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Abstract: Understanding the spatial distribution of soil organic carbon (SOC) content over different
climatic regions will enhance our knowledge of carbon gains and losses due to climatic change.
However, little is known about the SOC content in the contrasting arid and sub-humid regions of Iran,
whose complex SOC–landscape relationships pose a challenge to spatial analysis. Machine learning
(ML) models with a digital soil mapping framework can solve such complex relationships. Current
research focusses on ensemble ML models to increase the accuracy of prediction. The usual ensemble
method is boosting or weighted averaging. This study proposes a novel ensemble technique: the
stacking of multiple ML models through a meta-learning model. In addition, we tested the ensemble
through rescanning the covariate space to maximize the prediction accuracy. We first applied six
state-of-the-art ML models (i.e., Cubist, random forests (RF), extreme gradient boosting (XGBoost),
classical artificial neural network models (ANN), neural network ensemble based on model averaging
(AvNNet), and deep learning neural networks (DNN)) to predict and map the spatial distribution
of SOC content at six soil depth intervals for both regions. In addition, the stacking of multiple ML
models through a meta-learning model with/without rescanning the covariate space were tested
and applied to maximize the prediction accuracy. Out of six ML models, the DNN resulted in the
best modeling accuracies, followed by RF, XGBoost, AvNNet, ANN, and Cubist. Importantly, the
stacking of models indicated a significant improvement in the prediction of SOC content, especially
when combined with rescanning the covariate space. For instance, the RMSE values for SOC content
prediction of the upper 0–5 cm of the soil profiles of the arid site and the sub-humid site by the
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proposed stacking approaches were 17% and 9% respectively, less than that obtained by the DNN
models—the best individual model. This indicates that rescanning the original covariate space
by a meta-learning model can extract more information and improve the SOC content prediction
accuracy. Overall, our results suggest that the stacking of diverse sets of models could be used to
more accurately estimate the spatial distribution of SOC content in different climatic regions.

Keywords: digital soil mapping; machine learning models; stacking of models; spatial block
cross-validation; deep learning

1. Introduction

Soil organic carbon (SOC) storage is a key function of soils, influencing soil physicochemical
properties [1,2], e.g., soil water storage capacity, nutrient holding capacity, and infiltration rate. As the
world’s soils contain more organic carbon than the atmosphere and the biosphere together, soils are
considered to be a crucial pool in the global carbon cycle [3]. Thus, accurate information on the spatial
distribution of SOC is vital to estimate and predict greenhouse gas emissions and physicochemical
functions of soils [4,5]. Such information is most important in arid and semi-arid areas where soils
tend to have low levels of organic carbon [6,7] compared to the humid region. These sensitive
and fragile ecosystems are less resilient against climate change and, therefore, more vulnerable to
desertification [8,9].

Legacy soil maps based on traditional soil mapping approaches are the most common sources for
acquiring data and information on soils in Iran [9]. The qualitative nature and coarse scales of the
available maps make these maps impractical for quantitative studies and a detailed understanding of
the spatial variations of soil properties [10–12]. Furthermore, traditional soil mapping approaches are
time-consuming and expensive [13]. Digital soil mapping approaches based on the scorpan concept [14]
have become a standard approach to generate new soil data to overcome the limitations arising from
the legacy soil maps. Digital soil mapping provides a quantitative-empirical framework for predicting
soil properties and classes from spatially referenced covariates using appropriate machine learning
(ML) models [5].

Several ML models have successfully linked SOC to environmental covariates to extrapolate SOC
to unknown locations [15–29]. Some of the most popular models are multivariate regression, classical
artificial neural networks [13], support vector regression [20], regression trees [17,20], and random
forests [15,20,30]. Recently, deep neural networks based on deep learning approaches were used to
solve highly complex soil–landscape problems [31–34]. Padarian et al. [33] and Wadoux et al. [34]
predicted and mapped SOC in Chile and France respectively, using deep learning methods.

One commonly applied technique to improve the predictive capacity and to decrease the variance
of the individual ML model is the ensemble model—bagging, boosting, and stacking approach [35].
Bagging is a simple and very powerful ensemble method. It generates m new training sets and then m
models are fitted to the datasets. Their prediction results are combined by averaging the output or
voting. Boosting refers to a group of algorithms that use weighted averages to turn weak learners into
stronger learners. Other ensemble techniques include model averaging [36,37].

The stacking approaches combine different types of models (lower level) through a meta-learning
model (higher level) to maximize the generalization accuracy [38]. Unlike bagging, boosting, and
averaging methods, stacking ensemble modeling is rarely explored in digital soil mapping. Nevertheless,
stacking often performs better than all individual models, especially when combined with rescanning
the original covariate space [39]. For instance, Tajik et al. [40], Zhou et al. [41], and Chen et al. [42]
recently evaluated the efficacy of the ensemble models—by averaging the model predictions—to
predict the spatial variation of soil properties in Iran, China, and France, respectively.
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Although different ML models were implemented in order to predict and map SOC [5], their
performances are inconsistent in various SOC studies. To the best of our knowledge, there is no study
to conduct digital mapping of SOC content using stacking approaches in different climatic conditions.
Thus, the authors suggest combining the ML models with the rescanning of the original covariate space
to explore if it works better than the standard stacking of individual models. Furthermore, so far, only
a few studies have used deep learning models for digital soil mapping, with the notable exceptions of
References [31,33,34], and a comparison with other models is still needed. This study therefore fills
a void related to digital soil mapping applications of deep learning methods. Finally, there is a lack
of understanding concerning the prediction of SOC content under different climatic regimes in Iran,
which has a vast territory and diverse climates. Most studies conducted on SOC content in Iran only
consider a single climatic influence [7,22,30].

Hence, the main objective of this study is to evaluate and compare stacking ensemble approaches
with six ML models in order to predict and map the spatial distribution of SOC content for two areas
with contrasting climate (i.e., arid and sub-humid) in Iran. The models include Cubist, random forests
(RF), extreme gradient boosting (XGBoost), classical artificial neural network models (ANN), neural
network ensemble based on model averaging (AvNNet), as well as deep learning neural networks
(DNN). We further tried to identify the controlling factors of the spatial distribution patterns of SOC
content in the contrasting climatic conditions, which has rarely been reported in Iran.

2. Materials and Methods

2.1. Study Sites

This study was conducted at two sites located in central (Yazd province) and northern (Gilan
province) Iran (Figure 1a). The study sites comprise two diverse climatic regions (Figure 1b), which
are arid in Yazd province and sub-humid in Gilan province [43]. The general climate conditions of
selected sites are presented in Table 1.
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Table 1. Study sites and data collection details.

Site Names Area (km2) Soil Types Climate
Conditions

Precipitation
(mm/year) Elevation (m) Samples (no.)

Arid site 720 Solonchaks, Gypsisols
and Regosols Arid 75 944–1944 154

Sub-Humid
site 3000

Kastanozems,
Cambisols and
Chernozems

Sub-Humid 1200 –26–700 99
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The arid site is located in the Yazd province in central Iran and covers 720 km2. The average
annual precipitation, temperature, and annual potential evaporation are 75 mm, 18.5 ◦C, and 3483 mm,
respectively. The soil moisture and temperature regimes are aridic and thermic [43,44]. The elevation
ranges from 944 to 1944 m above sea level. The main land use types consist of cropland (pistachio
nuts and wheat) and grassland. The major physiographic units from East to West are alluvial fans,
coalescing alluvial fans (bajadas), salt plains, and gypsiferous hills. The predominant soils in the
study area [43,44] are Solonchaks with ~40%, Gypsisols with ~40%, and Regosols with ~20% of the
area [43,44].

The sub-humid site is located in the Gilan province in northern Iran and covers 3000 km2.
The climate is sub-humid, and the average annual precipitation, temperature, and annual potential
evaporation are 1200 mm, 15.6 ◦C, and 796 mm, respectively. The soil moisture and temperature
regimes are udic and thermic [43]. The elevation ranges from −26 to 700 m above sea level. The main
land use types consist of cropland (rice) and forest (oak, beech, and elm). Except for the southern
parts of the study area, where piedmonts and hills dominate, the topography of the area is mainly
flat. Predominant soils of the study area [43] are Kastanozems with ~70%, Cambisols with ~25%, and
Chernozems with ~5% of the area.

2.2. Data Collection and Soil Sample Analysis

For the purpose of digital soil mapping, a well-distributed sample set is needed. We used the
conditioned Latin Hypercube Sampling, which provides an optimal stratification of the covariate
space [45,46], to select representative sample locations based on the covariates [47–52]. We selected
a total of 154 and 99 soil profiles for the arid and sub-humid sites, respectively. Soil samples were
collected from the genetic horizons of each profile down to a depth of 2 m. Air-dried soil samples were
ground and sieved (<0.5 mm), and the SOC content (%) was determined by wet oxidation [53].

Sampling by genetic horizons means that samples do not come from consistent depth intervals
in all locations. Therefore, we used an equal-area spline function [54] to harmonize SOC data and
estimate the vertical variation of SOC content. The equal-area spline function was fitted to each profile.
Then, the values of SOC content were obtained by the integration of the splines to the defined depth
intervals. We estimated the SOC at six depth intervals of 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200
cm, in accordance with the standard depths specified by the GlobalSoilMap project [55].

2.3. Covariates Used for the Development of ML Models

We used a set of 28 covariates (Table 2) as predictors [5,14] representing potential environmental
drivers of the spatial and vertical distribution of SOC content. Based on the understanding of the factors
affecting the SOC content distribution in the two study areas [7,22,50] and literature reviews [5,56],
the covariates were obtained and derived from a digital elevation model (DEM) and remotely sensed
satellite data.

The Shuttle Radar Topography Mission (SRTM) DEM with a resolution of 30 × 30 m was used for
the terrain analysis [57]. The DEM was preprocessed to fill the sinks and pits before ten terrain attributes
were calculated (Table 2) using SAGA GIS (System for Automated Geoscientific Analyses) [58]. These
are elevation, wetness index, catchment area, catchment slope, multi-resolution valley bottom flatness
index, valley depth, plane curvature, profile curvature, general curvature, and total insolation.

The remote sensing (RS)-based covariates were derived and calculated based on the median values
of 127 cloud-free Landsat-8 [59] and Sentinel-2 [60] images taken during 2016 under clear and dry
weather conditions during the spring/summer season using the Google Earth Engine environment [61].
In general, we used six spectral bands of Landsat-8 (B2, B3, B4, B5, B6, and B7) and ten spectral bands
of Sentinel-2 (B2, B3, B4, B5, B6, B7, B8, B8a, B11, and B12), respectively [47,48]. Additionally, we
calculated the normalized difference vegetation index (NDVI) using spectral bands of both Landsat-8
and Sentinel-2 [62–64].
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All covariates were rescaled using Z-score standardization and resampled in order to have similar
scale and the same cell size of 30 × 30 m.

Table 2. Covariates used for the development of machine learning (ML) models.

No. Definition Abbreviation

Terrain-based covariates
1 Elevation Elev
2 Wetness Index WI
3 Catchments area Ca.Area
4 Catchment Slope Ca.Slop
5 Multi-resolution Valley Bottom Flatness Index MrVBF
6 Valley Depth Vally.D
7 Plane Curvature Pl.Cur
8 Profile Curvature Pr.Cur
9 General Curvature Ge.Cur
10 Total Insolation To.In

Remote Sensing-based covariates
11 Blue band of Landsat-8 (0.482 µm) B2.L
12 Green band of Landsat-8 (0.561 µm) B3.L
13 Red band of Landsat-8 (0.654 µm) B4.L
14 Near infrared band of Landsat-8 (0.864 µm) B5.L
15 Shortwave Infrared-1 band of Landsat-8 (1.608 µm) B6.L
16 Shortwave Infrared-2 band of Landsat-8 (2.200 µm) B7.L
17 Blue band of Sentinel-2 (0.490 µm) B2.S
18 Green band of Sentinel-2 (0.560 µm) B3.S
19 Red band of Sentinel-2 (0.665 µm) B4.S
20 Vegetation Red Edge of Sentinel-2 (0.705 µm) B5.S
21 Vegetation Red Edge of Sentinel-2 (0.740 µm) B6.S
22 Vegetation Red Edge of Sentinel-2 (0.783 µm) B7.S
23 Near infrared band of Sentinel-2 (0.842 µm) B8.S
24 Vegetation Red Edge of Sentinel-2 (0.865 µm) B8a.S
25 Shortwave IR-1 band of Sentinel-2 (1.610 µm) B11.S
26 Shortwave IR-2 band of Sentinel-2 (2.190 µm) B12.S
27 Normalized difference vegetation index (Landsat-8 based) NDVI.L
28 Normalized difference vegetation index (Sentinel-2 based) NDVI.S

2.4. Covariate Selection

In this study, the Boruta algorithm [65] was implemented with the random forests (RF) classifier
in the R statistical package [66] to rank the most important covariates for predicting SOC content at six
depths. The algorithm consists of the following steps:

i. The covariate space is extended by adding randomly permuted existing covariates (pC) in
order to remove their correlation with SOC content,

ii. A RF prediction using the extended covariate space (i.e., covariates and permuted covariates) is
performed to predict SOC content at six standard depths,

iii. The Z-score, which is an indicator of the importance of all covariates, is computed,
iv. The maximum Z-score (MZSA) among the pC’s is defined,
v. A hit is assigned to all covariates that scored better than MZSA,
vi. A two-test of equality is performed for undetermined important covariates,
vii. The original covariates are respectively flagged as “unimportant” or “important” if they have

significant lower or higher scores than MZSA,
viii. All permuted covariates are removed,
ix. Repeating the procedure.

In this study, based on Z-score values [67], we grouped the ability of covariates to explain SOC
content variability into 4 classes: weakly relevant (Z < 5), slightly relevant (5 < Z < 10), moderately
relevant (10 < Z < 15), and relevant (Z > 15).
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2.5. Stacked Generalization

Stacked generalization or simply stacking is an ensemble approach that combines the outcomes of
different ML models in a single model to maximize the generalization accuracy [35,37]. Usually, as
illustrated in Figure 2, there are two levels in a stacking framework: level 0 and level 1, consisting of
several base models and one meta-learning model. Meta-learning models in level 1 use the prediction
of the response variables that are estimated by several base models in level 0 in order to generate a final
prediction. In other words, the model in level 1 learns with the predictions of the models of level 0.
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Figure 2. General framework of stacking approaches used in this study. (a) Cubist/Random Forests
(RF)/extreme gradient boosting (XGBoost)/classical artificial neural network models (ANN)/neural
network ensemble based on model averaging (AvNNet)/deep learning neural networks (DNN) + least
absolute shrinkage and selection operator (LASSO); Stack1; (b) Cubist/RF/XGBoost/ANN/AvNNet/DNN
+ support vector regression (SVR); Stack2; (c) Cubist/RF/XGBoost/ANN/AvNNet/DNN + LASSO +

rescan mode; Stack3; (d) Cubist/RF/XGBoost/ANN/AvNNet/DNN + SVR + rescan mode; Stack4.

In this study, we used six ML models (Cubist, RF, XGBoost, ANN, AvNNet, and DNN) in level 0.
Conventionally, the meta-learning model in level 1 is based on a weighted average method or a linear
regression model [36,37]. In this study, we applied two new meta-learning models (least absolute
shrinkage and selection operator (LASSO) and support vector regression (SVR)) in level 1.

Furthermore, we introduced two modes of stacking: the standard mode (Stack1 and Stack2) and
the rescan mode (Stack3 and Stack4), as shown in Figure 2 [68]. Special attention should be given to
the fact that in the rescan mode, we allow the model in level 1 (LASSO and SVR) to learn again from
the original covariate space in order to extract some missing information. Practically, in the standard
mode, we used the predicted SOC contents of individual models (Level 0: such as RF and ANN) as
the predictor variables for meta-learning models (Level 1: such as LASSO and SVR). In the rescan
mode, we used both the primary covariates (such as NDVI and MrVBF) and predicted SOC contents of
individual models (Level 0: such as RF and ANN) as the predictor variables for meta-learning models
(Level 1: such as LASSO and SVR). In summary, we tested four stacking approaches. A more detailed
account of models used in level 0 and level 1 is given in the following sections.

2.5.1. The Individual ML Models in Level 0

Cubist [69] is an extension of the M5 algorithm. It is similar to common regression trees, but the
terminal nodes contain linear least square models of covariates used in the previous intermediate
node [70] rather than discrete values. Also, there are intermediate linear least squares models at each
step of the tree, which are used to adjust the final prediction. Cubist uses “if–then” rules to partition
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the training data [71]. Whenever the conditions of a rule are satisfied, the associated linear least square
model is used to predict the response [72].

RF [73] is an ensemble technique based on the well-known classification and regression tree
approach (CART). The ensemble is generated by averaging several trees based on different bootstrap
sample sets selected from the training data. Further, only a random subset of covariates is evaluated at
each node. RF with a large number of trees is robust against overfitting, noise, as well as non-informative
and correlated features. RF has been used in various DSM studies over the past decade [74–76] and for
many other environmental problems [77]. Extreme gradient boosting (XGBoost) [78] is also a tree-based
ensemble method. However, instead of independent trees and averaging the individual predictions, the
XGBoost creates a number of decision trees sequentially. The trees are generated by using the residuals
or prediction errors of the previous tree model, thus the algorithm focuses more on samples with higher
uncertainty. Finally, all generated models are added together to calculate the outcome [79].

The most common ANNs, also known as multi-layer perceptron (MLP), consist of three layers,
i.e., an input layer, a hidden layer, and an output layer. Each hidden unit combines all input units of
the input layer, where all connections are associated with a weight. Further, an activation function
is applied to the sum of weighted unit inputs. The output layer is calculated the same way as the
hidden units, but with input from the hidden units. For the MLP with one hidden layer, we used the
sigmoid function as the activation function in nnet package [80,81]. The network was trained through
back-propagation using the Levenberg–Marquardt algorithm with 150 iterations [82].

AvNNet is similar to MLP, but multiple neural network models with the same topology are used
to predict the response. The models can be different either due to different random number seeds to
initialize the network or by fitting the models on bootstrap samples of the original training set (i.e.,
bagging the neural network). All the resulting models are used for prediction [81]. For regression,
the outputs from each network are averaged [83]. The idea behind AvNNet is that we usually train
different ANN models for the same problem in order to figure out the best model that produces the
best validation statistics. However, instead of choosing the best model, it is possible to combine all
models in order to improve the generalization power of a single neural network [84]. In this study, we
used the AvNNet model [80,81] in the Caret package [85]. We note that the tuning parameters used for
MLP were kept the same for AvNNet.

Deep learning neural networks (DNN) use the MLP structure, but have more hidden layers
and a more hierarchical structure [86]. DNNs with multiple hidden layers, as shown in Appendix A
(Figure A1), have a huge number of hyper-parameters (e.g., optimization algorithm, learning rate,
network weight initialization, hidden layers activation function, output activation function, L2
regularization, dropout regularization, and the number of nodes in the hidden layers) [87]. The
hyper-parameters potentially allow DNNs to perform better in solving the complex problems compared
to the other ML models [88]. Sometimes, however, a lack of control over the learning process of the
DNNs may lead to overfitting [32]. One approach, which is also used in this study to avoid or reduce
overfitting, is to use a technique called Dropout [89]. Dropout randomly mutes neurons of the hidden
layers. This dropout is applied to each of the n training steps, resulting in n different networks that
are finally averaged for prediction [90]. For predictions, the ensemble of sparse networks resulting
from the dropout process is averaged using the geometric mean of the input weights of the neurons.
In this study, for DNNs we used the H2O package [91] with the rectifier function as a non-linear
transformation and the Stochastic Gradient Descent (SGD) as the optimization algorithm. Furthermore,
in order to save training time, an early stopping was used if no changes in the loss were observed after
150 epochs. Appendix A (Tables A1 and A2) shows the specifications used for DNN in this study,
namely: hidden layers, size, network weight initialization, learning rate, and dropout regularization.

2.5.2. Meta-Learning Models in Level 1

The least absolute shrinkage and selection operator (LASSO) is a regularized linear model. It adds
a regularization term as a cost function to a linear model, to reduce its degrees of freedom. To achieve
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this, the lasso regression performs feature selection by eliminating the weights of the least important
predictors. For the Lasso modeling, we used the glmnet package [92].

Support vector machines are a kernel method for classification [93] and regression problems [94].
The input data is transformed into a high-dimensional feature space with a predefined kernel function.
In the high-dimensional feature space, a linear regression hyperplane is derived for non-linear
relationships. Then, the hyperplane is back-transformed to non-linear space. The kernel used in this
study is a radial basis function. The e1071 package [95] was used for radial SVR modeling.

2.6. Optimizing the Hyper-Parameters of Machine Learning Models

We applied a grid-learning method to estimate the best model-parameter by testing different
ranges of the model parameters listed in Table 3. Importantly, these hyper-parameters are the most likely
parameters to have the largest effect on the performance of the ML models. All other hyper-parameters
were set to their defaults [96]. Based on the most relevant parameters, we tuned each model individually
and evaluated the prediction performance. Additionally, we combined the grid-learning method with
a spatial block cross-validation strategy with the aim to reduce the spatial autocorrelation effect of
close neighbors and to choose the optimal model parameter. In this study, we constructed 10 folds
for our block cross-validation using R package blockCV [97], in which several spatial blocks can be
assigned to a fold (Figure 3). The block-to-fold assignment in this package was done by a repeated
random approach that tries to find the most evenly distributed number of observations in each fold.
Thus, the observations are separated spatially and in each fold as close as possible to the typical 10-fold
cross-validation approach.

Table 3. Hyper-parameters of ML models tuned in this study.

ML Models Hyper-Parameters Definition Defined
Parameters

Cubist
committees the number of model trees 1–100
neighbors the number of nearest neighbors 0–9

XGboost

booster the type of model gbtree
max_depth the depth of tree 3–10
min_child_weight the minimum sum of weights of all observations 0–5
colsample_bytree the number of variables supplied to a tree 0.5–1
subsample the number of samples supplied to a tree 0.5–1
eta learning rate 0.01–0.5

RF
Mtry the number of input variables 1–30
Ntree the number of trees 100–3000

ANN
decay learning rate 0.001–0.05
size the number of neurons in hidden layer 1–10

AvNNet Repeats the number of MLP with different random
number seeds 3–20

DNN

hidden the number of hidden layers 2–10
size the number of neurons in hidden layer 15–200
network weight
initialization the initialized weight of networks uniform/he_normal

learning rate that controls adjusting the weights of the network 0.001–0.05

dropout regularization the amount of the neurons that are randomly
dropped 0.2–0.8

SVM
Kernel type the kernel function RBF
C the penalty parameter 0.01–100
σ the bandwidth parameter 0.01–100

Lasso lambda the shrinkage parameter 1–150

MLP: multilayer perceptron; RBF: radian basis function.
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2.7. Statistical Evaluation

In this study, four common performance metrics [98], namely root mean squared error (RMSE),
normalized root mean squared error (nRMSE), coefficient of determination (R2), and Ratio of
Performance to InterQuartile distance (RPIQ) were used. RMSE indicates the accuracy of the model
prediction. nRMSE is without unit and the standardized form of RMSE and well suited for inter-model
comparisons. The coefficient of determination (R2) varies between 0 and 1 and indicates the closeness
of the observed values to the fitted regression line or the proportion of variance explained by the
independent predictors. RPIQ compares the interquartile range to the RMSE [99]. The greater the
RPIQ indicates the better the model’s predictive capacity.
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where Pi and Oi are the predicted and observed SOC values at the ith location, n is the number of data
points, P and O denote the means for the predicted and observed SOC, and Q1 and Q3 are the first and
third quartiles, respectively.

3. Results and Discussion

3.1. Summary Statistics of SOC Content

The descriptive statistics of the SOC content at six depth intervals across the two study areas are
presented in Table 4. For the arid site, the mean SOC content varied from 0.18% to 0.33%, whereas in
the sub-humid site, it ranged from 1.46% to 4.09% (Table 4). The lower and upper limits of the mean at
95% varied from 0.16 to 0.39 for the arid site, whereas in the sub-humid site, it ranged from 1.24% to
4.38%. This indicates a high variability of SOC content across the two sites. The highest variability in
SOC content was found at the arid site with a coefficient of variation from 60.39% for the 60 to 100 cm
depth to 128.59% for the first depth increment (0–5 cm). Similarly, the sub-humid site showed a high
variability of SOC content with a coefficient of variation from 37.15% for the 0 to 5 cm depth to 78.66%



Remote Sens. 2020, 12, 1095 10 of 26

for the deepest depth increment (100–200 cm). The arid site, in contrast to the sub-humid site, tended
to have higher variability in SOC content at the upmost depth increments [6,100].

Table 4. Descriptive statistics of soil organic carbon (SOC) content at six standard depths in two regions.

Soil Depth SOC (%)

Min Max Mean Lower Upper SD CV

Arid site
0–5 cm 0.03 2.34 0.33 0.26 0.39 0.42 128.59
5–15 cm 0.04 2.21 0.31 0.25 0.37 0.39 124.56
15–30 cm 0.06 1.69 0.27 0.23 0.32 0.30 110.24
30–60 cm 0.02 1.11 0.21 0.19 0.24 0.17 77.28
60–100 cm 0.01 0.75 0.18 0.16 0.19 0.11 60.39
100–200 cm 0.01 1.00 0.18 0.16 0.20 0.14 78.20

Sub-Humid site
0–5 cm 1.36 9.93 4.09 3.79 4.38 1.52 37.15
5–15 cm 1.28 9.51 3.68 3.41 3.95 1.39 37.89
15–30 cm 0.68 8.01 2.59 2.34 2.85 1.30 50.27
30–60 cm 0.41 5.65 1.55 1.35 1.75 1.03 66.26
60–100 cm 0.07 5.65 1.46 1.24 1.69 1.15 78.21
100–200 cm 0.07 5.65 1.47 1.24 1.69 1.15 78.66

Min: minimum; Max: maximum; SD: standard deviation; CV: coefficient of variation; Lower and Upper: the lower
and upper limits of the mean at 95%.

The results of the mean SOC content comparisons for arid and sub-humid sites are shown in
Figure 4. At the sub-humid site, the upper three layers (0–30 cm) are significantly different in terms of
mean SOC content, whereas the lower depth intervals show no significant differences in SOC content.
This result indicates more variation in the vertical distribution of SOC content at the topsoil compared
to the subsoil. The mean SOC contents in the arid site show a relatively different trend compared
to the sub-humid site. At the arid site, there are no significant differences between the three upper
horizons. This indicated that for the top three layers (0–30 cm), depths intervals had no significant
effect on SOC content.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 28 
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A decreasing trend in SOC content with increasing depth was found on both sites. This is much
more evident at the sub-humid site (Figure 4). The SOC content in both arid and sub-humid areas at
the surface layer (0–5 cm) were about 1.8 and 2.8 times higher than the SOC content in the depth of 100
to 200 cm (Table 4). Several studies reported that SOC content in the topsoil was more abundant than
in the subsoil [7,22,51,54,101].

3.2. Importance of Covariates

The selected covariates for prediction of the SOC content at the two sites at all specific depths are
presented in Figure 5. The numbers indicate Z-scores and the intensity of colors from light to dark
represents the values of Z-scores from low to high, respectively. The covariates used to predict SOC
content showed a varying level of importance in the models. Results indicated that the covariates in
the arid site were weakly to moderately relevant to SOC content. The Z-score varied from 0.40 to 10.60
for valley depth (SOC 100–200 cm) and the near infrared band of Sentinel-2 (SOC 5–15 cm), respectively.
In the sub-humid site, it varied from 0.20 to 23.80 for the variables of total insolation (SOC 100–200 cm)
and the Green band of Sentinel-2 (SOC 0–5 cm), respectively.
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Figure 5. Optimal covariate selection using Boruta algorithm for SOC content at six standard depths at
the two regions. The covariate is defined in Table 2.

For the arid site, Figure 5 shows that all covariates were moderately relevant (e.g., NIR band of
Sentinel-2) or slightly relevant (e.g., Elevation and wetness index) to predict SOC content, at least
at one soil depth interval, except for nine covariates (e.g., Catchments area). Four covariates (e.g.,
MrVBF) were identified as slightly relevant at all six soil depths (Figure 5). In the sub-humid site,
however, only one covariate (vegetation red edge of Sentinel-2) was important at all six depth intervals
and six covariates (e.g., Elevation) out of 28 were weakly relevant in predicting SOC at any depth
interval (Figure 5). It should be highlighted that all other covariates were classified as slightly relevant
(e.g., Catchment slope), moderately relevant (e.g., NDVI), and relevant (e.g., Green band of Sentinel-2)
variables in predicting SOC content at all six depth intervals.

For the arid site, according to Figure 5, one can further conclude that both terrain- and RS-based
covariates play an important role in the prediction of SOC content at six depth intervals, which is
in line with the study of Wang et al. [19,102]. Importantly, the RS-based covariates (e.g., NIR band
of Sentinel-2) were more important in predicting organic carbon of surface soils in comparison with
the terrain-based covariates (e.g., MrVBF). This can be because most of the area was bare except for
the center of the area and, thus, the remotely sensed data could represent the spectral behavior of
soil at the surface [21,22]. However, terrain-based covariates were more relevant for the SOC content
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prediction at the depth of 60 to 200 cm, compared to the RS-based covariates. This is particularly true
for elevation (Elev), wetness index (WI), catchment slope (Ca.Slop), and multi-resolution valley bottom
flatness index (MrVBF). This local topography could define the rate of soil erosion and deposition
and also the amount of incoming solar radiation, which can determine SOC distribution. In addition,
the influence of terrain-based covariates on predicting SOC content can be related to the other soil
properties’ variations as well as the existence of cultivation in the lower elevated areas (e.g., center of
the area). The major factor that controls the input, decomposition, and stabilization of organic matter
into the soil is the cultivation in the center of the area. The cultivation explained the amount and
variation of SOC content in the study area [76]. Consequently, in the arid site, the SOC distribution
may be partly characterized by topography. In line with our results, several studies [7,22,54] reported
the importance of terrain-based covariates such as WI, MrVBF, slope, and elevation for the prediction
of SOC at different soil depths, because they reflect important geomorphological units, e.g., deeper soil
development at the valley bottom with steep slopes surrounding as a result of erosion processes.

Whereas, for the sub-humid site, the terrain-based covariates are not controlling factors on SOC
content variability, with a notable exception of catchments area in the lower depth intervals (30–200 cm).
These results were to be expected because the study area in the northern parts of Iran has almost flat
terrain [83]. However, the finding revealed the importance of RS-based covariates on SOC content
variability in the sub-humid site (Figure 5). For instance, we found NDVI as an important predictor for
SOC content at surface layers of soils [47,48]. The remote-sensed vegetation parameters and NDVI
are commonly considered as good indicators of primary and ecological productivity. Hence, the
remote-sensed data have been effectively applied to predict SOC contents [48]. Consequently, in the
sub-humid site, these results show that the vegetation has the most effective influence on topsoil SOC.
Furthermore, spectral bands of Sentinel-2 had a substantial influence on the estimation of SOC contents
at the 0 to 30 cm soil depth in the sub-humid site, as shown in Figure 5. This shows the high potential
of spectral data in detecting SOC and its variation. Several studies [47,103] also reported a great
contribution of Sentinel-2 images to predict SOC contents of soils in the Czech Republic and France.
For instance, Gholizadeh et al. [48] proved the potential Sentinel-2 image to capture the variation of
SOC, especially where SOC levels were relatively high. They reported that the best SOC and Sentinel-2
spectral bands’ correlations were obtained from B4 and B5 followed by B11 and B12.

General speaking, RS-based covariates mostly represent surface features indicating land use/cover,
parent materials, and any other features influencing spectral behaviors. Terrain-based covariates
mostly represent relief parameters which contribute to erosional and depositional process as well
as to water and fine particles’ accumulation and redistribution. As discussed above, both terrain-
and RS-based covariates can potentially explain the variation of SOC content at the two study sites
(Figure 5). Nevertheless, the relative influence of covariates is distinct at the arid and sub-humid
regions. According to Figure 5, our results revealed that RS-based covariates could better explain the
variation of SOC content in the sub-humid site compared to the arid site. This is expected because
vegetation cover by affecting land reflectance in visible and infrared [21] makes RS-based covariates
promising explanatory variables to explain SOC contents and variations in the sub-humid regions [22],
because a simple correlation between the photosynthetic activity of plants and a higher amount of
source material (RS-based proxies) can lead to a higher accumulation of organic carbon. In other
words, the effect of vegetation on SOC content might be represented by RS-based covariates. However,
terrain-based covariates by controlling erosional and depositional processes were more successful in
the arid site compared to the sub-humid site to explain SOC content variations. This could be due
to the fact that the climate is uniform within the arid site and therefore is not a controlling factor.
However, topography is a significant factor to explain SOC content variations. The least importance to
terrain-based covariates in sub-humid sites is expected and attributed to the fact that the flatness in
the sub-humid site minimizes the effect of topography and elevation on the soils [104]. In addition,
the relative effect of covariates varies with depth, indicating that the mechanisms involved in SOC
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stabilization and dynamics at different depths may be various. Basically, the cumulative effect of these
variables influences the SOC contents.

3.3. Performances of the Individual ML Models

For both sites, the performance of six individual ML models used in level 0 in terms of R2, RMSE,
and RPIQ at six depth intervals was as follows: DNN > RF > XGBoost > AvNNet > ANN > Cubist
(Tables 5 and 6). Our results indicated that the RF models can well predict SOC content in the two
study sites. In agreement with our findings, Keskin et al. [67] reported that RF resulted in the lowest
RMSE for SOC prediction compared to the other ML models because of random selection of variables
during tree building and assembly. Our experience here was also similar to the conclusions achieved
by Nabiollahi et al. [30], who successfully used RF to map SOC stocks at the two depth intervals (0–30
and 30–60 cm) using RS- and terrain-based covariates, and found it performed fairly good to predict
SOC at two soil depths (R2 = 0.70 and 0.67, respectively). However, Were et al. [20] input a wide range
of the environmental covariates (e.g., soil properties, climate variables, land cover data, relief factors,
and spectral indices) into RF and ANN to map SOC stocks, and showed that ANN had lower RMSE
and ME values, as well as higher R2 values in predicting SOC in comparison to RF models. The studies
mentioned above have shown that the output of RF models varies significantly from study to study.
Although, it is difficult to explain the reasons for these differences, but the differences could be because
of the different extents of the study areas, topography, sampling densities, or quantity and quality of
the environmental covariates used.

Table 5. Performances of the ML models for SOC content at six standard depths in the arid site.

Models R2 RMSE RPIQ R2 RMSE RPIQ R2 RMSE RPIQ

0–5 cm 5–15 cm 15–30 cm
Cubist 0.76 0.25 0.84 0.63 0.24 0.75 0.63 0.20 0.67
XGBoost 0.79 0.20 1.12 0.71 0.19 1.02 0.69 0.17 0.85
RF 0.80 0.19 1.18 0.80 0.19 1.02 0.72 0.17 0.85
ANN 0.75 0.19 1.05 0.67 0.19 0.89 0.65 0.16 0.78
AvNNet 0.78 0.20 1.06 0.69 0.18 1.01 0.66 0.17 0.79
DNN 0.83 0.17 1.25 0.80 0.18 1.07 0.75 0.16 0.90
Stack1 0.83 0.17 1.25 0.78 0.18 1.07 0.74 0.15 0.92
Stack2 0.83 0.17 1.25 0.81 0.17 1.09 0.75 0.14 0.94
Stack3 0.86 0.14 1.30 0.82 0.13 1.18 0.77 0.11 1.07
Stack4 0.90 0.14 1.37 0.85 0.13 1.20 0.78 0.10 1.11

30–60 cm 60–100 cm 100–200 cm
Cubist 0.49 0.14 0.92 0.29 0.13 0.90 0.17 0.16 0.78
XGBoost 0.56 0.14 1.00 0.33 0.13 0.99 0.26 0.16 0.84
RF 0.57 0.14 1.00 0.35 0.13 0.99 0.29 0.16 0.84
ANN 0.50 0.13 0.91 0.29 0.11 0.97 0.22 0.15 0.77
AvNNet 0.53 0.14 0.92 0.31 0.12 0.98 0.24 0.15 0.83
DNN 0.64 0.13 1.08 0.40 0.13 0.99 0.39 0.14 0.90
Stack1 0.63 0.11 1.13 0.41 0.12 0.99 0.40 0.13 0.94
Stack2 0.62 0.11 1.12 0.38 0.11 1.02 0.39 0.13 0.94
Stack3 0.67 0.10 1.20 0.43 0.09 1.15 0.42 0.11 0.98
Stack4 0.72 0.09 1.29 0.46 0.08 1.19 0.44 0.10 1.06

R2: coefficient of determination; RMSE: root mean square error; RPIQ: Ratio of Performance to Interquartile distance;
Stack: refers to Figure 2.

The performance of XGBoost at both sites and six depth intervals closely followed the performance
of RF (Tables 5 and 6). In terms of R2, RMSE, and RPIQ, it outperformed Cubist. In agreement with
our findings, Tziachris et al. [104] reported the reasonable accuracy of XGBoost in comparison with
RF models to predict SOC in Greece. The higher accuracy of XGBoost can be explained because
its stochastic gradient, which improves the procedure, can reduce overfitting, and can improve the
prediction accuracy [67]. Furthermore, XGBoost ensemble has been shown to be capable of handling
noise data due to the use of a number of decision-based tree classifiers. There are several other
examples of DSM experts who applied XGBoost and RF models successfully to predict soil nutrient
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in Sub-Saharan Africa [105], soil properties in the United States [106], soil pH in China [107], soil
properties at the global scale [108], and the depth to bedrock at the global scale [109].

Table 6. Performances of the ML models for SOC content at six standard depths in the sub-humid site.

Models R2 RMSE RPIQ R2 RMSE RPIQ R2 RMSE RPIQ

0–5 cm 5–15 cm 15–30 cm
Cubist 0.78 1.35 2.00 0.76 1.26 1.90 0.66 1.17 1.62

XGBoost 0.78 1.28 2.08 0.76 1.23 1.92 0.66 1.10 1.69
RF 0.78 1.25 2.11 0.76 1.18 1.98 0.66 1.06 1.73

ANN 0.78 1.31 2.04 0.76 1.25 1.89 0.65 1.13 1.65
AvNNet 0.79 1.30 2.08 0.77 1.24 1.93 0.67 1.12 1.69

DNN 0.81 1.26 2.12 0.79 1.17 2.02 0.69 1.05 1.78
Stack1 0.83 1.21 2.16 0.82 1.17 2.05 0.73 1.06 1.78
Stack2 0.83 1.20 2.19 0.82 1.16 2.04 0.74 1.03 1.79
Stack3 0.84 1.16 2.25 0.85 1.13 2.06 0.74 1.01 1.81
Stack4 0.87 1.15 2.29 0.86 1.12 2.10 0.78 1.01 1.83

30–60 cm 60–100 cm 100–200 cm
Cubist 0.52 0.99 1.46 0.32 1.19 1.07 0.23 1.22 1.11

XGBoost 0.61 0.95 1.49 0.36 1.12 1.12 0.27 1.15 1.16
RF 0.61 0.92 1.51 0.38 1.08 1.14 0.26 1.14 1.15

ANN 0.57 0.97 1.46 0.33 1.16 1.08 0.24 1.18 1.13
AvNNet 0.62 0.96 1.50 0.36 1.15 1.11 0.28 1.16 1.17

DNN 0.66 0.93 1.52 0.54 1.09 1.15 0.44 1.08 1.24
Stack1 0.72 0.91 1.57 0.55 1.06 1.20 0.47 1.04 1.29
Stack2 0.70 0.89 1.58 0.54 1.06 1.18 0.49 1.02 1.29
Stack3 0.71 0.86 1.59 0.60 1.00 1.22 0.51 0.97 1.34
Stack4 0.74 0.85 1.61 0.60 0.97 1.27 0.54 0.97 1.36

R2: coefficient of determination; RMSE: root mean square error; RPIQ: Ratio of Performance to Interquartile distance;
Stack: refers to Figure 2.

Although Cubist resulted in relatively good predictions of SOC content at the two study sites,
especially at the surface layers (Tables 5 and 6), it was outperformed by RF and XGBoost. In line with
our results, Zeraatpisheh et al. [21] revealed that, in terms of R2 and RMSE, Cubist was outperformed
by RF. Despite, the usefulness of Cubist in explaining the relationships between soil properties and
covariates and in modeling SOC content, which has been reported in several studies [93], our findings
showed that the model was not very competitive with the other ML models. It is not clear why Cubist
failed to produce higher accuracies in comparison to the other ML models in the current research. The
different findings could be related to differences in the different processes that cause the evolution and
accumulation of SOC in these soils. Furthermore, this suggests that no single ML algorithm could
best serve for every landscape and that multiple models should be optimized to find the most reliable
prediction model. Nevertheless, we noted that the differences in the ML models’ performance at both
sites and at all depth intervals were rather small.

For the two areas, the performance of classical ANN at all depth intervals closely followed the
performance of AvNNet (Tables 5 and 6). The higher performance of AvNNet, compared to ANN, was
also reported by Baker and Ellison [84], who evaluated and compared the performance of AvNNet
and ANN in order to predict water retention data. They indicated that combining ANNs improves
the ability to generalize individual component ANNs. Similarly, Meyer et al. [83] reported the higher
performance of AvNNet by comparing it with three ML models—RF, ANN, and SVM—for rainfall
area detection and rainfall rate assignment over Germany. Although the performance of prediction
slightly improves by averaging ANNs in comparison to the classical ANN, Meyer et al. [83] concluded
that predictions might have been advantageous in cases where only limited data are available for
training. Our result, however, is different from that of Taghizadeh-Mehrjardi et al. [7], who found
superior performance for ANNs compared to RF for the three-dimensional mapping of SOC content in
the western parts of Iran. It should be noted that the prediction accuracy can be affected by several
parameters, such as number of field observation, type of models, the variability of soil properties, and
the ability of environmental covariates to describe SOC variations.
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In the arid site, the DNN was able to account for 39% to 83% of the total variation of SOC content
from the lower depth interval (100 to 200 cm) to the surface layer (0–5 cm), respectively (Table 5). For
the sub-humid site (Table 6), the DNN showed the best performance. It was able to account for 44%
to 81% of total SOC content variation at the depths of 100–200 cm and 0–5 cm, respectively. Overall,
DNN outperformed the other individual methods and produced the most accurate results, though
all five ML models in the study areas proved appropriate for SOC mapping. It can be concluded
that DNN provided the best outcomes in this study compared with the other individual methods
and demonstrated the ML’s robustness in complex data modeling and prediction. Our results are
in line with other studies in the ML literature that reported the capability of the DNN model to
reveal and learn the non-linear and complex patterns underlain datasets [32,110]. In soil science
literature, however, the superior performance of DNN in predicting soil properties is only reported
in a few studies [32,111]. For instance, Behrens et al. [31] found the most accurate results for DSM
analysis using deep learning, indicating an improvement of 4–7% compared to RF. Additionally to
this example, Padarian et al. [33] and Wadoux et al. [34] successfully applied a convolutional neural
network (CNN) model (a well-known DNN model) to predict different soil properties (e.g., SOC)
from large spectroscopic databases. Similar to our results, they also achieved a better performance
by implementing a CNN compared to other individual ML models. This is mainly because of the
fact that the CNN models use the contextual covariates information as input [34]. Nevertheless,
our proposed DNN used the point covariates as input in this research. We can, therefore, conclude
that the higher DNN output compared to the other individual ML methods can be related to the
other factors, including the power of features’ or attributes’ extraction from raw data. DNN models
create new features (sometimes also called representations of the raw data) automatically using neural
networks with many hidden layers and powerful computational resources to allow them to model
highly complex functions, e.g., SOC–landscape relationships.

3.4. Performances of the Stacking Ensemble Models

The modeling results of the two stacking approaches, namely, the standard mode (Stack1 and
Stack2) and the rescan mode (Stack3 and Stack4), for the prediction of SOC content at the six depth
intervals in the arid and sub-humid areas are presented in Tables 5 and 6. The modeling accuracy is as
follows: Stack4 > Stack3 > Stack2 > Stack1. For instance, the RMSEs for the SOC content prediction
in the depth interval of 0 to 5 cm of both sites by Stack4 models were 17% and 5% lower than the
ones obtained by Stack1 (Tables 5 and 6). Similarly, Stack4 reduced the RMSEs (23% and 6%) for SOC
content prediction in 100 to 200 cm of soil profiles of the arid site and the sub-humid site, compared to
the Stack1 models. Generally, stacking ensemble models in rescan mode had higher accuracy than
the ones in the standard mode [68]. This might be related to the fact that the meta-learning models
(LASSO and SVR) used in level 1 can recapture and extract some missing information from the original
covariate space. This proves the potential of using rescanning the original covariate space to improve
the performance of standard stacking methods. Note that there was no attempt to test the other ML
algorithms at level 0 and level 1. By changing the number and type of individual and meta-learning
models, one might possibly further improve the performance of the proposed stacking method. In
addition, prediction accuracy can be further improved if the model residuals’ spatial correlation
structure is analyzed and then added to the determinist spatial trend. However, such an analysis was
beyond the scope of our study.

In order to further understand which ML models performed the best, we illustrated the
performances of the stacking and individual models in Figure 6. The graph shows that the stacking
ensemble modeling in both modes (standard mode and rescan mode) indicated the higher performance
in comparison to the individual models. Here, we compare the performances of the best individual
model (DNN) and the best stacking model (Stack4), in terms of R2 and RMSE. What can be clearly seen
in Figure 6 is that the Stack4 ensemble models increased R2 values and decreased the RMSE values in
comparison to the DNN models. For instance, the RMSEs for SOC content prediction in 0 to 5 cm of
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soil profiles of the arid site and sub-humid site by Stack4 models were 17% and 9% respectively, less
than that obtained by the DNN models. Similarly, Stack4 reduced the RMSE values (28% and 10%) for
SOC content prediction in 100 to 200 cm of soil profiles of the arid site and sub-humid site, compared
to the DNN models.
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Generally, Stack4 ensemble models exhibited the best competence for capturing the spatial
variation of SOC content and reducing prediction uncertainty as well. This indicated that the stacking
ensemble models in level 1 were successful to keep the advantages and to discard the inaccurate aspect
of the individual ML models in level 0. This is justified by the fact that the information lost by the
models in level 0 is successfully captured by the level 1 models. In fact, the stacking methods used
multiple learning algorithms’ strengths to obtain better predictive performance and make the predictive
model more robust than it is from the individual models. We emphasize that the stacking strategy is
more accurate than any of its individual models if the individual models are accurate and diverse. The
success of the stacking method would generally be linked to two facts: (1) the training data does not
always provide enough information to select a single accurate model, and (2) the learning processes of
the individual model may be imperfect [40,68]. Those are the reasons why stacking never did worse
than selecting the individual models in our case study. Several studies have revealed that ensemble
models exhibited the best performances for predicting soil properties in the DSM community [38,68].
For instance, Tajik et al. [38] found that stack modeling showed better performance to predict SOC
content in comparison to the individual models, including RF and SVM. Similarly, Zhou et al. [39] and
Chen et al. [40] recently evaluated the efficacy of the ensemble models to predict the spatial variation of
soil properties. In order to predict soil total nitrogen, Zhou et al. [39] combined RF and XGBoost models
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using the weighted averaging method. Their results confirmed a reasonable outcome was obtained
by the ensemble approach with the lowest RMSE (1.15 g.kg-1) and the highest R2 (0.41) compared
with the two individual models. Somarathna et al. [112], however, concluded that combining the ML
algorithms could not provide a significant improvement (~2%) in SOC predictions. They reported that
the ensemble model can only prove beneficial when combining different ML algorithms, covariates or
datasets. This implies stacking strategies tend to produce reasonable performance depending on the
diversification of the individual models. It can be mentioned in the current research that a diverse and
powerful set of ML algorithms implemented in level 0, resulting in the stacking methods, suggested
higher prediction performance compared to the individual models. Added to this, the rescanning of
the original covariate space in level 1 increased the variety and strength of stacking methods, proving to
be an effective tool for predicting SOC contents, which should be used as a tool in digital soil mapping.

Although the effectiveness of stacking has been demonstrated in several studies (e.g.,
References [38–40]), there are some potential drawbacks that should be considered. Since the
most improvement in stacking is obtained when the predictors at level 0 are less correlated, selecting
a combination of dissimilar models is not always an easy practice. This technique is also typically
expensive in computational terms. Therefore, they add learning time and memory constraints to the
problem. Last but not the least, because the stacking is a “black box” algorithm, the exact contributions
of predictors to the final output cannot be explicitly disclosed. This means that the stacking (ensemble)
models suffer from a lack of interpretability.

Several tools have been developed to gain insight into the fitted function and increase the
interpretability of ML models, e.g., partial dependence plot (PDP) and permutation variable
importance [113]. Partial plots are an intuitive and easy-to-understand visualizations technique
to show the marginal effects of each predictor on the response [113,114]. However, there are limitations
in using PDPs, for instance, the PDPs are meaningful when the input covariates are not highly
correlated [113] and the response curve does not consider the interaction between the covariates
and is more meaningful for additive models [114]. The input feature of stacked models (i.e., the
rescanned original covariate space and the prediction of our six models) are both highly correlated
(high correlation between the prediction of different models) and have a high level of interaction (as
the prediction of each model directly depends on the rescanned original covariate space). Thus, using
PDPs might not be very reasonable in assessing the fitted function of stacked models. This is one
of the disadvantages of using model stacking as this technique makes the interpretation of models
exceedingly difficult. Adding the rescan covariate space also causes further difficulties in model
interpretation. In general, the interpretability of ML models in real-world problems, such as digital
soil mapping, is still a challenge that needs to be focused on in the future.

3.5. Performances of ML Models in Two Different Climatic Regions

Vertical distribution of R2, nRMSE, and RPIQ values to a depth of 200 cm are depicted in Figure 7.
Generally, the two sites showed a decreasing trend in R2 and RPIQ values with increasing depth.
Otherwise, the percentage of variation in SOC content, which is described by the models, decreased
with increasing depth. A reverse trend for nRMSE was also revealed (Figure 7). Results indicate that
the models’ performance decreased by each depth increment down the soil profile, and confirmed that
the models had much better prediction efficiency for surface layers than subsurface layers. Increasing
uncertainty of SOC content with depth has been reported in numerous studies [24]. For instance,
Laub et al. [115] found that the efficiency of the ML models used for SOC prediction in China decreased
from about 0.8 in the topsoil to 0.2 at 0.8 to 1 m subsoil depth. A similar pattern of uncertainty variation
with depth was reported in several other studies [22]. This decreasing trend in performances could
be explained by the fact that most of terrain- and RS-based covariates that are used as predictors of
SOC content (listed in Table 2) explain soil surface features and processes [9] and, for example, vertical
hydrological processes or bioturbation are less explained; therefore, the covariates used cannot capture
the subsurface SOC variation.
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Figure 7. Comparison of prediction power of ML models for SOC content at six standard depths in
two regions.

In line with all performance measures in Figure 7 (R2, nRMSE, and RPIQ), all tested ML models
performed better for the six soil depths at the sub-humid site than for those of the arid site. Here,
we compare the performances of the best (Stack4), the worst (Cubist), and AvNNet as a model with
intermediate performance, in terms of R2, nRMSE, and RPIQ.

Stack4 resulted in R2 values on average of 0.73 and 0.69 for the sub-humid site and arid site,
respectively. R2 values for Cubist were 0.55 and 0.50 and for AvNNet 0.58 and 0.54 for the same areas
as for Stack4. Our results, furthermore, indicated that Stack4, Cubist, and AvNNet resulted in R2

values for the sub-humid site that were ~9%, ~8%, and ~5% higher than the values of the arid site. The
difference in the performance of ML models is much more evident when we consider nRMSE values,
in which nRMSE values obtained by Stack4, Cubist, and AvNNet for the arid site were ~25%, ~17%,
and ~2% more than those values for the sub-humid site (Figure 7). These results indicated that the ML
models performed better at six depth intervals in the sub-humid site in comparison to those obtained
in the arid site. These results could be partly attributed to large differences between areas in terms of
soil forming factors, which results in complex relationships between SOC content and covariates.

The ML models resulted in a decreasing and increasing trend in R2, nRMSE, and RPIQ respectively,
with depth in the two areas (Figure 7). As can be seen, at the top layers (0-60 cm), the arid site tended
to have the highest values of nRMSE, but with increasing depth, the accuracy of models in terms of
nRMSE tended to be almost the same at both sites. This further shows that ML models, such as Stack4
based on the covariates used in this study, cannot capture SOC content variability at the bottom of soil
profiles [7,54]. This is consistent with the results of other researchers [7,17,22,54] who all reported that
the accuracy of DSM decreased with increasing depth. This indicates that the biggest uncertainty is
driven by covariate space, not by the selection of an ML algorithm, which may be due to the reduction
of the explanatory power of the environmental covariates along with the increase of the depth of the
soil layer. It should be added that the typical covariates used in DSM studies are RS- and terrain-based
covariates [10], which can only characterize the soil properties at the earth’s surface. The results of
this study show that there is still work to be done to improve the model accuracy for predictions
of SOC in depth. Moreover, the model accuracy could potentially be improved through the use of
additional environmental covariates. We assume that an implementation of important terrain-based
scale-relevant covariates representing climate-driven proxy variables (e.g., shadowing effects of high
mountain ranges) or the generation of covariates representing the vertical distribution of water, will
influence the prediction accuracies in deeper horizons (e.g., using the geophysical techniques).
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3.6. Spatial Distribution of SOC

The spatial distribution of mean, upper, and lower limits of SOC contents at the arid site at six
interval depths is depicted in Figure 8. A decreasing trend in SOC content down the soil profile
was observed. Central parts of the area tended to have the largest amounts of SOC content, which
correspond to the cultivated areas mainly under pistachio orchards and wheat. Moreover, the
topography of this area is mainly flat and located downslope, which results in more accumulation of
fine-textured materials and water. In the arid site, because of rainfall scarcity, irrigation is necessary to
provide soil moisture for crop production. Thus, irrigated farming and topographic attributes in the
central parts promote more vegetation and consequently, more organic matter is accumulated in the
soil. Lower SOC content in the other parts of the area can be attributed to the higher slope degree,
which makes these areas prone to erosion and to higher water discharge. Further, water scarcity in
these areas is not compensated by irrigation. In line with our results, Wiesmeier et al. [52] suggested
that at the small scales with similar climatic conditions, vegetation, land use, and land management
have a significant influence on the level of SOC stocks. At the regional scale, climatic effects may be
counterbalanced by agricultural practices (e.g., fertilization and irrigation) [49].
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depths in two regions. The upper and lower limits were calculated using Mean ± (1.5 × standard
deviation (SD)) of the prediction values of SOC contents using the spatial block cross-validation.

The spatial distribution of mean, upper, and lower limits of SOC contents at the sub-humid site at
six interval depths is depicted in Figure 8. Again, a decreasing trend in SOC content with depth is
shown in the sub-humid site. The map of the spatial distribution of SOC content in the upper layer
revealed more SOC accumulation in the northern parts than the other sections. The low slope degrees
of the northern parts make these areas favorable for more water accumulation and, thus, result in
poorly drained soils. SOC content is more accumulated and less decomposed in poorly drained soils.
Mishra et al. [116] reported that high SOC stocks were found in areas characterized by low slope
gradient and poorly drained soils. Wiesmeier et al. [52] indicated that areas with low slope degree
and concave surface favor water accumulation. Soil moisture, which is largely controlled by terrain
attributes, affects the spatial distribution of SOC content [117].
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4. Conclusions

In this study, we introduced stacking ML models in two modes (standard mode and rescan mode)
in order to improve the spatial prediction of SOC content at two contrasting climatic regions (arid and
sub-humid) of Iran. The main conclusions are:

1. Though the differences in the ML models’ performance at both sites and at all depth intervals
were rather small, DNN was identified as the most suitable individual model.

2. The stacking ensemble modeling in both modes (standard mode and rescan mode) indicated the
higher performance in comparison to the individual models.

3. Although both terrain- and RS-based covariates were important to explain SOC contents at both
sites, their explanatory power was different at both sites and at the soil depth intervals.

4. The stacking models are able to explain the effect of contrasting climate on SOC content distribution.
Higher content of SOC in the sub-humid site and lower content of SOC in the arid site were
found, however local variation is controlled by moisture, terrain, and land use.
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Figure A1. Illustration of the DNN model with two hidden layers. Black-colored circles are neurons
deactivated using the dropout method. (Elev: elevation; WI: wetness index; NDVI: normalized
difference vegetation index; B2: the second band of remote sensed data; SOC: soil organic carbon
content).
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Table A1. The optimal set of hyper-parameters used for ML algorithms for prediction of SOC in the
arid site.

ML Models Hyper-Parameters Arid Site

SOC
0–5 cm

SOC
5–15 cm

SOC
15–30 cm

SOC
30–65 cm

SOC
60–100 cm

SOC
100–200 cm

Cubist committees 3 3 7 5 4 3
neighbors 4 3 4 4 7 2

XGboost booster gbtree gbtree gbtree gbtree gbtree gbtree
max_depth 6 4 7 6 5 6
min_child_weight 2 1 2 1 3 1
colsample_bytree 0.5 0.5 0.5 0.5 0.5 0.5
subsample 0.75 0.75 0.5 0.75 0.25 0.5
eta 0.3 0.3 0.2 0.2 0.3 0.3

RF Mtry 9 11 12 18 16 22
Ntree 800 500 1100 1200 1800 2400

ANN decay 0.01 0.01 0.03 0.03 0.03 0.01
size 8 5 6 5 8 8

AvNNet Repeats 14 10 9 18 24 7
DNN Hidden 4 4 6 5 6 8

Size 15 20 30 40 30 50
Network weight
initialization uniform uniform uniform uniform uniform uniform

learning rate 0.02 0.05 0.01 0.03 0.01 0.02
dropout
regularization 0.7 0.6 0.3 0.4 0.4 0.8

Table A2. The optimal set of hyper-parameters used for ML algorithms for prediction of SOC in the
sub-humid site.

ML Models Hyper-Parameters Sub-Humid Site

SOC
0–5 cm

SOC
5–15 cm

SOC
15–30 cm

SOC
30–65 cm

SOC
60–100 cm

SOC
100–200 cm

Cubist Committees 4 5 3 8 7 5
neighbors 5 3 2 2 7 8

XGboost booster gbtree gbtree gbtree gbtree gbtree gbtree
max_depth 6 5 6 5 6 4
min_child_weight 2 1 1 4 3 2
colsample_bytree 0.5 0.5 0.5 0.5 0.5 0.5
subsample 0.5 0.5 0.5 0.75 0.5 0.5
eta 0.3 0.3 0.2 0.2 0.3 0.4

RF Mtry 14 11 17 16 21 24
Ntree 1400 900 1600 2100 2600 1900

ANN decay 0.01 0.01 0.03 0.03 0.03 0.01
size 8 5 6 5 8 8

AvNNet Repeats 14 10 9 18 24 7
DNN hidden 4 4 6 5 6 8

size 50 20 40 40 50 60
Network weight
initialization uniform uniform uniform uniform uniform uniform

learning rate 0.02 0.05 0.01 0.03 0.01 0.02
dropout
regularization 0.7 0.6 0.3 0.4 0.4 0.8
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