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Abstract: X-band marine radar is an effective tool for sea wave remote sensing. Conventional
physical-based methods for acquiring wave parameters from radar sea clutter images use
three-dimensional Fourier transform and spectral analysis. They are limited by some assumptions,
empirical formulas and the calibration process while obtaining the modulation transfer function
(MTF) and signal-to-noise ratio (SNR). Therefore, further improvement of wave inversion accuracy
by using the physical-based method presents a challenge. Inspired by the capability of convolutional
neural networks (CNN) in image characteristic processing, a deep-learning inversion method based
on deep CNN is proposed. No intermediate step or parameter is needed in the CNN-based method,
therefore fewer errors are introduced. Wave parameter inversion models were constructed based on
CNN to inverse the wave’s spectral peak period and significant wave height. In the present paper,
the numerically simulated X-band radar image data were used for a numerical investigation of wave
parameters. Results of the conventional spectral analysis and CNN-based methods were compared
and the CNN-based method had a higher accuracy on the same data set. The influence of training
strategy on CNN-based inversion models was studied to analyze the dependence of a deep-learning
inversion model on training data. Additionally, the effects of target parameters on the inversion
accuracy of CNN-based models was also studied.

Keywords: wave parameter inversion; X-band radar sea clutter; deep-learning method; CNN model;
training data dependence

1. Introduction

Sea wave remote sensing has important scientific significance and practical value [1]. Wave remote
sensing is a fundamental part of ocean monitoring and helps to better understand the regular pattern
of marine changes. It is also a key factor for safety assessment of offshore operations and real-time
prediction of ship and platform motion attitude.

The X-band marine radar is active microwave imaging radar equipment. It has been widely used
for wave remote sensing since 1965, when it was used by Wright to obtain wavelength and direction of
wave propagation [2]. X-band radar produces Bragg-scattered signals associated with a short surface
wave [3]. The echo signal is mainly modulated by hydrodynamic, tilt and shadowing effects [4,5].
The radar system generates sea clutter images according to signal intensity when it receives the echo
signal. The sea clutter image contains temporal and spatial information of a wave field that can be
used to inverse the wave parameters.

The conventional spectral analysis method based on a three-dimensional Fourier transform is an
effective approach for extracting wave parameters from radar images [6–9]. The basic idea is to use a
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three-dimensional Fourier transform on a radar image temporal sequence to obtain the wavenumber
frequency image spectrum. Spectral analysis is then applied to estimate wave parameters, such as
significant wave height, period and wave direction. The Wave Monitoring System (WaMoS), a mature
marine radar application system, is based on the above theory. Its second generation product, WaMoS II,
can control the relative error of significant wave height inversion by about 10%, and the absolute error
of spectral peak period inversion by 0.5 s [10].

In the existing approach, a modulation transfer function (MTF) is necessary for obtaining the wave
spectrum. The wave spectral peak period can be read from the frequency spectrum directly. However,
because of the difference between the image spectrum and actual wave spectrum, there needs to be
an MTF to correct the image spectrum [5]. Nieto Borge et al. proposed an empirical linear MTF by
comparing the radar image spectrum and in situ sensor heave spectrum. In real situations, the sea
waves are nonlinear; a linear MTF would produce inversion errors. Therefore, Chen et al. [11] derived
a quadratic MTF to improve the inversion accuracy.

X-band marine radar’s signal-to-noise ratio (SNR) is a basic parameter in the determination of
significant wave height. A survey conducted by Ziemer [12] showed that SNR was proportional to
the significant wave height of the observed wave field. Nieto Borge [13] introduced undetermined
coefficients to investigate the relation between SNR and significant wave height. The determination
of these coefficients required a calibration phase with data measured by buoys or other sensors.
To simplify the calibration process, Dankert and Rosenthal [4] proposed an empirical method to
determine significant wave height without calibration, which was based on the determination of the
surface tilt angle in the antenna look direction at each pixel of the radar images. Qi et al. addressed
another method based on concurrent phase-resolved wave-field simulation, which helps to improve
the consistency and fidelity of the results [7].

In the above method, initially, the MTF is determined by empirical formulas and a calibration
process. Meanwhile, a calibration process is also necessary to estimate the SNR. However, the empirical
formulas introduce unknown empirical parameters which must be calibrated for a given radar,
wave environment and the range and azimuthal angle of the sampled subdomain relative to the radar
and wave field [7]. The calibration processes are expensive and generally available for only a (small)
subset of the conditions that may be obtained under deployment. Moreover, normally, a continuous
sequence of 32 or 16 radar images is needed to obtain an image spectrum by three-dimensional Fourier
transform. The inversion results can be obtained only after a sequence of radar images are acquired.

The convolutional neural networks (CNN) deep-learning technique provides a feasible way
to overcome the above deficiencies involved in the physical-based inversion method. The CNN
technique is end-to-end. The inputs are radar images while the outputs are the wave parameters.
No additional parameters such as SNR or MTF are needed in the inversion process. The nonlinear
relationship between the radar images and the wave parameters are represented by the trained CNN
model. Since 2006, with the improvement of computer performance, the deep-learning technique
has experienced breakthroughs. The CNN technique is extensively used in extracting characteristic
information from images. A number of researchers have proven that CNN has satisfactory performance
in image classification, face recognition, handwriting recognition and some other image processing
issues [14–16]. The LeNet-5 model, a kind of neural networks model developed by LeCun [14,17],
established the basic network architecture of CNN. Nevertheless, LeNet-5 was not ideal for dealing
with complex images due to the lack of training data and the backwardness of computer performance
at that time. With the continuous improvement of computer performance and low-cost digital image
capture technology, deeper networks were developed. Krizhevsky et al. developed the AlexNet model
by deepening the network architecture of LeNet-5 and applying the nonlinear activation function
ReLu and Dropout method [18]. AlexNet won the ILSVRC (ImageNet Large Scale Visual Recognition
Challenge) championship in 2012, raising the accuracy rate from 70% to 80% in the million-scale
ImageNet data set. Afterwards, some deeper and more complex models were proposed, such as
VGGNet [19], GoogleNet [20], ResNet [21], to deal with more complex problems.
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To address deficiencies of the conventional method, and in view of the advantages of CNN in
image processing, we developed a CNN-based technique for wave parameter inversion from radar
sea clutter images. In this problem, the synthetic radar images are the inputs and the outputs are
values of spectral peak period and significant wave height. In essence, it is a two-parameter regression
problem because the outputs are two continuous parameters. In the CNN-based method, convolutional
and pooling layers are used to extract the characteristics of images, and fully-connected layers are
used to combine these characteristics and target parameters. Moreover, a training process replaces
the calibration process and avoids the errors introduced by unknown empirical parameters and the
shape of empirical formulas. The proposed method is compared with conventional spectral analysis
method. The training data dependence and the general performance using different test samples are
also discussed.

The rest of the paper is organized as follows. In Section 2, the principle and procedure of both
wave spectral peak period and significant wave height inversion by conventional spectral analysis
method are introduced. Section 3 gives a theoretical introduction into the CNN method. In Section 4,
the numerical simulation of radar images is presented. Results and discussion are described in
Sections 5 and 6. Finally, Section 7 gives the conclusions of the present study.

2. The Spectral Analysis Method for Radar Images Inversion

Presently, the most popular approach for inversing a wave’s spectral peak period and significant
wave height from radar sea clutter images is based on the theory proposed by Young et al. and Nieto
Borge et al. [5,6]. The theoretical process and formulas are summarized as follows.

Firstly, as shown in Equation (1), a three-dimensional fast Fourier transform is applied on a radar
image sequence I(x, y, t) to obtain its image spectrum F(kx, ky,ω):

F(kx, ky,ω) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

I(x, y, t) · e−i(kxx+kyy−ωt)dxdydt, (1)

where ∆kx = 2π
Lx , ∆ky = 2π

Ly , ∆ω = 2π
T , Lx and Ly are the wave lengths in the X and Y directions,

respectively. T is the time duration of the radar image data.
Secondly, filters are used to extract the signal about the wave from the image spectrum.

It eliminates the low-frequency energy induced by radar image long-range dependence modulation
effects. Then, the filtered three-dimensional image spectrum I(3)(kxn, kym,ωp) and the energy of noise
can be obtained.

Thirdly, the two-dimensional image spectrum is calculated by integrating the three-dimensional
image spectrum in the range of ω > 0. The two-dimensional image spectrum is formulated as
Equation (2). The image spectrum can be converted into wave spectrum through an MTF M(k) by
using Equation (3).

I(2)(kx, ky) = 2
∫
ω>0

I(3)(kxn, kym,ωp)dω, (2)

F(k) = I(k) ·M(k), (3)

where F(k) is the wavenumber spectrum and I(k) is the image spectrum. The MTF is usually obtained
by comparing the filtered radar spectrum and the in situ measured buoy spectrum. Nieto Borge et al.
offered an empirical formula [5]:

M(k) = k−q, (4)

where q is a constant parameter related to the sea states.
Fourthly, the wave frequency spectrum can be derived from wavenumber spectrum by coordinate

transformation:

S(2)(ω,θ) = 2
ω2

g
F(2)

(
ω2

g
cos(θ),

ω2

g
sin(θ)

)
ω
g

, (5)
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S(ω) =

2π∫
0

S(2)(ω,θ)dθ, (6)

The wave’s spectral peak period can be estimated directly from the wave frequency spectrum S(ω).
Finally, the SNR is determined based on Equation (7):

SNR =
SIG

BGN
, (7)

where the SIG is the sum of corrected wave spectrum energy and BGN is the sum of the filtered noise,
and subsequently used to inverse the significant wave height as shown in Equation (8). Significant
wave height HS can be calculated by the formula:

Hs = A + B
√

SNR, (8)

where A and B are assumed constants that can be determined by calibration.
In the present work, background noise does not exist in the numerical program that produces

radar images. So, it is not proper to calculate HS based on SNR. Instead, we calculate HS based on the
zeroth moment of the wave frequency spectrum S(ω), as shown in Equation (9):

Hs = 4
√

m0. (9)

In the above inversion method, the observed wave field is assumed to have spatial uniformity and
time stationarity. Furthermore, it is necessary to calibrate the radar before measuring. Buoys or some
other in situ sensors are required to provide measured data. Moreover, this approach is based on the
assumption of linearity and complex physical equations. The calculation process is complicated and
involves many uncertain and empirical parameters. Therefore, there are several challenges necessary
to improve inversion accuracy.

3. Inversion Method of Wave Parameters with Radar Images Based on CNN

3.1. Convolutional Neural Networks

The CNN technique is an important branch of neural networks. It is a feed-forward neural
network usually used to solve problems about images. The implementation process of the CNN model
is shown in Figure 1. The network architecture of the CNN model mainly consists of the following
key elements:Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 22 
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(a) The input layer—Reading images and passing data.
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(b) The convolutional layers—Convolutional layers can extract the characteristics of images by
convolution. They are the core of CNN. The characteristics of images can be made more prominent
through the process of convolution.

(c) Activation function—The use of an activation function is to add nonlinear items so that the
networks can effectively deal with nonlinear problems.

(d) Pooling layers—Characteristics output by convolutional layers is large. Pooling layers are
used to cut down this number and highlight the main characteristics, which reduces computation.

(e) Fully connected layers—Fully connected layers play the role of finishing classification or
regression and outputting the final results. Characteristics of images extracted by pooling convolutional
layers are gathered and calculated in fully connected layers.

In fact, there are several methods for extracting geometric features and dissimilarity of remotely
sensed imagery [22]. In CNN models, the geometric features and dissimilarity of synthetic radar
images are extracted by the convolutional and pooling layers. In short, CNN can be regarded as an
input–output mapping, where x represents the input image and y represents the output. The y can be a
class, or a numerical value. The f represents the whole network, which is trained by many image data
to make the outputs close to actual values. The process of training can be similarly understood as a
“function fitting” process.

3.2. Inversion Models of Wave Parameters Based on CNN

Several kinds of network architecture have been proposed, such as AlexNet, GoogLeNet, VGGNet
and ResNet. The differences among them mainly lie in the depth of the network and the setting
of convolutional layers. In this paper, we chose AlexNet and VGGNet as basic structures to build
inversion models under the Tensorflow framework. AlexNet includes five convolutional layers and
three fully connected layers, and there are three pooling layers following the three convolutional
layers. The ReLU is as the activation function, which is the same as AlexNet. VGGNet includes five
convolutional parts and three fully connected layers, although there are several convolutional layers in
each convolutional part. Thus, there are 13 or 16 convolutional layers and three fully connected layers
in total. Further, to adapt to this two-parameter regression problem, input layers were modified to
receive images in RGB and the size of images was 256 × 256 pixels. Output layers and their activation
function were also modified to output two target parameters that have continuous values.

Besides network structure, the quality and quantity of the image data are also key factors in
building the models. As for the parameter settings of the data set, we will introduce this in detail in
Section 5.

4. Numerical Simulation of Radar Sea Clutter Images

In this paper, a number of radar sea clutter images were generated by a numerical simulation
program to build the testing and training data sets required by the methods described in Sections 2 and 3.

4.1. Imaging Principle of X-Band Marine Radar

X-band maritime radar is an active microwave imaging radar with high resolution, which transmits
electromagnetic waves to the observed sea surface and receives the backscattered echo signals to realize
the observation of sea waves.

The process of X-band radar receiving echo signals can be explained by the Bragg model
and two-scale model [3,23]. Moreover, the process involves modulation effects, mainly including
hydrodynamic modulation, tilt modulation and shadowing modulation [4,5]. In this section,
our numerical simulation program was based on the Bragg model and two-scale model, and involves
tilt modulation and shadowing modulation at the same time. Background noise was not considered.
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4.1.1. Bragg Model

Bragg scattering is a phenomenon of superposition and interference of backscattered signals.
When the wavelength of a sea wave satisfies the condition:

λs =
nλr cosφ

2 sinθ
, (10)

then radar echo signals reflected by each wave surface have superposition in the same phase.
In Equation (10), λs is the wavelength of the sea surface wave, λr is the wavelength of the radar signal,
θ is the incident angle of radar signal, φ is the angle between the direction of the sea wave propagation
and the direction of radar signal, and n is a natural number greater than 0.

4.1.2. Two-Scale Model

In two-scale model theory, it is assumed that the sea surface is composed of two scales of waves;
microscale waves are superimposed on the long waves. Due to the modulation effect of the tilted
wavefront on the microscale wave, the long wave changes the local incident angle of the radar,
which affects the backscattering cross section, and finally affects the backscattering signal.

In the calculation, the local scattering cross section in a small area was calculated first, and then
the probability density function of the long wave surface slope was used to integrate the whole area.
The local scattering cross section is given by:

σ0(θi) = 16πk4
R cos4 θi

∣∣∣g(θi)
∣∣∣2ψ′, (11)

where the g is the polarization function, ψ′ is the microscale spectrum and θi is the local incident angle,

θi = arccos[cos(θ+ δ1) cos δ2], (12)

where δ1 is the angle that the local scattering unit normal deviates from the vertical line in the incident
plane caused by long wave, and δ2 is the angle of the normal deviating from the vertical line in a plane
perpendicular to the incident plane.

Therefore, the backscattering cross section of each little square can be calculated as

σ0
PP(θ) =

∫
∞

−∞

d(tan δ1)

∫
∞

−∞

d(tan δ2)σ
0
PP(θi)p(tan δ1, tan δ2), (13)

where p(tan δ1, tan δ2) is the joint probability density function of the long wave slope.

4.1.3. Tilt Modulation

The Bragg scattering of radar signal to the microamplitude wave is affected by the existence of
the long wave. In particular, the angle of the long wave surface changes the normal direction of the
backscattering surface, leading to a change of the local incident angle and a change of the backscattering
cross section.

4.1.4. Shadowing Modulation

When the incident angle of the radar signal is large and almost parallel to the sea level, then due
to the fluctuation of the sea surface, the higher wave will block the sea surface behind it, resulting in
a “blind area” that the radar incident signal cannot illuminate. This blind area produces almost no
backscattered echo signal.
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4.2. Numerical Simulation of Radar Images Data

We developed a numerical program to simulate radar sea clutter images under different sea
states based on the above principle. With this program, we could, according to our needs, set the
significant wave height and the wave’s spectral peak period of the sea area shown in the radar image.
The wave spectrum we chose was the ITTC (International Towing Tank Conference) two-parameter
wave spectrum. The model of the ITTC two-parameter wave spectrum is:

S(ω) =
173HS

2

TS4ω5
exp

(
−

691
TS4ω4

)
, (14)

where HS is the significant wave height and TS is the wave’s spectral peak period.
The relation of wave number, wave direction and corresponding wave height is shown in Figure 2.
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The left part of Figure 3 shows one synthetic radar image in which the significant wave height HS
is 4 meters and the wave’s spectral peak period TS is 8.5 seconds. The radius of sea area shown in the
image is 3 kilometers. The spatial resolution is 2 × 2 m, and the temporal resolution is 3 seconds.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 22 
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Figure 4 shows the spatial distributions of water elevation and echo intensity along a radius (Y =

0 m, 300 m < X < 3000 m) of the synthetic image.
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of this radius are Y = 0 m and 300 m < X < 3000 m.

Since the size of simulated image was large, we just cut out a square area of 256 × 256 pixels in the
image to build training and testing data sets so as to reduce the computational load. Figure 4 also
shows the cropping process of the original radar image.

5. Results

5.1. Definitions of the Accuracy Measures

In this paper, accuracy measures including the relative error (RE), mean relative error (MRE),
absolute error (AE) and root mean squared error (RMSE) (Equations (15), (16), (17) and (18), respectively),



Remote Sens. 2020, 12, 1117 9 of 21

were used to evaluate the performance of both the spectral analysis method and the CNN-based
method on wave parameter inversion:

RE =
|XI −XA|

XA
× 100%, (15)

MRE =
1
N

N∑
i=1


∣∣∣XI

i
−XA

i
∣∣∣

XAi × 100%

, (16)

AE = |XI −XA|, (17)

RMSE =

√√√ N∑
i=1

(XIi −XAi)
2/N, (18)

where XI is the inversed value of HS or TS by the above two methods, while XA is the actual value and
N is the number of samples tested.

5.2. Comparisons of the CNN-Based and Spectral Analysis Methods

Radar sea clutter image sequences under 15 different sea states were generated by the numerical
program introduced in Section 4. Each sequence included 16 images continuous in time. The HS and
TS of these images were set as shown in Table 1. These images were used to test the conventional
spectral analysis method.

Table 1. Parameter settings for the test image sequences.

Sequence Number HS (m) TS (s)

1 0.5 6.50
2 1.0 6.79
3 1.5 7.07
4 2.0 7.36
5 2.5 7.64
6 3.0 7.93
7 3.5 8.21
8 4.0 8.50
9 4.5 8.79

10 5.0 9.07
11 5.5 9.36
12 6.0 9.64
13 6.5 9.93
14 7.0 10.21
15 7.5 10.50

In the CNN-based method, there needs to be a large number of training data to train the CNN-based
models. We used the numerical program to generate 2801 radar images. The HS of these radar images
ranged from 0.5 to 7.5 m, and one image was generated every 0.0025 m. Correspondingly, the TS ranged
from 6.5 to 10.5 s, and was linearly distributed in this range, corresponding to the HS one-by-one.
That is:

TS = 4×
HS − 0.5

7
+ 6.5 (s). (19)

Actually, there was not such a relation between TS and HS. We set up this relationship just to
make it easier to generate images.

After being cropped in the way introduced in Section 4, 2403 of the 2801 images were used to
build the training data set, and 398 of the 2801 were used for validation training. After training, the two
CNN-based models, AlexNet-based and VGGNet-based, were tested by test images that were selected
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from the testing data set of the conventional spectral analysis method. Fifteen test samples were taken
from the 15 image sequences, respectively. Using the same test samples to test these two different
methods provided more convincing results.

The inversion results of the two methods are shown in Tables 2 and 3.

Table 2. Inversion results of the wave’s spectral peak period (TS).

Sample Number Actual Value (s)
Spectral Analysis Method AlexNet-Based Model VGGNet-Based Model

Inversed Value (s) RE 1 Inversed Value (s) RE 1 Inversed Value (s) RE 1

1 6.50 8.59 32.15% 6.49 0.15% 6.52 0.35%
2 6.79 8.59 26.58% 6.78 0.02% 6.75 0.46%
3 7.07 9.45 33.61% 7.12 0.71% 7.01 0.85%
4 7.36 6.75 8.27% 7.43 1.01% 7.32 0.55%
5 7.64 5.91 22.74% 7.62 0.28% 7.58 0.86%
6 7.93 9.45 19.17% 7.89 0.50% 7.79 1.74%
7 8.21 9.73 18.48% 8.19 0.29% 7.81 4.88%
8 8.50 9.45 11.16% 8.47 0.35% 8.44 0.73%
9 8.79 8.59 2.23% 8.84 0.62% 8.66 1.47%

10 9.07 9.45 4.16% 9.34 2.98% 8.90 1.92%
11 9.36 7.87 15.85% 9.66 3.26% 9.40 0.47%
12 9.64 10.54 9.33% 10.09 4.66% 9.65 0.11%
13 9.93 9.45 4.84% 9.87 0.61% 10.04 1.11%
14 10.21 9.73 4.72% 10.05 1.57% 9.71 4.98%
15 10.50 10.54 0.40% 10.25 2.39% 10.08 3.96%

1 RE is the Relative Error.

Table 3. Inversion results of significant wave height (HS).

Sample Number Actual Value (m)
Spectral Analysis Method AlexNet-Based Model VGGNet-Based Model

Inversed Value (m) RE Inversed Value (m) RE Inversed Value (m) RE

1 0.5 0.62 24.75% 0.58 16.14% 0.58 15.22%
2 1.0 1.22 21.77% 1.03 2.52% 1.05 5.34%
3 1.5 1.95 30.31% 1.60 6.99% 1.59 5.70%
4 2.0 1.75 12.71% 2.10 4.78% 2.06 2.80%
5 2.5 1.84 26.58% 2.57 2.74% 2.64 5.80%
6 3.0 2.24 25.23% 3.04 1.21% 3.13 4.49%
7 3.5 4.12 17.61% 3.53 0.91% 3.21 8.30%
8 4.0 3.83 4.33% 3.91 2.30% 4.10 2.52%
9 4.5 4.09 9.04% 4.58 1.78% 4.43 1.49%

10 5.0 6.55 31.03% 5.37 7.47% 4.90 2.03%
11 5.5 4.09 25.72% 5.96 8.41% 5.70 3.56%
12 6.0 6.84 13.93% 6.70 11.68% 6.12 1.96%
13 6.5 8.08 24.37% 6.68 2.73% 6.88 5.91%
14 7.0 5.65 19.33% 6.71 4.12% 6.22 11.17%
15 7.5 5.83 22.22% 7.18 4.26% 7.04 6.07%

In Figure 5, we can see intuitively the difference between the results of the above methods.
The distance between inversion points and the baseline can indicate the inversion errors (Figure 5a,b).

The results’ statistical characteristics of the two methods are shown in Table 4.

Table 4. Statistical characteristics of results inversed by the spectral analysis and CNN-based methods.

Mean Relative Error Root Mean Squared Error

Inversion results of TS

Spectral analysis method 14.25% 1.31 s
AlexNet-based model 1.29% 0.18 s
VGGNet-based model 1.63% 0.21 s

Inversion results of HS

Spectral analysis method 20.59% 0.97 m
AlexNet-based model 5.20% 0.27 m
VGGNet-based model 5.49% 0.28 m
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Figure 5. Inversion results by the spectral analysis and CNN-based methods.

5.3. Training Dependence of the CNN-Based Inversion Models

We developed numerical experiments to study the dependence of CNN-based inversion models
on the training data set for two aspects, the parameter setting range of the training images and the
position where the training images are cut out from the original radar image.

5.3.1. Dependence of CNN-Based Inversion Models on the Pparameter Setting Range of the
Training Images

The relationship between the TS and HS of images in the training set for CNN-based inversion
models introduced in Section 5.2 are represented by the line in Figure 6.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 22 
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However, the TS and HS do not correspond one-to-one to each other in the actual ocean.
The relationship shown by the line in Figure 6 is only for the maximum probabilities. We simulated
some radar images beyond the coverage shown by this line according to the relationship between the
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wave’s spectral peak period and the significant wave height [24], to test the CNN models trained by
the initial training set. The parameters of the test samples are shown in Table 5 and the distribution of
the test samples is shown as the blue points in Figure 6. Some of the test sample images are shown in
Figure 7.

Table 5. Parameter settings for the test samples.

Sample Number HS (m) TS (s)

1 0.5 7.07
2 0.5 8.21
3 0.5 9.36
4 0.5 10.50
5 2.5 6.50
6 2.5 10.50
7 4.0 6.50
8 4.0 10.50
9 5.5 6.50

10 5.5 10.50
11 7.5 6.500
12 7.5 7.071
13 7.5 8.214
14 7.5 9.357Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 22 
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Figure 8. Inversion results of the CNN-based models trained by the initial training data set. 

We can see that there were obvious errors because of the difference between the test samples 
and the training data. To address this problem, we expanded the training data set as shown in Figure 
9; one radar image was generated every 0.008 s in TS at the same HS, and one radar image was 
generated every 0.014 m in HS at the same TS. 

We trained the CNN-based models with the expanded training data set. Afterward, the two 
models were used to inverse HS and TS of the 14 test samples. Results are shown in Figure 10. 

Figure 7. Examples of the test sample images.

The results of the 14 test samples inversed by the CNN-based models and trained by the initial
training data set are shown in Figure 8.

We can see that there were obvious errors because of the difference between the test samples and
the training data. To address this problem, we expanded the training data set as shown in Figure 9;
one radar image was generated every 0.008 s in TS at the same HS, and one radar image was generated
every 0.014 m in HS at the same TS.
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Figure 10. Inversion results of CNN-based models trained by the expanded training data set. 
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Figure 9. The range of parameter settings for the expanded training data set. HS means the significant
wave height, and TS means the spectral peak period.

We trained the CNN-based models with the expanded training data set. Afterward, the two
models were used to inverse HS and TS of the 14 test samples. Results are shown in Figure 10.

From Figure 10, we can see that after being trained by the expanded training set, CNN-based
models’ inversion accuracy increased greatly. Table 6 gives the errors in detail.

According to Table 6, we see that the MRE of TS and HS inversed by the two CNN-based models
trained by the initial training data set were 31.49% and 26.40%, 32.46% and 22.51%, respectively.
By comparison, the MRE of TS and HS inversed by CNN-based models trained by the expanded
training data set were 6.14% and 2.82%, 16.24% and 10.73%, respectively.
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Table 6. Inversion MRE (mean relative error) of CNN-based models trained by the initial and expanded
training sets.

AlexNet-Based Model VGGNet-Based Model

TS HS TS HS

Trained by initial training set 31.49% 32.46% 26.40% 22.51%
Trained by expanded training set 6.14% 16.24% 2.82% 10.73%

5.3.2. Dependence of CNN-Based Inversion Models on the Cropping Position of Images

In Section 4.2, we introduced a method of cropping the original image to reduce the computation
effort. However, in the original radar image the characteristics information contained in various
positions may be different. The training images cut out from the original radar images may only
contain local information of the wave. In this section we describe a numerical experiment developed to
study whether CNN-based models trained by local area images could correctly inverse the information
of other area images that were not involved in training.

To begin, we named the area cut out in Section 4.2 Area A. Then, three images with the same size
were cut out from the other three areas: B, C and D in the original image, as shown in Figure 11.

The images of Area B, Area C and Area D were used for training, and the images of Area A were
used for testing to validate whether CNN-based models could extract global characteristics information
from local area images. Test results of two CNN-based models are shown in Figure 12 and Table 7.

Table 7. Inversion errors of wave’s spectral peak period (TS) and significant wave height (HS) by
CNN-based models.

CNN-Based Model
Errors HS TS

MRE RMSE MRE RMSE
AlexNet-based model 64.18% 1.25 m 7.46% 0.64 s
VGGNet-based model 7.54% 0.39 m 1.61% 0.20 s
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Figure 12. Test results of the CNN-based models.

5.4. Effects of Wave Parameters on Inversion Accuracy of the CNN-Based Models

CNN-based inversion models showed different inversion accuracy for TS and HS. In this section,
we explore the influence of changes of two inversion target parameters on the inversion accuracy of
CNN-based models. In order to eliminate the influence of training set on the results, the CNN models
used in this section were trained by the expanded training data set.

We first considered the influence of the change of TS on the CNN-based models with the same HS.
In order to avoid the influence of particularity of selected HS on the results, we used the numerical
simulation program to generate radar images under three HS: 0.5, 4 and 7.5 m. Eleven images with
different TS were generated under each HS. TS was set to 6.5, 6.9, 7.3, 7.7, 8.1, 8.5, 8.9, 9.3, 9.7, 10.1 and
10.5s, respectively. After being cropped, the 33 images were used as input to the CNN-based models as
test samples.

Figure 13 shows the change of RE and AE. For example, Figure 13a shows the changing trend
of RE(TS) and RE(HS) with changing TS when HS = 0.5 m. The red dash lines with cross and circle
symbols represent the RE(TS) and RE(HS) of the AlexNet-based model, while the blue dot lines with
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cross and circle symbols represent the RE(TS) and RE(HS) of the VGGNet-based model. It is the same
in Figure 13b,c except that they were under different HS. According to Figure 13a–c, regardless of red
lines or blue lines, there was no uniform regularity of these changes. The changes of RE for HS and TS
were generally irregular when TS changed and HS was constant.

Figure 13d,e shows the changes of AE(HS) when applying the AlexNet-based and VGGNet-based
models. In this figure, the red lines with squares represent the AE(HS) when HS = 0.5 m, while the
black lines with circles represent AE(HS) when HS = 4 m, and the blue lines with crosses represent
AE(HS) when HS = 7.5 m. Analogously, Figure 13f,g shows the changes of AE(TS). The changing trend
of AE was also generally irregular.Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 22 
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Next, TS remained constant and the influence of the change of HS on the CNN-based models was
studied. TS was set to 6.5, 8.5 and 10.5 s, and 11 images with different HS were generated under each
TS. HS was 0.5, 1.2, 1.9, 2.6, 3.3, 4, 4.7, 5.4, 6.1, 6.8 and 7.5m, respectively. These images were input
into the CNN-based inversion models after being cropped. The changes of inversion RE are shown in
Figure 14.
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In Figure 14, blue and red lines with circles represent RE(TS) of the two CNN-based models.
Generally, these lines change irregularly. For the inversion RE(HS), however, which are represented by
the red and blue lines with crosses, it decreased with the increase of HS. The RE(HS) was large when
the value of HS was small. To research this problem further, we show the change of AE in Figure 15.
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According to Figure 15, the change of AE(HS) did not have the same regularity with RE(HS).
It was generally irregular.

6. Discussion

In Section 5.2, the inversion accuracy of the CNN-based method was compared with the accuracy
of the conventional spectral analysis method using the same data set. From Figure 5, we can see that,
entirely, the results of HS and TS inversed by the CNN-based models were in good agreement with
actual values. According to Table 4, the MRE of TS inversed by the two CNN-based models were
1.29% and 1.63%, and RMSE were 0.18 s and 0.21 s. At the same time, the MRE of HS were 5.20%
and 5.49%, respectively, the RMSE were 0.27 m and 0.28 m. These errors are acceptable. So, we can
say that the CNN-based method is a feasible way to inverse wave parameters from our synthetic
radar images. In comparison, as for the spectral analysis method, MRE of TS and HS were 14.25%
and 20.59%, while RMSE were 1.31 s and 0.97 m, respectively. Both CNN-based models had higher
accuracy than the spectral analysis method in this inversion problem. For these test samples, the errors
of the conventional method, regardless of relative or absolute errors, were greater than those of the
CNN-based method. It shows there are advantages of the CNN-based method when compared to the
conventional spectral analysis method, to some extent.

In Section 5.3, the dependence of CNN-based inversion models on the training data set was
studied in two aspects: the range of parameter settings for the training images and the position where
the training images are cut out from the original radar image. In the first aspect, according to the results,
it is obvious that the accuracy of the CNN-based model trained by the expanded training data set was
much higher than that of the CNN model trained by the initial training data set. The initial training data
set did not cover the test samples, while the expanded training data set covered them (but they were
not a part of expanded training data). This phenomenon shows that the CNN method is ineffective in
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dealing with data not covered by the training set. It also reveals that CNN is a data-driven method.
Thus, the quantity and quality of training set data are the key factors affecting the performance of the
CNN-based models. In the second aspect, it is clear that inversion errors of AlexNet-based model were
large. Especially, the MRE of HS reached 64.18%. That is, the AlexNet-based model could not inverse
HS and TS of Area A images correctly according to the characteristics information which it learned
from the images of Area B, C and D. Therefore, we conclude that the AlexNet-based model was unable
to learn the global characteristics information from local images. In contrast, the VGGNet-based model
had high accuracy, and its inversion errors were all within an acceptable range. Therefore, we believe
that the VGGNet-based model extracted information about HS and TS from the images of Area B, C and
D and applied it to the inverse parameters of the Area A images. Furthermore, the VGGNet-based
model could obtain the global characteristics information from local images. As for the reason for the
above phenomenon, we infer that because the architecture of VGGNet is deeper, it is more effective
than AlexNet for complex characteristics information. Hence, the VGGNet-based model had better
performance in this problem. The more detailed reasons will be studied in our follow-up work.

Finally, in Section 5.4, the influence of changes for two inversion target parameters on inversion
accuracy of CNN-based models was studied. When TS changed and HS was constant, the changes
of RE(TS), AE(TS), RE(HS) and AE(HS) were all generally irregular. When HS changed and TS was
constant, it appeared that the RE(HS) was larger when the value of HS was smaller. After the changes
of AE(HS) were drawn, we concluded that the reason why RE(HS) decreases with increasing of HS was
the definition of relative error. According to the definition of RE, when the AE(HS) is the same, if the
value of HS is smaller, then RE(HS) will be larger. Therefore, in summary, the changes of TS and HS did
not obviously affect the inversion AE of the CNN-based models, although the RE(HS) was affected by
the value of HS. The RE(HS) was larger when HS was smaller.

7. Conclusions

Conventional wave inversion methods are limited by assumptions involved in the calibration
process. It is challenging to further improve wave inversion accuracy by using these methods. Inspired
by the capability of CNN techniques in handling image problems, a machine learning inversion method
based on CNN was proposed. Comparison studies, training strategy and training data dependency
were investigated. Some concluding remarks are summarized as follows.

The inversed results of both spectral peak periods and significant wave heights by the
AlexNet-based and VGGNet-based models were highly correlated to the targets. The mean relative
error was within an acceptable range. It was demonstrated that CNN models could effectively extract
the characteristic periods and wave heights from radar images. It also verified the feasibility of using
CNN to extract information from radar sea clutter images. Furthermore, compared to the conventional
spectral analysis method, the CNN-based method produced higher accuracy. The method therefore
provides a potential way for accurate wave parameter inversion from radar images.

Results of the training data set dependence on CNN-based inversion models show that CNN
models only performed well when the test image data had the same wave parameter ranges as the
training data set. There were obvious inversion errors if test samples resulted from wave parameters
out of the training data range. These results provide the scope of applicability for the CNN models in
wave inversion. Comparatively, the VGGNet-based model could obtain the overall wave characteristics
of radar images from local cropped pictures, although the AlexNet-based model failed.

Finally, as for the effects of the target wave parameters on the inversion results, it was indicated
that the changes of spectral peak period and significant wave height had little effect on inversion
accuracy of the CNN-based method.

However, in this paper, the validation of the method was based on a synthetic image data set.
The CNN-based models were effective on the synthetic image data set, but further testing is necessary
to establish whether the method is suitable for a real radar image data set. Moreover, the CNN-based
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method is presently unable to inverse the wave direction. These problems will be important parts of
our follow-up study.
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