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Abstract: Current reported spatiotemporal solutions for fusing multisensor aerosol optical depth
(AOD) products used to recover gaps either suffer from unacceptable accuracy levels, i.e., fixed rank
smooth (FRS), or high time costs, i.e., Bayesian maximum entropy (BME). This problem is generally
more serious when dealing with multiple AOD products in a long time series or over large geographic
areas. This study proposes a new, effective, and efficient enhanced FRS method (FRS-EE) to fuse
satellite AOD products with uncertainty constraints. AOD products used in the fusion experiment
include Moderate Resolution Imaging SpectroRadiometer (MODIS) DB/DT_DB_Combined AOD
and Multiangle Imaging SpectroRadiometer (MISR) AOD across mainland China from 2016 to 2017.
Results show that the average completeness of original, initial FRS fused, and FRS-EE fused AODs
with uncertainty constraints are 22.80%, 95.18%, and 65.84%, respectively. Although the correlation
coefficient (R = 0.77), root mean square error (RMSE = 0.30), and mean bias (Bias = 0.023) of the
initial FRS fused AODs are relatively lower than those of original AODs compared to Aerosol
Robotic Network (AERONET) AOD records, the accuracy of FRS-EE fused AODs, which are R = 0.88,
RMSE = 0.20, and Bias = 0.022, is obviously improved. More importantly, in regions with fully
missing original AODs, the accuracy of FRS-EE fused AODs is close to that of original AODs in
regions with valid retrievals. Meanwhile, the time cost of FRS-EE for AOD fusion was only 2.91 h;
obviously lower than the 30.46 months taken for BME.

Keywords: aerosol fusion; satellite products; spatiotemporal fusion; effective and efficient

1. Introduction

Aerosol particles suspended in the air are some of the main pollutants that affect human health [1–3].
Ground-based measurements and satellite retrievals of aerosol optical depth (AOD) are, therefore,
becoming important ways to indirectly assess air quality [4]. Satellite retrievals can obtain AODs
with large spatial coverage and consequently this method has more applications than ground-based
measurements. To date, several satellite sensors for global AOD retrieval have been launched. Among
them, the popular ones are the Moderate Resolution Imaging Spectro-Radiometer (MODIS) and the
Multi-angle Imaging Spectro-Radiometer (MISR). While these two satellite sensors have provided
many AOD products for air quality assessment so far [5,6], their AODs are usually missing over space,
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due to the limited swath width, the influences of cloud cover, and the theoretically inherent limitations
of AOD retrieval algorithms [7].

However, AOD products from different satellite sensors are somewhat complementary in
spatiotemporal completeness. Up until now, methods developed for satellite AOD product fusion
can be generally divided into single-AOD pixel-based methods and multiple-AOD pixels-based
geostatistical methods. Among of them, the former method usually considers the function relationship
of group AOD pixel values at the same geographic locations from different satellite sensors. This
type of relationship has been widely explored by linear or second-order polynomial regression
models [8], maximum likelihood estimation models [9], least square estimation models [10], optimal
interpolation [11], empirical orthogonal functions [12], and a simplified merge scheme [13,14]. Based on
the established models, the pixel values of an AOD product can be utilized to fill in the missing values
of other types of AOD products at the same locations. However, the single-AOD pixel-based modeling
methods would inevitably fail in areas without valid retrievals from any satellite AOD products.

Different to taking a single AOD pixel into account, the multiple-AOD pixel-based geostatistical
method makes allowances for the neighborhood influences of AOD pixels according to their correlations.
So far, models developed for implementation of this type of method are almost all kriging-related [15–17].
Among them, Spatial Statistical Data Fusion (SSDF) is a time efficient method with the capacity of
dealing with massive AOD data, and it has been successfully applied to fuse MODIS and MISR AOD
products [17]. However, SSDF can currently only consider the spatial correlations of adjacent AOD
pixels, while temporal correlations of these spatially correlated AOD pixels are ignored. Consequently,
the accuracy and completeness of fused AODs are certainly reduced [18,19].

To address this, Bayesian Maximum Entropy (BME), a spatiotemporal geostatistical method that
simultaneously considers the spatial and temporal correlations of adjacent pixels, was proposed for
AOD fusion. With the introduction of BME, the completeness of fused AODs can be greatly improved
and the accuracy of fused AODs in areas without any valid AOD retrievals from satellite sensors are
also acceptable [20]. However, in the fusion process, BME usually has to be bothered with intensive
time costs due to the large adjacent pixel search and numerical computations, including covariance
matrix inversion and multiple integration calculation, to account for the highly nonlinear, non-Gaussian
assumption of local spatiotemporal variations in AOD values. This problem would also be more
serious in situations with long time series or large geographic area AOD inputs from different satellite
sensors [20,21].

To overcome the time-consuming defects of BME-based AOD fusion methods, a fixed rank
smooth (FRS) method was recently developed [18,22]. Compared to the BME method, the FRS method
simultaneously considers the spatiotemporal correlations of adjacent AOD pixels like BME and can be
implemented with an extremely high efficiency like SSDF. However, the feasibility of the FRS method
has only been tested in the improvement of AOD completeness from a single satellite sensor (i.e.,
MISR AOD) due to different footprints and noise. Meanwhile, over- or underestimates of AOD values
in areas with large satellite AOD gaps in both space and time are also problems caused by the FRS
model [18]. As a result, there is still no method by which the complementary characteristic of AOD
products from various satellite sensors can be employed by the FRS method to enhance AOD coverage
with acceptable accuracy in low time cost.

Therefore, this study aims to propose a new effective and efficient enhanced FRS method (FRS-EE)
for AOD product fusion with high spatiotemporal coverage and acceptable accuracy, from different
satellite sensors. The structure of this paper is organized as follows. First, we introduce the basic
principle of the FRS model and the AOD fusion framework based on the FRS-EE method presented in
Section 2. Then, datasets and data processing of FRS-EE are presented in Section 3. Section 4 shows
the fusion results including the spatial completeness, temporal completeness, the accuracy and time
efficiency, as well as the effectiveness of the fused result. Section 5 is the summary and discussion.
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2. Methodology

This section will only briefly introduce the FRS model and the fusion framework for various
satellite AOD products based on the proposed FRS-EE method. However, the detailed AOD fusion
modeling steps along with the physical meaning of some FRS model aspects will be presented in
Section 3.

2.1. Basic Principles of the FRS Model

Based on a hierarchical structure, the spatiotemporal observation Z(s, t) in the FRS model can be
decomposed into real-valued data Y(s, t) and measurement noise ε(s, t):

Z(s, t) = Y(s, t) + ε(s, t), (1)

where s = {s1, s2, . . . , sn} is the spatial location and t = {1, 2, . . . , T} is the time point. ε(s, t) follows a
white-noise Gaussian distribution, i.e., ε(s, t) ∼ N

(
0, σ2

εvt(s)
)
, and σ2

εvt(s) is the measurement noise
variance. In order to avoid a large covariance matrix, ε(s, t) is often assumed to be spatiotemporally
uncorrelated. This means that E(ε(si, ti), ε(sk, tk)) = 0 for si , sk, ti , tk, and E(∗) is the expectation
operator. Y(s, t) is assumed to follow the structure:

Y(s, t) = µt(s) + υ(s, t), (2)

where µt(s) is the deterministic global spatiotemporal trend value which means µt(s) is correlated with
values of any other locations at the global spatiotemporal region; υ(s, t) is the local spatial variation
with zero mean and follows a spatial random effect (SRE) model [23]:

υ(s, t) = St(s)ηt + ξ(s, t), (3)

where ξ(s, t) is the fine-scale spatial variation that also follows a white-noise Gaussian distribution, i.e.,
ξ(s, t) ∼ N

(
0, σ2

ξνt(s)
)
, to avoid a large covariance matrix, and σ2

ξνt(s) is the fine-scale spatial variation
variance. St(s) = [S1,t(s), . . . , Sr,t(s)] represents a set of spatial basis functions from rth resolutions to
capture the scale dependent spatial variations [23]. The chosen method on the spatial basis functions
will be explicitly presented in Section 3.3. ηt is the corresponding state vector with r× r covariance
matrix Kt.

In terms of temporal domain, ηt evolves according to the following state transition equation:

ηt = Φtηt−1 + ζ(t), (4)

where Φt is the state propagator matrix linking the ηt−1 and ηt, ζ(t) is the state transition error vector
expressing possible error in Φt, and ζ(t) has a mean of zero and variance matrix Ut, i.e., ζ(t) ∼ N(0, Ut).

Given Zt = [Z(s1, t); Z(s2, t); . . . ; Z(sn, t)], µt = [µt(s1);µt(s2); . . . ;µt(sn)], St =

[St(s1); St(s2); . . . ; St(sn)], ξt = [ξ(s1, t); ξ(s2, t); . . . ; ξ(sn, t)], and εt = [ε(s1, t); ε(s2, t); . . . ; ε(sn, t)], the
FRS model can be rewritten in vector form:

Zt = µt + Stηt + ξt + εt

ηt = Φtηt−1 + ζ(t)
, (5)

where εt ∼ N
(
0, σ2

εVt
)
, Vt = diag(vt(s1), vt(s2), . . . , vt(sn)), and diag(∗) is the diagonal matrix operator.

The detailed FRS model can be found in Cressie et al., 2010 [18].

2.2. The FRS-EE Method for AOD Product Fusion

As the FRS method has been thoroughly developed, the basic principle of FRS-EE is similar to
FRS. However, by contrast, FRS-EE is designed for a multiple stack AOD products process rather than
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the one stack in FRS. Moreover, an uncertainty constraint is also introduced by FRS-EE to remove
inaccurate AOD estimations. A general process for fusing AOD products from different satellite
sensors is demonstrated in Figure 1.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 23 
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Figure 1. The flowchart of fusion process of aerosol optical depth (AOD) products from different
satellite sensors based on the effective and efficient enhanced fixed rank smooth (FRS-EE) method.

For different satellite AOD dataset fusion, the estimation of real AOD values, Y(s, t), from satellite
observations, i.e., Zsat,i, Zsat, j and Zsat,k, is the interest we focused on. In this way, the combined FRS-EE
observation equation can be first defined as Equation (6) by stacking AOD products from different
satellite sensors in terms of spatial dimension as follows:

Zsat,i
Zsat, j
. . .

Zsat,k


t

=


µsat,i
µsat, j
. . .
µsat,k


t

+


Ssat,i
Ssat, j
. . .

Ssat,k

ηt +


ξsat,i
ξsat, j
. . .
ξsat,k


t

+


εsat,i
εsat, j
. . .
εsat,k


t

, (6)

where µsat,i, µsat, j, and µsat,k are the spatiotemporal trends for Zsat,i, Zsat, j, and Zsat,k at time t, respectively.
Ssat,i, Ssat, j, Ssat,k, and ξsat,i,ξsat, j, ξsat,k, as well as εsat,i, εsat, j, εsat,k are the corresponding spatial basis
matrices, fine-scale spatial variation vectors, and corresponding measurement noises, respectively.
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Then, by considering the temporal connections of AOD products from different satellite sensors
as illustrated in Equation (4), the FRS-EE can be further defined as:

Zsat,i
Zsat, j
. . .

Zsat,k


t

=


µsat,i
µsat, j
. . .
µsat,k


t

+


Ssat,i
Ssat, j
. . .

Ssat,k

ηt +


ξsat,i
ξsat, j
. . .
ξsat,k


t

+


εsat,i
εsat, j
. . .
εsat,k


t

,

ηt = Φtηt−1 + ζ(t)

(7)

According to Figure 1 and Equations (1)–(7), resampling is required due to the specific resolution
of different AOD products. Then, the spatiotemporal moving window is employed to remove the
spatiotemporal trend µt, and the spatial basis function St(s) can be selected from multiresolution
aspects (see details in Section 3.3). After that, the measurement noise variance σ2

ε parameter is extracted
by fitting the semi-variogram function [23] and the rest of the parameters (i.e., σ2

ξ, Φt, Ut) of FRS-EE are
obtained by the Expectation-Maximum (EM) estimation [24]. Based on the estimation of parameters
(σ2
ε, σ2

ξ, Φt, Ut), the Kalman smooth method can be utilized to estimate the state vector ηt and fine-scale
spatial variation ξ(s, t) for t = {1, 2, . . . , T}. Afterwards, the AOD values at any spatiotemporal point
(s0, t0) and associated uncertainty value can be estimated by FRS-EE using Equations (2) and (3).
Considering the high uncertainty of interpolated AOD values in areas without valid satellite AOD
observations in both space and time, a threshold criteria-based uncertainty constraint for FRS-EE can
be finally introduced to remove the overestimated or underestimated AOD values.

3. Datasets and FRS-EE Model Building

To test the reliability of FRS-EE in effectively and efficiently fusing AOD products from different
satellite sensors, this study selected AOD products from Terra-MODIS and Terra-MISR in China (note:
the territorial sea is not included in this study) from 2016 to 2017 as a case. Details about the data
collection and usage for FRS-EE model building are as follows.

3.1. Dataset Collection

3.1.1. Satellite AOD Products

Satellite AOD products used in this study were collected from MODIS and MISR sensors in the Terra
satellite, which ensures that AOD values are retrieved at the same time. AOD products from the MODIS
sensor include the 10 km Deep Blue data (DB, Deep_Blue_Aerosol_Optical_Depth_550_Land, Collection
6.0, Level 2) [25] and the 10 km DT_DB_Combined data (AOD_550_Dark_Target_Deep_Blue_Combined,
Collection 6.0, Level 2) [26] from the Terra-MODIS sensor (https://ladsweb.modaps.eosdis.nasa.gov).
For the DB AOD data, only those with quality assurance (QA) values equal to 2 or 3 are kept [27].
This step is also implemented for the DT_DB_Combined AOD data with QA = 3 [28]. Although the
DT_DB_Combined data is the initially fused data combining the DB and Dark Target (DT) data based
on the Normalized Difference Vegetation Index (NDVI) data [26], the coverage of the DB data is still
higher than the DT_DB_Combined data. For the purpose of improving coverage, the DB data was also
adopted in the fusion study. Meanwhile, the AOD data (4.4_KM_PRODUCTS/Aerosol_Optical_Depth,
MIL2ASAE, Level-2, Stage 2 and 3 Validated) [29] retrieved with multi angular and multi spectral
algorithm [30] from the MISR sensor at a 4.4 km resolution are also considered (https://eosweb.larc.
nasa.gov/project/misr/mil2asae_v3). All the satellite AOD products utilized in this study are at the
wavelength of 550 nm.

3.1.2. Ground AERONET Data

Ground AERONET sites (https://aeronet.gsfc.nasa.gov/) provide accurate AOD measurements
with an uncertainty of 0.01~0.02 [31] and can be used as a benchmark for AOD product validation.

https://ladsweb.modaps.eosdis.nasa.gov
https://eosweb.larc.nasa.gov/project/misr/mil2asae_v3
https://eosweb.larc.nasa.gov/project/misr/mil2asae_v3
https://aeronet.gsfc.nasa.gov/
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Based on the observed AERONET AOD data (Version 3 and Level 2.0) [32] and considering the
wavelength of satellite AOD products, this study thus derived AERONET AOD at a 550 nm wavelength
by interpolating AOD values at 500 nm and 675 nm using the Ångström exponent distribution
assumption [33]. Figure 2 shows the study area and locations of the ground AERONET sites used in
this study.
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3.2. Spatiotemporal Trend Removal

First of all, we resampled the MISR product at 10 km resolution to match the AOD image pixels
of MODIS product. Then, spatiotemporal trend removal was implemented for FRS-EE-based AOD
fusion. As shown in Figure 3a–c, the original AOD product histograms from MODIS and MISR are
right-skewed, and this does not satisfy the required assumption of a mean of zero and Gaussian
distribution for υ(s, t); hence, the spatiotemporal trend, µt(s), in Equation (7) should, therefore, be
peeled off first for the FRS-EE method. In this process, the average AOD values were first computed
by combing AOD products either from MODIS or MISR, pixel by pixel. That is to say, valid AOD
retrievals from MODIS and MISR in the same pixel location were averaged. Then, in order to estimate
the spatiotemporal trend µt(x, y) at each pixel (x, y) of t day, a spatiotemporal moving window with
the size of 49 × 49 × 3 was defined according to Tang et al.’s work [20]. After that, the µt(x, y) of the
combined AOD data was calculated by averaging AOD values within the spatiotemporal moving
window using the following equation:

µt(x, y) =

 i = 24∑
i = −24

j = 24∑
j = −24

k = 1∑
k = −1

AOD(x + i, y + j, t + k)

/N (8)

where N is the number of pixels with available AOD values within each spatiotemporal moving
window. The spatiotemporal moving window goes through all pixels until their spatiotemporal
trends are calculated. Here, we assume the calculated µt(x, y) based on the spatiotemporal moving
window technology is deterministic, and the detrended AOD data for three AOD products from
MODIS and MISR sensors can be obtained through the subtraction between original AOD products to
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the corresponding averaged spatiotemporal trends in each pixel, respectively. It was found that the
histograms of three detrended AOD data in Figure 3d–f are approximately Gaussian distributed and
have means of zero which demonstrates the calculated spatiotemporal trend µt(x, y) is useful.
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Figure 3. Histograms of (a) original Deep Blue (DB) AODs, (b) original Dark Target (DT)_DB Combined
AODs, (c) original Multiangle Imaging SpectroRadiometer (MISR) AODs, (d) detrended DB AODs,
(e) detrended DT_DB_Combined AODs, (f) detrended MISR AODs.

3.3. Selection of Spatial Basis

Spatial basis selection is a very important process aiming to grasp spatial variations in the
detrended AOD data. This would greatly ensure that the spatial variations of detrended AOD values
are as few as possible denoted by ξ(s, t) with the inaccurate spatiotemporally uncorrelated assumption.
To date, the functions widely used for spatial basis selection include the smoothing spline basis
function, wavelet basis function, bisquare basis function, and radial basis function [23]. Among them,
the bisquare basis function has a lot of desirable advantages. For example, it has a clear center point
and range, supports different distance types, and can evaluate covariance between any two points in
the defined spatial domain [24]. Based on this, the employed bisquare basis function in this study is
defined below:

Sl(s) =


{
1− ( ||s− cl||/gl )

2
}2
||s− cl|| < gl

0 otherwise
, (9)
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where cl is the center point location in the lth resolution, and the spatial basis weight Sl(s) in the cl will
be the maximum, i.e., 1. ||∗ || is the operator to calculate distance between the s point and the cl center
point. gl is the range for the lth resolution, and it is 1.5 times as large as the shortest distance among
center points in the lth resolution [23].

In order to obtain the spatial variation at a maximum level, the spatial basis number (i.e., r) is often
chosen at multiple resolutions [23]. The spatial basis with larger resolutions can grasp more global
spatial variation, and the spatial basis with finer resolution can grasp more local spatial variation.
However, since the computational complexity of the whole FRS method is positively correlated with r
cubed (i.e., O

(
nTr3

)
, n is the observation number, and T is study time period) [18], more spatial bases

would inevitably increase the cost of FRS-EE in computation time and computer storage. To effectively
and efficiently fuse the AOD products from MODIS and MISR, this study attempted to determine
spatial bases from a coarse to a fine resolution until a stable residual was obtained after ordinary least
square fitting. The residual resi(s, t) can be calculated as follows:

dµt(s) = AODt(s) − µt(s)

ς(s, t) = S(s)
((

S(s)′S(s)
)−1

S(s)′dµt(s)
)

resi(s, t) = dµt(s) − ς(s, t)

, (10)

where dµt(s) is the detrended AOD extracted in Section 3.2, ς(s, t) is the spatial variation fitted by the
spatial basis function of detrended AOD dµt(s), and resi(s, t) is the residual.

We uniformly selected 26 spatial bases in the first resolution, 79 spatial bases in the second
resolution, and 293 spatial bases in the third resolution covering the study region, where a total of 398
spatial bases were implemented. Figure 4a–c shows the spatial base center points, i.e., cl in Equation
(9), for the first, second, and third resolution, respectively. We can clearly see the center points in the
third resolution are closer each other compared with the center points in the first and second resolution.
Some spatial base center points were positioned outside the study area on purpose of improving the
interpolation accuracy of AOD values near the edge of the study area. Meanwhile, Figure 4d,g,j shows
the detrended AOD spatial distribution, i.e., dµt(s) in 30 October 2017 for three satellite AOD products
as an example. Figure 4e,h,k shows the fitting effect, i.e., ς(s, t), by three resolution spatial bases
which demonstrate that the selected spatial bases determined at the three resolutions can effectively
determine the spatial variation from three satellite detrended AODs in Figure 4d,g,j. The residuals, i.e.,
resi(s, t), in Figure 4f,i,l are also stable, and only a little spatial variation is reserved in the study region,
which confirms the selected spatial bases is effective and suitable.

3.4. Separation of Measurement Noise and Fine-Scale Spatial Variation

The residual in Figure 4f,i,l still displays a little spatial variation which can be modeled as
the fine-scale spatial variation ξ(s, t). In order to separate measurement noise ε(s, t), and fine-scale
spatial variation ξ(s, t) in the residual resi(s, t), the semi-variogram function can be adopted under the
assumption of spatiotemporal uncorrelated measurement noise ε(s, t) and spatial correlated fine-scale
spatial variation ξ(s, t) [22]. Based on this, the semi-variogram function with spherical model can be
used to fit resi(s, t) according to Oliver et al. (2014) [34]. Following this, the fitted nugget and sill
values of the semi-variogram function are the corresponding σ2

εvt(s) and σ2
ξνt(s), respectively.

To further calculate the detailed values of nugget and sill of the spherical model in this study,
it was assumed that noise variance, σ2

εvt(s), is homogeneous in the spatiotemporal domain (i.e.,
vti(si) = vt j

(
s j
)
= 1), and fine-scale spatial variation variance, σ2

ξνt(s), is homogeneous in the spatial

domain, but heterogeneous in the temporal domain (i.e., νt(si) = νt
(
s j
)
= νt). Then, MODIS DB,

DT_DB_Combined, and MISR AOD products over 10 days with better spatial coverage were randomly
chosen and employed. In this process, the nugget values (σ2

ε) and sill values (σ2
ξ) were estimated by

averaging their corresponding values over 10 days for each different satellite AOD product as shown
in Table 1. The averaged nugget values (σ2

ε) can be viewed as the variance of uncorrelated spatial
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variation, i.e., σ2
ε. The averaged sill values can be used for the variance of correlated spatial variation,

i.e., σ2
ξ, which is also the initial value of the EM iteration in Section 3.5. Figure 5 shows an example of

the fitted spherical model and related parameters from 30 October 2017.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 23 
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Figure 4. An example of fitting effects with spatial bases under three resolutions in 30 October 2017.
Subgraphs (a), (b), and (c) show the spatial base center point locations for the first, second, and
third resolution, respectively. Subgraphs (d), (g), and (j) show the detrended DB AOD, detrended
DT_DB_Combined AOD, and detrended MISR AOD, respectively. Subgraphs (e), (h), and (k) show the
fitting effects with spatial bases under three resolutions, respectively. Subgraphs (f), (i), and (l) are the
corresponding residuals, respectively.

Table 1. Parameters of fitted spherical models for randomly chosen 10 days’ AOD products with better
spatial coverage.

Date
DB DT_DB_Combined MISR

Nugget Sill Nugget Sill Nugget Sill

3 November 2017 0.002 0.010 0.003 0.010 0.001 0.002
5 November 2017 0.002 0.009 0.002 0.008 0.002 0.002
30 October 2017 0.002 0.007 0.002 0.012 0.001 0.001

4 November 2017 0.003 0.010 0.002 0.008 0.001 0.001
25 May 2017 0.002 0.005 0.003 0.006 0.001 0.002
26 May 2017 0.003 0.004 0.002 0.006 0.002 0.001

29 October 2017 0.002 0.009 0.002 0.012 0.001 0.002
27 October 2017 0.003 0.011 0.003 0.013 0.001 0.003

16 May 2017 0.001 0.005 0.002 0.004 0.002 0.003
1 November 2017 0.002 0.010 0.003 0.010 0.001 0.002

Averaged 0.0022 0.008 0.0024 0.0089 0.0013 0.0019
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3.5. Determination of FRS-EE Parameters Using EM Iteration

Although the Kalman smooth method can estimate ηt and ξ(s, t) [18], parameters for FRS-EE, i.e.,
σ2
ξ, Φt, Ut, and η0 ∼ N

(
η0|0, P0|0

)
, should be known before implementing it. For simplification, we

assume Φt and Ut are constant over the temporal domain. Consequently, the EM iteration combined
with Kalman smooth would be effective to obtain the maximum likelihood estimates of FRS-EE
parameters using a coordinate descent method [24]. Meanwhile, considering the sensitivity of EM
iteration to the initial values of FRS-EE parameters, strategies for the parameters’ initialization have to
be determined.

For the initial state vector parameter η0|0 with its covariance matrix P0|0, the first 30 days of
detrended AOD values with the least amount of missing data were employed to determine η0|0 and
P0|0 using the ordinary least squares method. The averaged sill value σ2

ξ was calculated in Section 3.3
as the initial value of σ2

ξ to indicate the fine-scale spatial variation variance.
For the state transition matrix Φ, a target temporal dependence matrix was first defined [18]:

T0 = ρΓ, (11)

where ρ is a temporal-dependence parameter and was set as 0.95. Γ is the observation covariance
matrix and can be described using a semi-variogram model or covariance function. However, due
to the large dimension of Γ and its associated great storage requirement resulting from the massive
remote sensing AOD datasets in this study, Γ was assumed to be a diagonal matrix, i.e., Γ =

(
σ2
ξ + σ̂2

ε

)
I.

Based on this, Φ can be obtained by minimizing the following Frobenius norm [18]:

||SΦKS′ − diag(SKS′)1/2T0diag(SKS′)1/2
|| (12)

where K is a state vector covariance matrix and was also calculated by minimizing the following
Frobenius norm [23]:

||SKS′ − Γ || (13)

Following Equation (13), the variance matrix U of the state transition error vector ζ(t) can be
finally calculated by minimizing the Frobenius norm between SUS′ and 3Γ to indicate the possible
inaccurate assignment for Φ.

3.6. Missing Data Interpolation and Inaccurate Data Removal

Following the steps in Figure 1, any AOD value at spatiotemporal point {si, ti} that we are interested
in can be estimated (i.e., initial FRS fused AOD) after the determination of FRS-EE parameters using
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EM iteration [24]. Then an uncertainty constraint mechanism for inaccurate interpolated AOD values
was implemented to generate the FRS-EE fused AOD. Specifically, an initial threshold value σ0 (i.e.,
0.02) and a decreasing rate α (i.e., 0.0001) were set first. Second, a repeatedly decreased process of
threshold values (i.e., σ = σ0 − α) was iteratively employed to discard the interpolated AOD data
with uncertainty values larger than the updated σ. The whole iteration process can stop when the
validation accuracy in areas without valid satellite AOD observations meet the predesigned precision
criteria by comparing AODs measured at ground AERONET sites. The predesigned precision criteria
were the absolute mean Bias |Bias| < 0.05, correlation coefficient R > 0.8, and root mean square error
RMSE < 0.35.

4. Results

4.1. Spatial Completeness Analysis of Fused AODs

Spatial completeness is one of the most important metrics that can be used to indicate the spatial
coverage of satellite-based air pollution monitoring. In this study, spatial completeness is defined as
the ratio of the number of grid points with valid satellite AOD values to the total number of grid points
over all of China. As illustrated in Figure 6, the spatial completeness of AOD in four typical days
across seasons in 2016 and 2017 can be clearly improved by using the FRS-EE method, compared with
the original DB AOD, DT_DB_Combined AOD, and MISR AOD. The following daily and seasonal
comparison analysis for the spatial completeness of original and fused AODs also further confirmed
the effectiveness of FRS-EE in fusing multiple-satellite AODs.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 23 
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Figure 6. Spatial distributions of (a) DB AOD, (b) DT_DB_Combined AOD, (c) MISR AOD, (d) initial
FRS fused AOD, (e) FRS-EE fused AOD in 25 March 2016, 16 June 2016, 30 October 2017, and 24
December 2017 from four seasons during 2016 and 2017, respectively.



Remote Sens. 2020, 12, 1102 12 of 21

As shown in the comparison of daily spatial completeness in Figure 7, there are significant
differences between the original and FRS-EE fused AODs across China over the study period. Among
the original DB AOD, DT_DB_Combined AOD, and MISR AOD, the spatial completeness of MISR AOD
is the lowest with an average value of 4.16%, while those for DB AOD and DT_DB_Combined AOD are
19.82% and 16.42%, respectively. Although the average daily spatial completeness of single-pixel-based
fused AODs (i.e., all source-averaged AOD) is 22.80%, great differences still exist compared to the
FRS-EE-based fused AODs. For the initial FRS fused AOD, the average and the maximum daily
spatial completeness increased to 95.18% and 100%, respectively. After the removal of the over- and
underestimated AODs, the average and the maximum spatial completeness of FRS-EE fused AOD
correspondingly reduced to 65.84% and 99.15%, respectively. However, the spatial completeness of
these FRS-EE fused AODs are still obviously higher than those of single-pixel-based fused AODs (i.e.,
daily average improvement: 43.03%, daily maximum improvement: 67.16%). In addition, Table 2
further demonstrates that there are clear seasonal differences for the spatial completeness for the
original and FRS-EE fused AODs. Generally, spring and autumn are the seasons with higher spatial
completeness for all the original and FRS-EE fused AODs compared with summer and winter. Cloud
contamination in summer and snow cover in winter should be responsible for the lower spatial
completeness of the original and FRS-EE fused AODs. Similar seasonal improvement effects also
occurred for the spatial completeness for the FRS-EE fused AODs. This is reasonable because the
FRS-EE fused AODs can borrow strength form more original AODs in spring and autumn but less in
summer and winter.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 23 
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Remote Sens. 2020, 12, 1102 13 of 21

Table 2. Seasonal statistics of the spatial completeness for original, all source averaged, and FRS-EE fused
AODs (unit: %). MAM: March-April-May; JJA: June-July-August; SON: September-October-November;
DJF: December-January-February.

Season MAM JJA SON DJF

DB 21.49 15.96 25.19 16.66
DT_DB_Combined 18.12 14.74 21.16 11.62

MISR 4.34 3.54 4.68 4.06
All source averaged AOD 24.25 19.65 28.11 19.20

FRS-EE fused AOD 69.91 61.59 79.17 52.60
Improvement 45.66 41.94 51.05 33.40

4.2. Temporal Completeness Analysis of Fused AODs

Temporal completeness is an index capable of denoting the repeatable availability of satellite
AOD retrievals for a pixel during a particular time period. Similar to the spatial completeness, the
temporal completeness in this study is also defined as a ratio, where the number of days with valid
satellite AOD values for a pixel are divided by the total days of the entire study period. In this way, the
temporal completeness for each pixel across the study area can be calculated. Figure 8 shows spatial
differences in temporal completeness for original AOD products and FRS-EE fused AODs. It is clear
that the average temporal completeness of DB AOD and DT_DB_Combined AOD is relatively low
with mean values of 19.82% and 16.42%, respectively. However, the temporal completeness of these
two original AOD products in Xinjiang province is high. The maximum temporal completeness of
DB AODs and DT_DB_Combined AODs in Xingjiang is 65.12% and 61.01%, respectively. In contrast,
Hongkong is the region with the lowest temporal completeness values of only about 0.67% and 0.94%
for DB and DT_DB_Combined AODs, respectively, as it is adjacent to a sea region. For MISR AOD,
the temporal completeness is very low, with average and maximum values for all pixels of 4.16% and
15.32%, respectively. Significantly different to the three original satellite AOD products, the temporal
completeness of FRS-EE fused AOD is obviously larger, with average and maximum values of 63.39%
and 96.58%, respectively. The temporal completeness of FRS-EE fused AODs in the north is large due
to the less cloud and high temporal completeness of the original AOD products, which is in contrast to
low temporal completeness in the cloudy and rainy southeast region. The low temporal completeness
of FRS-EE fused AODs in the Sichuan basin should also be noteworthy. We consider the high spatial
heterogeneity of AOD distribution inside and outside Sichuan Basin which result in less strength can
be brought from the AODs in the outside Sichuan Basin.

Moreover, Table 3 further shows the average temporal completeness of original satellite AOD
products, all source averaged AODs, and FRS-EE fused AODs in different provinces. The location of
each province is illustrated in Figure A1. Specifically, the higher average temporal completeness (i.e.,
greater than 70%) for FRS-EE fused AODs were found in Ningxia, Gansu, Qinghai, Yunnan, Xinjiang,
and Neimenggu, while the relatively lower one (i.e., less than 40%) were located in Shanghai province.
Compared to the original satellite AOD products and the single pixel based all source averaged AODs,
the improvement of temporal completeness for FRS-EE fused AODs is greater than 45% in Qinghai,
Yunan, Gansu, Sichuan, Guizhou, Ningxia, Taiwan, and Tibet. In contrast, the regions with relatively
weak improvements (i.e., less than 20%) are Shanghai, Anhui, Jiangsu, Henan, and Shandong.
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Table 3. The average of temporal completeness for original, all source averaged, and FRS-EE fused
AODs in different provinces.

Province DB DT_DB_Combined MISR All Source
Averaged

FRS-EE
Fused Improvement

Qinghai 7.71 4.49 3.01 10.55 81.58 71.02
Yunnan 14.76 13.04 2.45 17.92 79.36 61.43
Gansu 25.23 20.87 5.30 28.65 86.27 57.63

Sichuan 7.84 6.04 2.00 10.73 67.14 56.41
Guizhou 7.78 8.05 1.00 9.53 65.65 56.12
Ningxia 28.73 25.00 5.65 32.56 86.70 54.14
Taiwan 5.19 9.24 1.68 11.19 63.74 52.55

Tibet 6.87 3.01 2.70 9.28 61.36 52.08
Fujian 11.72 10.70 2.47 14.81 58.64 43.83

Hainan 6.49 10.10 1.71 11.58 53.84 42.26
Neimenggu 30.90 24.54 6.64 33.95 75.96 42.01

Xinjiang 28.29 24.18 5.20 30.47 71.69 41.22
Hongkong 0.67 0.94 1.55 2.62 41.98 39.36
Chongqing 9.94 10.76 1.42 12.95 50.43 37.48

Shaanxi 23.95 23.56 4.05 28.26 64.85 36.59
Guangdong 10.62 10.72 2.28 13.48 49.30 35.82

Guangxi 9.99 10.53 1.57 12.48 48.06 35.58
Heilongjiang 16.87 14.46 3.19 19.90 52.39 32.49

Shanxi 28.29 27.08 5.98 33.79 64.91 31.11
Jilin 20.27 17.28 4.21 23.93 53.64 29.70

Beijing 33.81 31.49 7.74 40.89 68.96 28.07
Tianjin 33.81 28.65 7.40 38.37 64.38 26.00
Hebei 33.94 29.99 6.58 38.32 64.25 25.93

Zhejiang 13.86 12.55 2.43 17.87 43.70 25.83
Liaoning 31.31 28.41 6.65 36.11 61.69 25.59
Hunan 13.08 11.74 2.37 15.54 40.53 25.00
Jiangxi 15.41 13.44 2.95 18.32 42.85 24.53
Hubei 18.97 15.95 3.34 22.17 43.29 21.12

Shandong 32.04 28.21 5.65 36.75 55.39 18.64
Henan 26.89 22.03 4.94 30.46 48.59 18.12
Jiangsu 21.86 15.82 4.08 26.00 42.97 16.97
Anhui 23.74 17.78 4.60 26.63 43.46 16.83

Shanghai 7.16 7.34 1.90 11.17 27.90 16.73
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4.3. Accuracy Validation and Time Efficiency Analysis of FRS-EE

To evaluate the accuracy of fused AODs, the original satellite AODs and FRS-EE AODs within
5 × 5 pixels around the AERONET sites are averaged [35]. Then the measured AODs at the ground
AERONET sites within ±30 min of the Terra satellite overpassing time are selected and averaged [36].
In this process, mean bias (Bias), root mean square error (RMSE), and correlation coefficient (R) are
employed. Figure 9 shows the validation results of the original satellite AOD products and initial
FRS fused and FRS-EE fused AODs with the ground AERONET AOD measurements. Compared
to the parameters depicting the accuracy of the original satellite AOD products (i.e., R, 0.91 for DB
AOD; R, 0.89 for DT_DB_Combined AOD; R, 0.91 for MISR AOD), the Bias, RMSE, R for initial FRS
fused AOD are not ideal, with values of –0.023, 0.30, and 0.77, respectively. However, the FRS-EE
fused AOD situation clearly changed with the removal of the overestimated AODs based on the
predesigned precision criteria. That is, the Bias, RMSE, R, and within_EE of the FRS-EE fused AOD
with uncertainty constraints improved to 0.022, 0.20, and 0.88, respectively. Moreover, as shown in
Figure 9f, the accuracy of the FRS-EE fused AODs in grids without any valid satellite AOD inputs are
also comparable with those from the original AOD products (Figure 9a–c). Values of Bias, RMSE, and
R under this situation are –0.031, 0.32, and 0.80, respectively.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 23 
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MISR AOD, (d) initial FRS fused AOD, (e) FRS-EE fused AOD, (f) FRS-EE fused AOD in areas without
valid satellite retrievals.

In addition, comparisons of the computation time of FRS-EE and BME under the same computer
configuration (i.e., Windows 10 system with 3.00 GHz Intel processor and 128 GB memory) further
demonstrated the clear superiority of FRS-EE in fusing the MODIS and MISR AOD products employed
across the entire study period. Following the implementation framework of FRS-EE shown in
Figure 1, the time cost of spatiotemporal trend removal, spatial base selection, separation of noise
and fine-scale spatial variation, EM iteration, spatiotemporal interpolation, and over-/under AODs
estimate removal were 2145.96, 11.34, 951.98, 5877.95, 1363.90, and 138.20 s, respectively. That is a
total of 2.91 h. However, the time cost of BME in fusing the same AOD products was incomparable,
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although the experiment was parallelized with a dodeca-core and performed using BMELib (http:
//www.unc.edu/depts/case/BMELIB/) software. According to the BME based case experiment with
AOD data from 9 April 2016, the time cost for soft data construction, spatiotemporal covariance
modeling, and spatiotemporal interpolation was 291.78, 387.58, and 111610.50 s, respectively. With the
inclusion of the time cost for spatiotemporal trend removal, the total computation time for generating
this one-day result under the BME framework was 1.32 days. That would be 30.46 months for two
years of data in this study.

4.4. Overall Effectiveness Analysis of Fused AOD

Figure 10 shows the frequency distribution of AOD values from original DB AOD,
DT_DB_Combined AOD, MISR AOD, and FRS-EE fused AOD. Generally, the frequency of the
four types of AOD over the study period experienced very similar declining variation, with AOD
values larger than 0.1. For AOD values between 0 to 0.1, their frequency inversely increased at the
same time. Meanwhile, the asymmetric frequency distribution in Figure 10 also confirms the total
histogram of FRS-EE. For FRS-EE fused AOD, the frequency of AOD values between 0 and 1 is 97.18%,
and this is very close to the values from DB, DT_DB_Combined, and MISR AODs (i.e., 96.80%, 96.54%,
99.50%, respectively).Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 23 
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Moreover, comparisons of season averaged AODs in Figure 11 further demonstrate the effectiveness
of FRS-EE fused AOD in detecting the extreme AOD values with better spatial coverage. While
the relatively high AOD values in the Beijing-Tianjin-Hebei region, Xinjiang province, and Sichuan
Basin (i.e., spring of 2016 and summer of 2017) can be fully captured by the FRS-EE fused AOD, the
seasonal spatial pattern of the FRS-EE fused AOD is very similar to that from the original DB AOD,
DT_DB_Combined AOD, and MISR AOD.

http://www.unc.edu/depts/case/BMELIB/
http://www.unc.edu/depts/case/BMELIB/
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AOD, and FRS-EE fused AOD. MAM: March-April-May; JJA: June-July-August; SON:
September-October-November; DJF: December-January-February.

5. Discussion

In terms of fusion accuracy, compared with the initial FRS fused results without uncertainty
constraints, the FRS-EE fused method using uncertainty constraint to discard some outliers generated
in the initial FRS method significantly improved the fusing accuracy from R = 0.77, RMSE = 0.30, and
Bias = 0.023 to R = 0.88, RMSE = 0.20, and Bias = 0.022. The discarded AODs mostly occurred in
regions far away from all the valid original satellite AODs in the spatiotemporal domain and in regions
frequently contaminated with cloud in the temporal domain. The FRS-EE method will assign large
uncertainty values for these AODs to discard them. In clear regions surrounded by clouds, although
the satellite retrieval algorithm fails to work, the AERONET sites can provide accurate reference
AODs to validate the FRS-EE performance, i.e., Figure 9f. However, in those cloudy regions that have
valid satellite AODs in the previous or subsequent days, although the AERONET retrieval algorithm
cannot work, the FRS-EE still can provide the uncertainty values to diagnose the result reliability. In
addition, in regions where all of three satellite AOD products are available, the FRS-EE fused method
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may generate the AODs with similar performance compared with the original AOD products due
to small differences for the estimated measurement noise variance, i.e., σ2

ε, of three satellite products
by the semi-variogram function. The assumption of the semi-variogram method is that the noise is
spatiotemporally uncorrelated, and the fine-scale spatial variation is spatially correlated. In the future,
the retrieval uncertainty for each AOD product can be used in the estimation of noise variance.

Meanwhile, since the computational complexity for the whole FRS-EE fusion method is O
(
nTr3

)
,

the computation time cost of FRS-EE in this study is highly efficient. That is to say, the computational
complexity of the FRS-EE method is only cubic with the small spatial basis number r, linear with the
observation number n, and study time period T. This allows FRS-EE to process AODs from multiple
satellite sensors over large geographic areas and long time series. In this study, the computation time
cost for FRS-EE is obviously less than BME (i.e., 2.91 h vs. 30.46 months for two-year AOD data); it
can be reduced further, by half, with a little accuracy loss once the Kalman filter is utilized [18]. This
might urge the development of automatically and intelligently fused AOD products in the future.
However, theoretically, the BME method may generate more accurate fusion results compared with
the standard FRS model because the FRS model eliminates some component of spatial variation
to improve the computational efficiency [18]. Thus, the BME fusion method is still a reasonable
choice if the computation cost is not a concern, i.e., better machine or small dataset. However, as a
spatiotemporal fusion method, the BME method will also produce some inaccurate values in a serious
missing region [20]. We also recommend the users consider the uncertainty constraint in the BME
fusion method as the FRS-EE method does.

Mathematically, the FRS-EE method can be applied in any region. However, the performance
of the FRS-EE method may be limited in regions with fewer satellite overpasses, as fewer data
may be obtained from the pervious and the next days. Furthermore, similar to previous reported
FRS, negatively estimated AOD values are also a problem with FRS-EE, although these negative
values only exist in areas without valid satellite AOD retrievals, and many of them can be discarded
under the uncertainty constraint of FRS-EE. Future improvements could be focused on the inequality
constraints of the FRS equation and the consequent inequality-constrained Kalman filter to produce
the directly positive AOD values. Moreover, it is well known that satellite AOD products usually
have different spatial and temporal resolutions (i.e., Terra/Aqua-MAIAC 1 km/1 day, Himawari-8
5 km/10 min) due to the difference in aerosol retrieval algorithms and satellite designs (i.e., polar
orbit and geostationary satellite). Fusing these different satellite AOD products may be one solution
to generate high spatiotemporal AOD data. However, for the FRS-EE method, in order to improve
the efficiency, the fixed spatial basis function may bring smoothing effects on high spatial resolution
data. Setting more spatial basis functions in a finer resolution with a higher time cost is the solution
to this problem. Furthermore, the constant state propagator matrix used in this study also allows
the same overpass time of the source satellite data, and adopting a time-varying state propagator
matrix will increase the complexity of the method. Thus, the FRS-EE method to generate fused AOD
products simultaneously with high spatiotemporal resolution by integrating the temporally and/or
spatially independent AOD data is still problematic. In addition, with the termination of old satellite
missions, currently reported AOD fusion methods with performance validated based on out-of-date
data need to be further confirmed by adopting the AOD products from new satellite missions (i.e.,
Sentinel-5, Gaofen-5). Finally, in the future, it might also be helpful to introduce ground measurements
(i.e., AERONET, CARSNET, AEROCAN, AGSNET, SKYNET, meteorology, land cover, DEM, NDVI,
population density) and other related factors regarding AOD emergence, emission, and transition
into the spatiotemporal fusion process to produce AODs with higher accuracy and greater coverage.
Moreover, the proposed FRS-EE method can still be validated using artificially generated data to test
the stability and sensitivity.
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6. Summary

In summary, we proposed a newly spatiotemporal fusion method, i.e. FRS-EE, for multiple-satellite
AOD products in improving the coverage of AOD data. Compared with the standard FRS and BME,
FRS-EE can improve accuracy of FRS by using uncertainty constraints and is more efficient than the
time-consuming BME method. Moreover, with the fusion of MODIS DB/DT_DB_Combined AODs
and MISR AODs, the FRS-EE method clearly enhances the application of satellite remote sensing for
air quality monitoring by generating more spatiotemporally completed AODs.
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