0.53 0.56 0.54 0.47 0.48 0.57

Maximum rate of photosynthesis electron transport (Jmax)
Original

reflectance
RPD 1.22 1.46 1.49 1.47 1.22 1.65 1.46 1.47 1.49 1.46
R2 0.32 0.53 0.55 0.53 0.33 0.63 0.53 0.53 0.55 0.53

First-order
derivatives

RPD 1.43 1.53 1.70 1.60 1.37 1.62 1.42 1.60 1.46 1.41
R2 0.51 0.57 0.65 0.61 0.46 0.62 0.50 0.61 0.53 0.49

Apparent
absorption

RPD 1.22 1.50 1.47 1.50 1.38 1.66 1.50 1.46 1.48 1.50
R2 0.32 0.55 0.53 0.55 0.47 0.63 0.55 0.52 0.54 0.55

*bold type indicates the best RPD and coefficient of determination (R2).

3.3.3. Different Species

We also investigated the best indices for each species in this study, to determine whether it is
necessary to trace photosynthetic parameters for each species individually or for species groups instead.
The results indicated that the indices based on the first-order derivative spectra performed better in
quantifying the photosynthetic capacity parameters for all species. For most species, except F. crenata
and A. shirasawanum, the indices based on the first-order derivative spectra have RPD values > 2.00
(irrespective of index type) for Vcmax and even better for Jmax. For both F. crenata and A. shirasawanum,
most index types have RPD values within 1.4 and 2.0 with Vcmax (except for R type for A. shirasawanum,
RPD = 1.31). In comparison, all index types have RPD values within the range of 1.4 and 2.0 with Jmax

for the two species.
In general, the DDn type of indices based on the original reflectance had a respectable performance

for all species when quantifying Vcmax. However, each species has its own specific best-fitting index.
For example, for quantifying the Vcmax of A. shirasawanum, F. crenata, S. monadelpha and S. pseudocamellia,
the DDn type of index should be chosen. For the other two species (B. grossa and C. tschonoskii), the
best-performing indices type were the D and mSR2, respectively. In contrast, for Jmax, the DDn type of
index performed best with only two species (A. shirasawanum and S. monadelpha).
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Due to the small sample sizes, the RPD values for S. monadelpha and S. pseudocamellia were higher
than the other species and may, thus, provide misleading RPD results. The sample size was an
important factor in ensuring accurate indices’ predictions.

3.4. Evaluation of Developed Indices With Downscaled Resolutions

Indices based on downscaled spectra were also examined in this study, in order to investigate the
possibility of expanding their applications from hyperspectral to multispectral data. We downscaled
the original 1 nm spectra into several different resolutions, namely, 5 nm, 10 nm, 20 nm, and 50 nm. The
screening results proved that the RPD values for indices based on original reflectance did not change
significantly, and that the type of indices used to quantify the photosynthetic parameters remained
consistent for all resolutions except for 50 nm.

The results indicated that the RPD values of each type of index were relatively constant even
when the resolutions were changed. The DDn type of indices based on either original reflectance or
apparent absorption spectra showed a non-significant decrease of the RPD values for tracing Jmax.
However, for the first-order derivatives spectra-based indices, the D type index performed better than
the DDn type. Nevertheless, the RPD for the DDn index type was still respectable for different spectral
resolutions. On the other hand, Vcmax can be traced better using the DDn type of indices based on the
first-order derivatives and apparent absorption spectra. The RPD values of DDn type indices for Vcmax

decreased with the spectral resolution of the original reflectance.

4. Discussion

Hyperspectral remote sensing, as a promising technique, has already been widely used for
retrieving structural and biochemical parameters [11,48–50] Unfortunately, few studies have ever
succeeded with physiological parameters [29,31,51,52]. Sensitivity analysis results of the newly
developed model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature, and
energy balance (SCOPE) [13] indicated that recognizable contributions of the physiological parameters
(such as Ball–Berry stomatal conductance parameter, roughness length for the momentum of the
canopy) were identified to reflectance [16]. What’s more, Vcmax showed a great contribution to the full
broadband sun-induced chlorophyll fluorescence (SIF) flux and calculating total fluorescence yield [53].
These results laid the possibility of using hyperspectral remote sensing to trace photosynthetic
capacity parameters.

In this study, we tried to reveal the possibility of using hyperspectral information to detect and
to quantify photosynthetic capacity parameters, namely, the maximum rate of rubisco carboxylation
(Vcmax) and maximum rate of photosynthesis electron transport (Jmax). We investigated the
possibilities of using hyperspectral vegetation indices, the most popular applied empirical approach in
current remote sensing activities. We first investigated the feasibility of using the reported indices
based on our specific dataset containing synchronous data of gas exchange and reflectance. In total, ten
well-known indices were validated, including the PRI and RVSI that are usually used for physiological
trait assessment, and some for predicting biochemicals such as pigments (SIPI, CARI, mCARI) and
nitrogen content (NDNI), as well as several (e.g., NDVI and EVI2 for structural assessment, such as
LAI (leaf area index) and green biomass). These ten reported indices are in widespread use and are
related, more or less, to photosynthetic capacity [54–56].

None of the reported indices could be recommended, as clearly indicated by their RPD values
(all below 1.4). Although NDVI and EVI2 performed slightly better using the range of the central
wavelength of Sentinel 2A, their RPD values were still below 1.4. Similar results were also found
for other indices, such as PRI and RVSI. Surprisingly, although both the PRI and RVSI indices
have frequently been used to quantify physiological parameters, they performed poorly with both
photosynthetic parameters. Furthermore, several indices that are usually used to quantify pigments
also gave poor results.
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Possibly, the main reason for the poor performance of the reported indices may be the range
of wavelengths used for calculations. All of the reported indices were developed using specific
wavelengths to fit their specific purposes. For example, PRI was developed using green wavelengths
at 531 nm and 570 nm, both of which are useful to detect chlorophyll fluorescence [57,58]. As
such, a number of previous researches have already proved the feasibility of PRI for tracing
other plant physiological activities related to chlorophyll pigment [24,59,60], but apparently not
for photosynthetic parameters. The other reported indices are largely based on the red and NIR
wavelengths that are sensitive to trace the change of vegetation, except for NDNI using the SWIR range.
However, the wavelengths used were not feasible to trace other physiological changes, especially
photosynthetic capacity.

Clearly, new indices for quantifying photosynthetic capacity need to be developed. When using
first-order derivatives spectra, we found DDn(1831,419) and D(1629,1658) to be the best indices for
tracing Vcmax and Jmax based on our dataset. The RPD values of both indices are 1.43 and 1.78 for
Vcmax and Jmax, respectively. Although this type of index is not the best on Jmax, the performance of
DDn(1600,65) is still acceptable (RPD = 1.68, R2 = 0.64). We suggest that the DDn type of indices could
be used as a general form for tracing photosynthetic parameters. We looked through the wavelengths
and identified several negative coefficients of correlation (troughs) between the reflectance spectra
and photosynthetic parameters. We found that our identified DDn index used a wavelength from the
second trough and other troughs of first-order derivatives spectra, as shown in Figure 6. Meanwhile,
the useful wavelengths for all of the indices based on original reflectance, first-order derivatives, and
apparent spectra are presented in Figure 7. Most of the useful wavelengths for both parameters are
from the peak regions or troughs region.
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Figure 6. Correlation test between photosynthetic capacity and wavelength. The suffix ‘Der’ refers
to the first-order derivative spectra, while the ‘Ref’ for the original reflectance, and the ‘psA’ for the
apparent absorption spectra.

The indices based on the first-order derivatives spectra were found to perform better than those
based on the original or apparent absorption spectra. The first-order derivatives spectra are known to
be able to reduce noise between spectral data [45,46] and this is the probable reason. Another possible
reason is that these identified indices all used wavelengths in the SWIR region (1300 nm to 2500 nm).
The SWIR domain is known to be very informative for detecting physiological or chemical activity
due to the wavelengths being absorbed or reflected by the object [61,62]. These SWIR wavelengths
have properties that are more similar to visible light compared with the other infrared range. Based
on Figure 7, we extracted six different wavelengths used by the DDn type of indices based on the
first-order derivatives spectra. Wavelengths 1412 nm, 1831 nm, and 2250 nm were selected for Vcmax



Remote Sens. 2020, 12, 1124 14 of 19

and wavelengths 1535 nm, 1600 nm, and 1665 nm were selected for Jmax. The wavelength 1412 nm used
in the DDn index for Vcmax estimation was within the most sensitive domain of Vcmax. The first-order
derivative spectra at 1412 nm were significantly related to Vcmax (the coefficient of correlation r = -0.62).
Similarly, the wavelength 1600 nm used in the DDn index for Jmax estimation was also within the
most sensitive domain of Jmax. The first-order derivative spectra at 1600 nm were significantly and
positively related to Jmax (the coefficient of correlation r = 0.68). According to Figure 8, there were no
significant differences between species in this range of wavelengths. However, the value range of the
wavelengths differed in each case. The value of each wavelength is presented in Figure 8.
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Furthermore, we investigated the robustness of the developed indices with different leaf groups.
The difference in leaf groups (sunlit and shaded) used in this study is due to differences in their
response to the photosynthesis process [63]. This leaf stratification also contributed to model accuracy
when upscaling the leaf photosynthesis model to the canopy scale [64]. While in several vegetation
indices that have already been developed, the sunlit leaves usually contain a higher ratio of chlorophyll
A and are thicker than shaded leaves, the shaded leaves have more chlorophyll per dried leaf weight
and emit the maximum chlorophyll fluorescence, higher than sunlit leaves [65].

We found that the DDn type of indices consistently traced Jmax well, even when the wavelengths
used were slightly different. For the shaded leaf group, the best DDn index used the 1664 nm for
λ1with a ∆λ of 54 nm, while for the sunlit leaf group the 1609 nm was used for λ1 with the ∆λ of
45 nm. Meanwhile, the RPD values of the DDn type indices for tracing Vcmax decreased, especially
in the sunlit leaves group. The sunlit leaves and shaded leaves have different physical and pigment
conditions, where the shaded leaves usually emit higher chlorophyll fluorescence compared with
sunlit leaves [65]. Furthermore, the sunlit leaves mostly represent the lowest quantum yield of electron
transport and lowest pigment content [66] while the shaded leaves generally obtain only one-third of
the canopy carbon gain [67].
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In addition to leaf groups, the screening results for different species also confirmed that the DDn
type of indices performed best for B. grossa and F. crenata. However, the RPD value of the DDn index
for A. shirasawanum was also respectable. As mentioned before, A. Shirasawanum and F. crenata have a
large number of samples, being the dominant and targeted species in our study, while for other species,
the DDn performed respectably in comparison with the other types of index and when using different
forms of spectra also performed better than the original reflectance spectra.

Further, we tested the indices with downscaled datasets to check the possibility of using airborne
or satellite-borne data that generally have coarse spectral resolutions. The DDn type of indices kept
their good performance for tracing Jmax and even Vcmax, although the Vcmax results were slightly
inferior to those of Jmax. We also tried to use different types of spectral forms to test the consistency of
the DDn index, and the performance for the DDn type of indices was found to be acceptable even for
different spectral resolutions.

We concluded that the best type of index for quantifying photosynthetic parameters is the DDn
type, which proved to be robust even for different species. The index also performed stably for
downscaled resolution spectra, suggesting that it could also be used for airborne or satellite-borne
coarse spectral data.

However, we realize that the indices have several shortcomings that must be resolved before they
can be applied widely, such as that the number of species needs to be increased, as the sensitivity of
hyperspectral indices is often considered to be species-dependent [68,69]. Furthermore, the sample
sizes for several specific species were too small and could possibly therefore be overfitted, since it
has been claimed that the sample size could influence the value of statistical indicators [70]. The
first-order derivatives spectra are the best type of spectra for quantifying photosynthetic parameters,
as hyperspectral indices based on the spectra show a certain balance between accuracy and robustness
on retrieving plant properties [71]. Even though we are confident that this type of index could
work for the alpine deciduous forest, much more study is still needed in order to provide generally
applicable indices for tracing photosynthetic parameters. However, we foresee that such indices could
be developed and we have taken an important step towards this objective.
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5. Conclusions

New hyperspectral vegetation indices have been developed for tracing photosynthetic parameters
in an alpine deciduous forest containing six species. The results demonstrated that the DDn type of
indices performed best in tracing photosynthetic capacity. The DDn type of indices used the first-order
derivatives spectra in the SWIR region wavelength at 1831 nm with ∆λ 419 nm for Vcmax and 1600 nm
with ∆λ 65 nm for Jmax. The result from this index type was relatively stable even for the downscaled
resolution of 50 nm. The first-order derivatives spectra have been proven to be the best spectral form
for tracing photosynthetic capacity. The DDn type of indices and first-order derivatives spectra have
already demonstrated possibilities for tracing photosynthetic capacity using hyperspectral indices. The
results obtained can contribute to the development of the vegetation index to assess photosynthetic
capacity, especially for the alpine deciduous forest.
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