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Abstract: This study compares some different types of spectral domain transformations for
convolutional neural network (CNN)-based land cover classification. A novel approach was
proposed, which transforms one-dimensional (1-D) spectral vectors into two-dimensional (2-D)
features: Polygon graph images (CNN-Polygon) and 2-D matrices (CNN-Matrix). The motivations
of this study are that (1) the shape of the converted 2-D images is more intuitive for human eyes to
interpret when compared to 1-D spectral input; and (2) CNNs are highly specialized and may be able to
similarly utilize this information for land cover classification. Four seasonal Landsat 8 images over three
study areas—Lake Tapps, Washington, Concord, New Hampshire, USA, and Gwangju, Korea—were
used to evaluate the proposed approach for nine land cover classes compared to several other methods:
Random forest (RF), support vector machine (SVM), 1-D CNN, and patch-based CNN. Oversampling
and undersampling approaches were conducted to examine the effect of the sample size on the model
performance. The CNN-Polygon had better performance than the other methods, with overall accuracies
of about 93%–95 % for both Concord and Lake Tapps and 80%–84% for Gwangju. The CNN-Polygon
particularly performed well when the training sample size was small, less than 200 per class, while the
CNN-Matrix resulted in similar or higher performance as sample sizes became larger. The contributing
input variables to the models were carefully analyzed through sensitivity analysis based on occlusion
maps and accuracy decreases. Our result showed that a more visually intuitive representation of input
features for CNN-based classification models yielded higher performance, especially when the training
sample size was small. This implies that the proposed graph-based CNNs would be useful for land
cover classification where reference data are limited.

Keywords: spectral curve transformation; convolutional neural network; sensitivity analysis; land
cover classification

1. Introduction

Land cover is a primary information source that characterizes natural ecosystems and human
activities on the surface of Earth. This information has been utilized for various research fields, such
as landscape ecology, disaster management, urban planning, and environmental modeling [1–5].
Remote sensing, which can regularly capture surface information over large areas, is an efficient tool
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for performing land cover classification. Land cover classification using remote sensing data is the
task of classifying pixels or objects whose spectral characteristics are similar and allocating them to
the designated classification classes, such as forests, grasslands, wetlands, barren lands, cultivated
lands, and built-up areas. Various techniques have been applied to land cover classification, including
traditional statistical algorithms and recent machine learning approaches, such as random forest and
support vector machines [6–11].

Deep learning is a subset of machine learning that yields high-level abstractions by compositing
multiple non-linear transformations [12]. Among deep learning algorithms, convolutional neural
networks (CNNs) have gained popularity in computer vision and remote sensing fields, especially
for image classification [13–17]. CNN-based studies in the field of land cover classification have
used either optical sensor or synthetic aperture radar (SAR) data with various spatial and spectral
resolutions [18,19]. Recent CNN-based studies for land cover classification could be distinguished
by (1) CNN architecture, (2) joint with other algorithms, and (3) the shapes of input or kernels for
CNN according to different image types. Various CNN architectures have been developed and
utilized, including fully convolutional network [20–25], U-Net [26,27], modified U-Net [28], and
TreeUNet [29]. CNNs have also integrated with other algorithms, such as multilayer perceptrons [30]
and support vector machines [31]. Many studies have reported that CNNs have contributed to an
accuracy improvement of land cover classification, with the overall accuracy ranging from 81% to 93%,
depending on the sensor type, spatial resolution of input images, and target classes [18,19,21,27,29–33].

Feature engineering is defined as the process of transforming raw data into features for better
representation of the given problem, which can result in an improvement of the model accuracy on
unseen data [34]. Good features are a contributing factor in model performance since machine learning
algorithms are problem specific and dependent on their domains. The spectral domain provides
important information for differentiating land cover classes. The connectivity between spectral bands
and seasonality (i.e., phenology) was relatively difficult to describe in previous patch-based CNN
studies since kernels were mostly applied to spatially neighboring spectral bands. The additional
transformation of spectral input features into a figure with a structure can provide spatial meaning
to spectral values, so there is a possibility of capturing additional information (e.g., the connectivity
between channels and seasonality) in a CNN framework. Kim et al. [35] proposed a new framework
that transforms the spectral information of each pixel into a 2-D line graph image and uses the image as
input data of a CNN. A line graph image consists of a reflectance curve with wavelengths as the x-axis
and reflectance values ranging from 0 to 1 as the y-axis. Kim et al. [35] classified land cover classes in the
US and South Korea with line graph images extracted from Landsat 8 and Geostationary Ocean Color
Imager (GOCI) satellite data. They showed that the proposed framework produced similar or slightly
better results when compared to widely used machine learning approaches (i.e., random forest and
support vector machine). Using a relatively small number of samples (i.e., less than 3500), Kim et al. [35]
showed performance comparable to recent CNN-based land cover classification studies that used large
datasets with over 100,000 samples [19,36]. Large ground reference datasets often require intensive
manual interpretation with high cost and time-consuming processes by field surveyors or experts.
Better feature engineering would enable the development of CNN models with small sample sizes that
could achieve high performance.

In this research, we investigated how different input data structures and sample sizes influence
CNN-based land cover classification models. First, two different input features—a new representation
of spectral information based on the framework of Kim et al. [35] and a 2-D matrix approach—were
applied on CNNs with multi-temporal multispectral images. Second, we compared the performance
of our proposed models with the line graph image-based CNN model [35], patch-based CNN, the 1-D
CNN model [32], random forest (RF), and support vector machine (SVM). Third, we analyzed the
effect of sample size on the models through oversampling and undersampling. Lastly, we compared
and discussed the sensitivity of the models.
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2. Proposed Methods

2.1. 2-D Feature Extraction

This study introduces two new input features to CNNs: Polygon images and 2-D matrices. A
polygon image is defined as a plane figure that is bounded by finite straight-line segments closing in a
loop to form a closed polygonal chain. Different to a line graph, a polygon uses four quadrants, even
though spectral reflectance values may be very low. Moreover, the vertical and horizontal differences
of a polygon graph image by class would be higher than those of a line graph image because of its
closed shape. Figure 1a shows how to create a polygon image of a pixel in the m-th row and n-th
column of multi-temporal and multi-spectral images. The vertices of the polygon are located at the
polar coordinate with the same angle interval as pixel values on the m-th row and n-th column of
spectral bands. The number of vertices is equal to the number of image dates multiplied by the number
of spectral bands. The line segments between neighboring vertices are connected. The filled polygon is
converted to a gridded image with fixed rows and columns. In a gridded image, the polygon was filled
with 1 and backgrounds were zero-filled. The second new feature type explored uses a 2-D matrix
approach. Different to the 1-D vector approach [32], the 2-D matrices are aligned with spectral bands
(x axis) and time (y axis) as shown in Figure 1b.
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Figure 1. The process of extracting 2-D polygon and matrix inputs. The figure shows a pixel with a
location (m, n) from four dates (periods 1-4) with seven (N = 7) spectral bands. The pixel value of the
first spectral band at (m, n) for the tth period is designated as pm,n,(t-1)×N+1. (a) A diagram of a polygon
graph for pixels at (m, n). The vertices of the polygon are located on the polar coordinate, which
have the same angular interval in the counterclockwise order along with pixel values as distances.
(b) A diagram of a 2-D matrix from pixels at (m, n). The rows correspond to the four seasons and the
columns represent spectral bands 1–7 in this figure.
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2.2. Convolutional Neural Networks

CNNs are a type of deep learning method that use convolutional multiplication based on artificial
neural networks [37]. Recently, CNN have been widely used in land cover classification, showing
remarkable performance [18,19,32,33,38–41]. Typical CNNs are composed of convolutional layers,
pooling layers, and fully connected layers. Given an image (or a vector for 1-D CNN), several filters
with a specific window size sweep the image (or the vector) to create feature maps at convolutional
layers. Filters are trained to extract significant features of the input data. Pooling layers reduce the
spatial size of feature maps by extracting a representative value, such as a mean or maximum value,
from a given window. This process is widely used to make the CNN model more robust by avoiding
overfitting problems while considerably decreasing the computational cost [42]. Fully connected
layers produce the final result of classification or regression with the features from previous layers.
In addition, dropout is a widely used regularization method to alleviate the overfitting problem.
Dropout randomly drops a few connections between layers by setting the weights of the connections
to zero [43,44]. Dropout can be applied to any of the aforementioned layers.

2.3. CNN Architecture

In this study, CNN models with different 2-D inputs (Figure 1) were developed. To find the optimal
relationship between the input graph size and model performance, we compared the classification
results for various input sizes (i.e., 50 × 50, 100 × 100, 200 × 200, and 400 × 400) for line and polygon
graphs. Larger input graph sizes provide more detailed information, but a preliminary experiment
found no improvement when input graphs were larger than 100 × 100 (not shown). The optimal size
of the polygon-based input images was determined to be 100 × 100 in this study. The different input
sizes of the polygon image (100 × 100) and the two-dimensional matrix (4 × 7) demand different CNN
architectures, which are described in Figure 2. CNN models were optimized over each input dataset to
compare their best result, rather than using a single CNN structure over all input types. We designated
the CNN models according to the input features (i.e., the polygon image: CNN-Polygon; and the 2-D
matrix: CNN-Matrix).

Parameters for the CNN-Polygon and CNN-Matrix models were determined based on multiple
tests with different combinations of parameters in order to maximize performance and efficiency.
Although a grid search approach testing every possible hyper-parameter combination was not
conducted due to the extensive computational cost, more than 20 structures for each approach were
tested to find the optimal CNN model. The tested models were combinations of 1-10 convolutional
layers with 32-256 nodes, zero to multiple max-pooling layers, single or double fully connected
layers with 32-1024 nodes considering both a shallow and deep structure. The final CNN-Polygon
model consists of three convolutional layers, three max pooling layers, and two fully connected layers
(Figure 2a). The convolutional layers vary in the number and size of filters. The first convolutional
layer has 32 filters with a 5 × 5 size; the second and third convolutional layers used 64 and 128 filters
with a 3 × 3 size, respectively. Each convolutional layer was followed by a 2 × 2 max pooling layer.
Dropout with the rate of 0.25 was used after the last max pooling layer. Extracted features after the
convolutional and max pooling layers were passed to the fully connected layers. The numbers of nodes
in the two fully connected layers were 256 and 16. The output layer has 9 nodes, which corresponds
to the number of classes. The CNN-Matrix has a different structure than the CNN-Polygon model
due to the much smaller size of the 4 × 7 matrix input (Figure 2b). To prevent the reduction of the
feature size, zero-padding was added for every convolutional layer in the CNN-Matrix model. This
model did not use a pooling layer because of the small input size. Three convolutional layers were
used with 32, 64, and 128 filters with a 3 × 3 size. The fully connected layers have the same structure as
the CNN-Polygon model.

Both the CNN-Polygon and CNN-Matrix models used a rectified linear unit (Relu) as an activation
function. Recent neural network applications have been shown to provide better performance with
Relu when compared to typical s-shape functions [13]. A softmax function was adopted as a classifier
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on the output layer with a categorical cross-entropy loss function. All CNN models were optimized
with adaptive moment estimation (Adam) using the default values of Keras framework: 0.001 of
the learning rate, 0.9 of beta 1, and 0.999 of beta 2 value. Adam is widely used for multi-class
classification [45,46]. A high-level deep learning framework Keras was used to run CNN using
Tensorflow as a background engine.
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3. Study Areas and Data

3.1. Study Areas

The proposed methods were evaluated for two local regions in the United States and one large
region in South Korea with different climate and environmental characteristics (Figure 3). Lake Tapps
in Washington (WA) state has a Mediterranean climate with dry warm summers and mild winters
according to the Köppen climate classification [47,48]. The annual high, low, and average temperatures
of Lake Tapps are 15.7, 7.2, and 11.5 ◦C, respectively, and annual precipitation is 943.1 mm. Concord in
the state of New Hampshire (NH) shows a moist continental climate with warm summers and cold
winters with no dry season. The annual high, low, and average temperatures of Concord are 14.3, 1.6,
and 7.9 ◦C, respectively. The annual precipitation is 1033.5 mm. Concord shows lower temperatures
but higher annual average precipitation when compared to the Lake Tapps. Gwangju is the 6th largest
city in South Korea with an area of about 501.18 km2. Gwangju is generally warm and temperate
with a humid subtropical climate [47]. North Pacific high-pressure systems make the region hot and
humid in summer, but moving high pressure systems from China create many dry and sunny days in
the spring and autumn. The annual precipitation is 1427.9 mm. The annual high, low, and average
temperatures are 28.4, −0.2, and 14.6 ◦C, respectively.
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Figure 3. Three study areas of this research with reference data. (a) Lake Tapps, Washington,
USA (47◦17′18”–47◦09′28”N, 122◦05′ 34”122◦16′07”W, 674m a.s.l.), (b) Concord, New Hampshire,
USA (43◦15′03”– 43◦08′48”N, 71◦27′52” - 71◦36′36”W, 96.6m a.s.l.), (c) Gwangju, South Korea
(35◦03′13”–35◦15′22”N, 126◦38′35”–127◦00′34”E).

3.2. Ground Reference Data

The collection of ground reference data was based on visual interpretation of high-resolution
Google Earth images over the area whose land cover was not changed during the study period. Nine
classes were identified for land cover classification: Barren, cropland, grassland, water, evergreen
forests, mixed forests, deciduous forests, high impervious area, and low impervious area. The high
impervious label was assigned when the proportion of impervious area exceeded approximately 75%
within a pixel of Landsat images. The low impervious label was assigned when the proportion of
the impervious area is between 50%-75%. When the impervious surface rate of a pixel is below 50%,
the signal from other classes, such as vegetation, significantly influences the reflectance of the pixel,
resulting in the classic mixed pixel problem. It is problematic to classify mixed pixels of medium-spatial
resolution images, such as Landsat series [49]. For better visual interpretation of mixed pixels for
reference data construction [50], we utilized additional spatial information and tools, such as interactive
geographic information system (GIS) viewers with zoning information provided by US governmental
agencies (http://esuite.concordnh.gov/arcgis/publicwebgis/, https://www.axisgis.com/pembrokenh/,
https://www.axisgis.com/BowNH/) and the basic version of AcreValue (https://www.acrevalue.com/

map/), which provides the value and productivity of farmlands.

3.3. Landsat 8 Images

The land cover classification inputs were derived from multi-temporal Landsat 8 OLI images
in Level-1 precision and terrain-corrected product (L1TP) format provided from the U.S. Geological
Survey Earth Explorer. We used the first seven spectral bands (bands 1-7) with the 30-m resolution for
each image selected. Seven multispectral bands include coastal and aerosol (band 1), visible (band
2-4), near-infrared (band 5), and shortwave infrared (band 6-7). Seasonal images were selected for
each study site (Table 1). The Landsat 8 OLI images were atmospherically corrected and converted to

http://esuite.concordnh.gov/arcgis/publicwebgis/
https://www.axisgis.com/pembrokenh/
https://www.axisgis.com/BowNH/
https://www.acrevalue.com/map/
https://www.acrevalue.com/map/
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scaled reflectance with Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) in ENVI
software [51].

Table 1. Acquisition dates of Landsat 8 data for each study site.

Dates Lake Tapps,
WA, USA

Concord,
NH, USA

Gwangju,
South Korea

Spring Apr/20/2015 May/10/2016 Mar/31/2018
Summer Jul/09/2015 Jul/13/2016 Jun/16/2017

Fall Sep/11/2015 Sep/22/2016 Oct/25/2018
Winter Feb/15/2015 Dec/04/2016 Feb/21/2019

4. Experimental Design

A total of 28 input variables consisting of the reflectance data from the seven Landsat 8 bands for
four seasons were used as input data to the machine learning models (Table 1). The sample size of nine
land cover classes for each site is summarized in Table 2. The reference data were randomly divided
into training (80%) and testing (20%) sets, and this process was repeated 10 times (i.e., 10 different
training/testing datasets) to mitigate the issue of test bias with a small dataset. Unlike traditional
machine learning algorithms, such as RF and SVM, CNNs are generally known to require a huge
dataset to train their deep structure and internal parameters [52]. Thus, oversampling was conducted
for training the models for the Lake Tapps and Concord, which have a relatively small number of
ground reference points per class. The oversampled data were randomly generated for each training
sample with a subtle perturbation (within 5% for each reflectance value). Then, oversampled data were
converted into 2D graphs or matrices for constructing CNN-Line, CNN-Polygon, and CNN-Matrix.
As a result, each land cover class had 1000 samples after oversampling. To explore the variation of
model performance due to sample size without oversampling, we randomly selected 50, 100, 200, and
400 samples per class for model training for the Gwangju area for the undersampling test.

Table 2. The number of ground reference points used for training (tr) and testing (te). The training
and test datasets were randomly divided 10 times with the ratio of sample size (~80:20) shown in the
table (* The number of the oversampled (ovr) data is the sum of the original (ori) training data and
perturbed data).

Class
Lake Tapps Concord Gwangju

tr te tr te tr te
ori ovr * ori ori ovr * ori ori ori

Barren 178 1000 44 132 1000 32 400 100
Cropland 120 1000 30 164 1000 40 400 100
Grassland 197 1000 49 197 1000 49 400 100

Water 244 1000 60 182 1000 45 400 100
Evergreen Forest 144 1000 36 120 1000 30 400 100

Mixed Forest 160 1000 40 160 1000 40 400 100
Deciduous Forest 160 1000 40 160 1000 40 400 100

High Impervious area 200 1000 50 205 1000 51 400 100
Low Impervious area 172 1000 43 170 1000 42 400 100

The overall process is described in Figure 4. The original and oversampled datasets were
transformed into various input formats according to the schemes of the SVM, RF, and CNN
(i.e., CNN-Polygon and CNN-Matrix) approaches. A total of 500 trees were used in RF and the
linear kernel with a cost value of 100 was used in SVM based on the grid search algorithm. In order
to compare different input representations of 2-D images, the line graph image approach [35] was
tested with the architecture of the CNN-Polygon model (hereafter, CNN-Line). The one-dimensional
CNN (CNN-1D) was also implemented to examine the differences between 1-D and 2-D inputs for
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pixel-level land cover classification. The structure of the CNN-1D model is based on [32]. CNN-1D was
optimized after testing several structures with 1-5 one-dimensional convolutional layers with 32–128
nodes, zero or multiple pooling layers with a stride of 2, and single or double fully connected layers
with 32-512 nodes. The final CNN-1D model consisted of a single 1-D convolutional layer, a single
pooling layer with a stride of 2, and a single fully connected layer with 500 nodes. A more detailed
explanation about CNN-1D structure can be found in [32]. Neighboring pixels are typically used to
improve land cover classification based on machine learning approaches, especially for CNNs [18].
A patch-based CNN (CNN-Patch) was also implemented to evaluate the results using a 11 × 11
window with neighboring pixels. To test CNN-Patch with the 11 × 11 × 28 input size (x, y, bands),
four convolutional layers were used with a 3 × 3 size of 32, 64, 128, and 64 kernels. Two fully
connected layers were also used with 256 and 16 nodes after convolutional layers. Since it is difficult to
incorporate neighboring pixels during the oversampling process, CNN-Patch was only conducted for
the Gwangju area, focusing on examining the effect of the sample size. Figure 5 shows the frequency
images of the line and polygon graphs, and mean and standard deviation values of the 2-D matrix
generated using the reference dataset.
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Figure 4. The process flow for the land cover classification. The spectral vectors extracted from seven
spectral bands of Landsat 8 for four seasons were applied to Support Vector Machine (SVM), random
forest (RF), and Convolutional Neural Network (CNN)-1D classifiers. The CNN-Line, CNN-Polygon,
and CNN-Matrix models used 2-D input images derived by transforming the spectral vector. CNN-Patch
used an 11 × 11 window including neighboring pixels. The size of the converted 2-D images was
100 × 100 for CNN-Line and CNN-Polygon, and 4 × 7 for CNN-Matrix. CNN-Patch has the 11 × 11 × 28
input size corresponding to rows × columns × bands of the patch.
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Figure 5. The range of the 2-D input features for nine land cover classes on (a) Lake Tapps, Washington,
(b) Concord, New Hampshire, and (c) Gwangju, Korea. The first and second rows show the rate
of occurrence of line and polygon graphs as density using the reference data. An area with a high
occurrence rate means that the majority of graphs were plotted over the area. A rate of 1 indicates that
every converted graph was plotted over an area, while a rate of 0 means no graph was plotted in that
area. The third and fourth rows show the normalized mean and standard deviation of the reflectance
for the 2-D matrix, respectively.

Overall accuracy (OA) [53] and standard Kappa coefficient [54] were used for model
assessment [55–57]. To statistically compare model performance with multiple datasets, Demšar [58]
and Garcia and Herrera [59] suggested the Wilcoxon paired rank test and Friedman test, which
are non-parametric. The Wilcoxon paired signed-rank test was used only when two models were
compared [60–62]. The Friedman test was used for the multiple model comparisons [63–65] since
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multiple testing potentially results in an increase of type I error. The significance level was calculated
based on the p-value derived from Friedman’s chi-square.

Sensitivity analysis was performed to understand how input features contribute to the models.
The basic idea was to measure how much the accuracy changes when each band is removed from the
model similar to the mean decrease accuracy in RF. Models whose inputs are reflectance values in
1-D (i.e., RF, SVM, CNN-1D) and 2-D (i.e., CNN-Matrix and CNN-Patch) were iteratively run with
a zero-filled band. The sensitivities of CNN-Line and CNN-Polygon were analyzed by occluding
each pixel on the 2D graph images with a zero-filled 7 × 7 window because the transformed 2D line
and polygon images with zero reflectance for the specific band could largely distort the converted
reflectance graphs. Occluded areas that corresponded to high drops in accuracy imply significant
contribution in distinguishing the particular class. The detailed process for generating occlusion
maps is depicted in Figure S1. The accuracy drop was normalized into the 0-1 per class, with higher
values indicating more contributing features. Generally, the discriminative localization [66] is used
to visualize the contributing area of input images in a CNN model. However, rather than using
discriminative localization, we iteratively occluded input images to maintain the basic concept of
measuring sensitivity (i.e., removing each band) to compare to other types of models used in this study.
Sensitivity analysis was conducted for models with the original training dataset for all study areas.

5. Results

5.1. Model Performance

The models developed with the 10 training datasets were evaluated using the resultant OA and
Kappa coefficient values of the test datasets (Figure 6). The average ranks for each OA and Kappa and
the p-values from Friedman’s test are summarized in Table 3. The p-values smaller than 0.05 in Table 3
indicate that the difference among models is significant.

Oversampled datasets from Lake Tapps and Concord improved the overall OA and Kappa
coefficients by about 1.0%-1.2 % and 0.01-0.02, respectively (Figure 6a–b and Figure S1a–b). The CNN
models with 1-D and 2-D matrix-based inputs, CNN-1D and CNN-Matrix, improved the model
performance over the other models after oversampling (Figure 6 and Figure S1). The CNN-Polygon
showed the highest average rank of OA and Kappa in the original dataset using about 150-200 samples
per class on Lake Tapps and Concord. The performance differences between CNN-Polygon, CNN-Line,
and RF were not large, showing that the significance levels were less than 90% confidence with the
original dataset (Figure 7a,c). After oversampling with around 1000 samples per class, the average rank
of CNN-Polygon was pushed back slightly (Table 3), but there is little difference between CNN-Polygon
and other newly ranked models (Figure 7b,d). In a previous study, Kim et al. [35] compared CNN-Line,
RF, and SVM for sites in Concord, New Hampshire, USA, and South Korea. They reported that the
CNN-Line model had better accuracy than RF for both study sites. However, the differences between
the models for the Concord site were not statistically significant according to the Cochran’s Q test and
McNamar’s test, while the South Korea site showed significant differences between models [35].

Undersampling was applied to the Gwangju dataset. As the number of samples per class increased
from 50 to 400, the average of the OA and Kappa coefficient gradually increased from 71.43% to 82.06%
and 0.64 to 0.77, respectively. The performance of CNN-Patch was worse than the other CNN models
with the per-pixel input, despite the rapid increase in model performance as the number of samples
increased (Figure 6c and Figure S1c). Neighboring pixel information has been contributed to enhance
model performances in previous CNN studies, but a small number of samples using CNN-Patch
tends to underperform compared to the other models in our results. The patch-based inputs seem to
need a large sample size since various neighboring environmental conditions should be considered.
The CNN-Polygon showed the best performance with 50 samples per class. CNN-Matrix and CNN-1D
yielded a similar performance with the CNN-Polygon as the number of samples per class increased.
The best performance for the CNN-Matrix and CNN-1D models peaked with 400 samples per class.
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Interestingly, unlike the graph image-based models (i.e., CNN-Line and CNN-Polygon), the
performance of the matrix-based CNN models (i.e., CNN-Matrix and CNN-1D) was improved when
the training sample size became larger. The CNN-Polygon performed significantly better than the
CNN-Line with the same CNN architecture, which demonstrates that model performance is impacted
by different graph image representation. CNN-Patch showed the lowest performance compared to the
other models when using a small number of samples but showed similar performance to RF and SVM
as the number of training samples increased.

Table 3. Average ranks from 10 datasets for 7 models (RF, SVM, CNN-Line, CNN-Polygon, CNN-Matrix,
CNN-1D, and CNN-Patch) and p-values calculated with Friedman’s tests. CNN-Patch was considered
only on Gwangju. In the table, ‘O’ indicates the original dataset, ‘OV’ represents the oversampled
dataset, ‘OA’ is the overall accuracy, and ‘Kappa’ is the standard Kappa coefficient. The highest average
rank is in bold.

Study
Site

Sample
Size

Metrics
RF SVM CNN-Line CNN-

Polygon CNN-Matrix CNN-1D CNN-Patch Friedman
Test

Average accuracy ranks p-value

Lake
Tapps

O
OA 3.20 4.35 2.45 1.00 4.25 5.75 N/A 1.29 × 10−7

Kappa 2.00 3.90 2.80 2.00 4.80 5.50 N/A 9.49 × 10−6

OV
OA 4.10 5.00 3.35 1.65 2.25 4.65 N/A 6.33 × 10−5

Kappa 2.00 4.80 4.40 2.90 3.40 3.50 N/A 0.0121

Concord

O
OA 2.90 4.60 2.60 1.25 5.25 4.40 N/A 3.78 × 10−6

Kappa 2.80 4.30 2.20 1.90 4.90 4.90 N/A 6.91 × 10−5

OV
OA 3.85 5.80 2.80 2.30 1.40 4.85 N/A 1.63 × 10−7

Kappa 3.50 5.50 2.30 2.90 2.40 4.40 N/A 4.51 × 10−4

Gwangju

50
OA 3.2 4.95 4.2 1.2 4.25 3.25 6.95 3.94 × 10−7

Kappa 2.7 4.9 4.3 1.3 4.6 3.4 6.8 5.67 × 10−7

100
OA 5 5.1 3.55 1.8 3.95 1.8 6.8 1.15 × 10−7

Kappa 4.9 4.9 3.9 2 3.6 1.9 6.8 8.35 × 10−7

200
OA 6.5 5 3.15 1.65 3.2 3.2 5.3 3.59 × 10−6

Kappa 6.6 5 3.3 2.3 2.9 2.7 5.2 9.72 × 10−6

300
OA 6.3 6.05 3.85 2.6 2.05 2.4 4.75 4.56 × 10−7

Kappa 6.3 6.2 3.1 3 2.8 2.4 4.2 6.04 × 10−6

400
OA 5.65 6.4 3.3 3.6 2.15 1.3 5.6 1.00 × 10−8

Kappa 5.7 6.2 3.1 3.7 2.1 1.5 5.7 3.22 × 10−8
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CNN-Matrix, CNN-1D, and CNN-Patch. Overall accuracies are calculated for (a) Lake Tapps (b) 
Concord, and (c) Gwangju. The Lake Tapps and Concord models were trained using original (O) and 
oversampled (OV) datasets while the Gwangju models were trained using datasets of 50, 100, 200, 
300, and 400 samples per class. Dotted red lines indicate the average performance of all models over 
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Figure 6. Box plots of overall accuracy for the seven models: RF, SVM, CNN-Line, CNN-Polygon,
CNN-Matrix, CNN-1D, and CNN-Patch. Overall accuracies are calculated for (a) Lake Tapps (b)
Concord, and (c) Gwangju. The Lake Tapps and Concord models were trained using original (O) and
oversampled (OV) datasets while the Gwangju models were trained using datasets of 50, 100, 200, 300,
and 400 samples per class. Dotted red lines indicate the average performance of all models over each
number of samples.



Remote Sens. 2020, 12, 1097 13 of 28Remote Sens. 2020, 12, x FOR PEER REVIEW        13 of 28 

 

 
Figure 7. Significance levels based on the Wilcoxon signed-rank tests between models calculated for Lake Tapps, Concord, and Gwangju. Each matrix has four colors: red 
(significant at the 99% confidence level), orange (significant at the 95% confidence level), yellow (significant at the 90% confidence level), and white (not significant at the 
90% confidence level). Areas over the diagonal denote significance levels for the overall accuracy. Areas under the diagonal show significance levels for the standard kappa 
coefficients. (a) the original dataset of Lake Tapps, (b) the oversampled dataset of Lake Tapps, (c) the original dataset of Concord, (d) the oversampled dataset of Concord, 
and the Gwangju datasets with (e) 50 samples per class, (f) 100 samples per class, (g) 200 samples per class, (h) 300 samples per class, and (i) 400 samples per class. 

Figure 7. Significance levels based on the Wilcoxon signed-rank tests between models calculated for Lake Tapps, Concord, and Gwangju. Each matrix has four
colors: red (significant at the 99% confidence level), orange (significant at the 95% confidence level), yellow (significant at the 90% confidence level), and white (not
significant at the 90% confidence level). Areas over the diagonal denote significance levels for the overall accuracy. Areas under the diagonal show significance levels
for the standard kappa coefficients. (a) the original dataset of Lake Tapps, (b) the oversampled dataset of Lake Tapps, (c) the original dataset of Concord, (d) the
oversampled dataset of Concord, and the Gwangju datasets with (e) 50 samples per class, (f) 100 samples per class, (g) 200 samples per class, (h) 300 samples per class,
and (i) 400 samples per class.
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5.2. Sub-Class Analysis with Land Cover Classification Maps

Land cover classification maps were produced using the models that had the most frequent highest
overall accuracies (Figures S2–S4). We further analyzed confusion in the classification focusing on a
few classes that were problematic—barren vs. high impervious area and crop vs. low impervious area.

It is sometimes hard to distinguish among vegetation, barren, and built-up areas because of
the confusing spectral response pattern [67]. Figure 8 shows a subset of the land cover maps for
the Lake Tapps region that highlights a construction area. The highlighted area within a red circle
in Figure 8 should be classified as a barren class as shown in the Google Earth image. The RF and
CNN-1D models generally classified the construction material as a high impervious area, while the
SVM model classified the plant as a high or low impervious area and grassland. The CNN models
with the transformation (i.e., CNN-Line, CNN-Polygon, and CNN-Matrix) more consistently classified
the construction material plant as barren, with fewer pixels misclassified as high impervious area.

Cropland is a challenging land cover class due to changes in cover associated with different crop
cycles (i.e., phenology), the spectral similarity with grassland, and heterogeneity of the landscape [68].
In the present study, the polygon graph image for the cropland class shape that is more similar to
the low impervious class than grassland (Figure 5). The higher near-infrared reflectance in grassland
compared to cropland makes the two classes rather distinguishable. Additional confusion arises
because the low impervious areas generally contain a mixture of cover types frequently including
some vegetation (e.g., trees, shrub, and grass). Figure 9 shows the clear misclassification between
cropland and low impervious area. Cropland is well classified in CNN-Line, CNN-Polygon, and
CNN-Matrix, whereas misclassified in RF, SVM, and CNN-1D. When the oversampled dataset was
adopted, CNN-1D showed slightly reduced misclassification between cropland and low impervious,
but SVM misclassified cropland as grassland. The center of the land cover subset shown in Figure 10
highlights a cropland region in Gwangju. The CNN-Patch model most often confused cropland with
impervious areas when using the smallest number of training data, while the CNN-Polygon classified
cropland well. As the number of training samples increased, most models correctly classified the region
as cropland. Kim et al. [35] reported that CNNs sometimes struggled to classify natural grasslands,
forests, and croplands using just summer and winter data.
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The top left image is the land cover map for the study area generated with the CNN-Polygon model. 
The middle left image is a Google Earth image taken on 20th April 2015. An area of significant 
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Figure 8. Subset of land cover maps for a construction material mill using the six models in the
Lake Tapps region: RF, SVM, CNN-Line (Line), CNN-Polygon (Poly), CNN-Matrix (Matrix), CNN-1D
(1D). The top left image is the land cover map for the study area generated with the CNN-Polygon
model. The middle left image is a Google Earth image taken on 20th April 2015. An area of significant
misclassification is marked in a dotted red circle.
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Figure 9. Subset of the land cover maps for a cropland site using the six models in the Concord region:
RF, SVM, CNN-Line (Line), CNN-Poly (Poly), CNN-Matrix (Matrix), CNN-1D (1D). The top left image
is the entire land cover map with the CNN-Poly model. The middle left image is a Google Earth image
taken on 27 September 2015. An area of significant misclassification is marked in a dotted red circle.
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was used for Lake Tapps and Concord. This result agreed with Kim et al. [35], who used a graph-
based CNN model very similar to CNN-Line in this study for land cover classification. CNN-Polygon 
also resulted in the highest performance when the sample size was less than 200 for Gwangju. This 
implies that the graph-based CNNs can yield successful classification results with a small training 
sample size, unlike recent CNN-based land cover classification studies that used large datasets with 
hundreds to thousands of training samples per class [18,19,31,36,64]. As the sample size increased, 
the performance of matrix-based models (i.e., CNN-Matrix and CNN-1D) increased to similar or 
slightly higher levels than the graph image-based models. The transformation from spectral 
reflectance values to a graph image could make the input variables less sensitive to small changes of 
reflectance values in contrast to the matrix-based models that directly use reflectance values. Such a 

Figure 10. Subset of the land cover maps for a cropland and impervious sites using the seven
models in the Gwangju region: RF, SVM, CNN-Line (Line), CNN-Poly (Poly), CNN-Matrix (Matrix),
CNN-1D (1D), CNN-Patch (Patch). The top left image is the entire land cover map with the CNN-Poly
model. The middle left image is a Google Earth image taken on 6 May 2019. An area of significant
misclassification is marked in a dotted red circle.

6. Discussion

6.1. Model Type, Sample Size, and Performance

This study compared classification models with different input types (i.e., spectral vector-based,
graph image-based, matrix-based, and patch-based) focusing on model performance and the effect of
training sample size. Among different input types, the graph image-based models (i.e., CNN-Line and
CNN-Polygon) showed higher performance than the others models when the original dataset was
used for Lake Tapps and Concord. This result agreed with Kim et al. [35], who used a graph-based
CNN model very similar to CNN-Line in this study for land cover classification. CNN-Polygon also
resulted in the highest performance when the sample size was less than 200 for Gwangju. This implies
that the graph-based CNNs can yield successful classification results with a small training sample size,
unlike recent CNN-based land cover classification studies that used large datasets with hundreds to
thousands of training samples per class [18,19,31,36,64]. As the sample size increased, the performance
of matrix-based models (i.e., CNN-Matrix and CNN-1D) increased to similar or slightly higher levels
than the graph image-based models. The transformation from spectral reflectance values to a graph
image could make the input variables less sensitive to small changes of reflectance values in contrast to
the matrix-based models that directly use reflectance values. Such a characteristic seemed to affect the
improvement rate of the model performance as the number of training samples increased. When it
came to the patch-based input (i.e., CNN-Patch) that consider neighboring pixels, the performance was
significantly lower even with more information than the other single-pixel based models, especially
with a small training dataset (less than 200 per class) for Gwangju. Not only the high variation of
reflectance data in neighboring pixels but also mixed land cover classes with small patches within the
spatial resolution of 30 m seemed to make it difficult to build a robust patch-based model without a
massive amount of data [55,69,70].
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CNN-Polygon performed better than CNN-Line for all study areas when applied with the same
input size, hyperparameter, and CNN structure (Table 3 and Figure 7). This implies that the transformed
polygon graph images appear to be more intuitive than the line graph images in a CNN framework.
Interestingly, as the training sample size increased, the performance difference between CNN-Polygon
and CNN-Line decreased, indicating that CNN-Line was slightly more sensitive to the training sample
size than CNN-Polygon. On the other hand, the performance of CNN-Matrix and CNN-1D sharply
increased as the training sample size increased. While CNN-Matrix generally performed better than
CNN-1D for Lake Tapps and Concord, their performance for Gwangju were similar regardless of the
training sample size (Figure 7, Table 3). Since there is a structural difference between CNN-Matix and
CNN-1D (i.e., multiple rows by season vs. one-dimensional vectors), further investigation is needed to
identify how such different structures affect the classification results.

6.2. Sensitivity Analysis

We performed a sensitivity analysis for each model to see how band importance might change
when the same data were transformed into different input feature types. The normalized sensitivity
of CNN-Matrix and CNN-Patch can be directly compared to those of RF, SVM, and CNN-1D, unlike
CNN-Line and CNN-Polygon. For this reason, occlusion maps for CNN-Line and CNN-Polygon are
shown in Figures 11–13 while the normalized sensitivity for RF, SVM, CNN-Matrix, and CNN-1D are
shown in Figures 14–16 separately. The sensitivity analysis of CNN-Patch for Gwangju is described in
Figure 16.

Figures 11 and 14 show the occlusion maps for the graph and matrix-based CNN models and the
sensitivity analysis results for Lake Tapps, respectively. Similarly, Figures 12 and 15 depict the occlusion
maps and sensitivity results for Concord, and Figures 13 and 16 are for Gwangju. The sensitivity
of input variables varied by model depending on the input feature type, algorithm, and study area.
Nonetheless, some common characteristics were found among the models. The barren class showed
the highest sensitivity in the summer near-infrared (NIR) band (band 5) for both study areas. In the
CNN-Line and CNN-Polygon models, there was no accuracy drop in the occlusion maps for the water
class at either study site, while the other models showed some variation in the sensitivity results. This
indicates that the graph-based two-dimensional input data format may provide more reliable and
stable learning than the matrix-based ones.

Even with the same CNN structure, the CNN-Line and CNN-Polygon models showed different
input variable sensitivity. For example, for the cropland class at Lake Tapps, the CNN-Polygon had
high sensitivity to summer NIR and winter visible bands, while the CNN-Line had high sensitivity
only to the winter visible bands. On the other hand, the CNN-Line showed high sensitivity over spring
NIR and summer visible/NIR bands for the grassland class in Concord, while the CNN-Polygon had
no significant sensitivity. This implies that the contributing bands for classification can be different
depending on the type of input features in two-dimensional CNNs. Forest-related classes showed a
high sensitivity to NIR to SWIR bands for all three study sites. This corresponds to previous studies
that show NIR bands play a key role in forest class classification [71,72]. The pattern of forest classes
in Gwangju shows a clear sensitivity of band 5 (i.e., 0.85-0.88 µm) when compared to Lake Tapps
and Concord sites. This might imply there is sensitivity variation over different phenology. High
impervious areas had a high variance in most models since the mixed samples of dark impervious
surfaces (e.g., asphalt and parking lot) and bright impervious surfaces (e.g., concrete, rooftop, and
metal) caused large standard deviations of surface reflectance values. This makes it difficult to classify
a high impervious area, resulting in confusion with barren and low impervious areas. As mentioned
above, it should be noted that while input features came from the same reference dataset, important
and contributing attributes were examined through different methods by the model. Thus, qualitative
interpretation of results is more appropriate than quantitative.
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Figure 11. Occlusion maps of 9 land cover classes at Lake Tapps from (a) CNN-Line model and
(b) CNN-Polygon model. Red color indicates decreased accuracy for the occluded area, which indicates
more contributing features. The grey-scale background image represents the frequency of the original
dataset per class. Vertical lines (CNN-Line) and cross lines (CNN-Polygon) separate the four seasons.
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Figure 12. Occlusion maps of 9 land cover classes at Concord from (a) CNN-Line model and
(b) CNN-Polygon model. Red color indicates a more decreased accuracy by the occluded area,
which indicates more sensitive (i.e., contributing) features. The background image with grey scale
represents the frequency of the original dataset per class. Bold vertical lines (CNN-Line) and cross lines
(CNN-Polygon) indicate four seasons.
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Figure 13. Occlusion maps of 9 land cover classes at Gwangju from (a) CNN-Line model and
(b) CNN-Polygon model. Red color indicates greater accuracy decreases by an occluded area, which
indicates more sensitive (i.e., contributing) features. The background image with grey scale represents
the frequency of the original dataset per class. Bold vertical lines (CNN-Line) and cross lines
(CNN-Polygon) indicate four seasons.
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CNN-1D) in Lake Tapps. The magenta color indicates that an attribute contributes more to the models.
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6.3. Novelty and Limitations

In this study, through a series of classifications for three study sites, we found that: (1) The proposed
CNN-Polygon approach works well for land cover classification even when the number of training
samples is very small, and (2) the proposed CNN-Matrix performs well when multi-temporal data
are used for classification and the training sample size is relatively large. In particular, this study
showed that the types (and structures) of input features are a critical consideration of CNN-based
classification [73,74]. More visually intuitive input features tend to increase the classification accuracy
even when training data are limited.

However, there are several limitations in this study. Many studies [32,75] reported higher
classification accuracy when using multi-seasonal data than single images, especially better performance
for classifying vegetation classes (e.g., forests and croplands) that have high inter-class spectral
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variability over time. However, seasonality might make it difficult to classify some other classes, such
as inland water, due to the temporal difference of the water boundary. The seasonal sensitivity of
classes should be carefully considered when constructing input features from multi-temporal data.
Especially for the graph-based CNNs proposed in this study, how to connect multi-temporal data
in a graph should be further examined. The transferability of the proposed approaches is another
limitation. Although the proposed approaches were evaluated over three study sites, they should
be tested more extensively over large areas with different sensor data to ensure their generalization.
The relatively high computational cost of the graph-based CNNs compared to the matrix-based CNNs
is another limitation, which requires further examination [35].

7. Conclusions

This study proposed two novel CNN frameworks by transforming spectral information into 2-D
graph and matrix (i.e., CNN-Polygon and CNN-Matrix) data for use as input features. The proposed
CNN approaches were compared to other types of CNNs—CNN-Line, CNN-1D, and CNN-Patch—and
vector-based machine learning approaches (i.e., RF and SVM). The proposed CNN-Polygon resulted in
better performance than the others, producing overall accuracies of 93%-95 % for both Concord and
Lake Tapps and 80%-84% for Gwangju. The CNN-Polygon had a particular performance advantage
when the training sample size was small (i.e., less than 200 per class), while CNN-Matrix resulted in
similar or higher performance as the training sample size became larger. The graph-based CNN models
could be applied for various classification fields where reference data are very limited. While some
common contributing variables were found for specific classes (e.g., NIR for forests) for all approaches,
the overall patterns of the contributing variables were different by model even when all input features
came from the same dataset. The two proposed approaches (i.e., CNN-Polygon and CNN-Matrix)
are pixel-based ones through the conversion of spectral vectors into two dimensional features. Given
that most CNNs applied for land cover classification in the literature have used spatial contextual
information, the proposed CNN frameworks can be further improved through the incorporation of
such contextual data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/7/1097/s1,
Figure S1. The sensitivity analysis results of CNN-Line and CNN-Polygon using occlusion maps. To assess the
contribution of each part of a graph, a moving window occludes the sub-area of the 2-D graph by zero-filling.
The colorful legend indicates the normalized accuracy drop per class. The grey-scaled legend shows the occurrence
rate of each graph, same as Figure 5. Figure S2. Box plots of Kappa for the seven models: RF, SVM, CNN-Line,
CNN-Polygon, CNN-Matrix, CNN-1D, and CNN-Patch. Kappa coefficients are calculated for (a) Lake Tapps
(b) Concord, and (c) Gwangju. The Lake Tapps and Concord models were trained using original (O) and
oversampled (OV) datasets, while the Gwangju models were trained using datasets of 50, 100, 200, 300, and 400
samples per class. Dotted red lines indicate the average performance of all models over each number of samples.
Figure S3. Land cover maps for the Lake Tapps study site: (a) Random Forest (RF), (b) Support Vector Machine
(SVM), (c) Convolutional Neural Network with the Line graph image (CNN-Line), (d) Convolutional Neural
Network with the Polygon graph image (CNN-Polygon), (e) Convolutional Neural Network with two-dimensional
Matrix (CNN-Matrix), and (f) Convolutional Neural Network with one-dimensional vector (CNN-1D). Figure S4.
Land cover maps for the Concord study site: (a) Random Forest (RF), (b) Support Vector Machine (SVM),
(c) Convolutional Neural Network with the Line graph image (CNN-Line), (d) Convolutional Neural Network
with the Polygon graph image (CNN-Polygon), (e) Convolutional Neural Network with two-dimensional
Matrix (CNN-Matrix), and (f) Convolutional Neural Network with one-dimensional vector (CNN-1D). Figure S5.
Land cover maps for the Gwangju study site: (a) Random Forest (RF), (b) Support Vector Machine (SVM),
(c) Convolutional Neural Network with the Line graph image (CNN-Line), (d) Convolutional Neural Network
with the Polygon graph image (CNN-Polygon), (e) Convolutional Neural Network with two-dimensional Matrix
(CNN-Matrix), and (f) Convolutional Neural Network with one-dimensional vector (CNN-1D), (g) Convolutional
Neural Network with traditional Patch-based image including neighboring pixels (CNN-Patch).
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