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Abstract: This study investigates how short-term lidar measurements can be used in combination
with a mast measurement to improve vertical extrapolation of wind speed. Several methods are
developed and analyzed for their performance in estimating the mean wind speed, the wind
speed distribution, and the energy yield of an idealized wind turbine at the target height of
the extrapolation. These methods range from directly using the wind shear of the short-term
measurement to a classification approach based on commonly available environmental parameters
using linear regression. The extrapolation strategies are assessed using data of ten wind profiles up
to 200 m measured at different sites in Germany. Different mast heights and extrapolation distances
are investigated. The results show that, using an appropriate extrapolation strategy, even a very
short-term lidar measurement can significantly reduce the uncertainty in the vertical extrapolation of
wind speed. This observation was made for short as well as for very large extrapolation distances.
Among the investigated methods, the linear regression approach yielded better results than the other
methods. Integrating environmental variables into the extrapolation procedure further increased the
performance of the linear regression approach. Overall, the extrapolation error in (theoretical) energy
yield was decreased by around 50% to 70% on average for a lidar measurement of approximately one
to two months depending on the extrapolation height and distance. The analysis of seasonal patterns
revealed that appropriate extrapolation strategies can also significantly reduce the seasonal bias that
is connected to the season during which the short-term measurement is performed.
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1. Introduction

Wind turbine heights have increased significantly throughout the last years. Average hub heights
of onshore turbines in Germany have grown from 101 m to 141 m in the period between 2010 and 2018;
tip heights of the turbine blades now well exceed 200 m and the trend to larger turbines is expected
to continue [1]. This poses a challenge to resource assessment in wind energy projects as wind data
at great heights need to be assessed. Due to the high costs of tall masts, the wind is often measured
below the height of interest and then extrapolated vertically.

There are several physics-based models of varying complexities to model wind profiles.
These range from the (stability corrected) logarithmic wind profile [2–5] to more sophisticated flow
models such as computational fluid dynamics methods. For an overview of different modelling types
and their applications in wind energy, see, e.g., [1]. In practical applications, however, the power
law [6] is often used to extrapolate measured wind profiles to greater heights. In the power law,
the wind profile is described by a single parameter—the power law exponent α. α combines all
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physical processes influencing the wind profile and can easily be derived from measurements at two
heights. It is acknowledged that the power law has several shortcomings when approximating the real
wind profile (see e.g., [7]), as it simplifies several physical processes into a single empirical parameter.
In contrast to physical models, however, the power law can easily be adapted to the conditions on site
by fitting it to the measured wind profile. Due to its simplicity, the power law is very popular in the
wind energy industry [8]. Moreover, it is often considered to be the most reliable and most commonly
used approach for vertical extrapolation of measured wind profiles in wind energy applications [9].
Therefore, the power law is used in this study.

One of the challenges of vertical extrapolation using the power law is that α usually varies with
height [7,8,10,11]. This results in a reduced accuracy of the extrapolation process as α is usually
assumed to be constant above the mast. Doppler wind lidars (Light Detection And Ranging) or
other remote sensing devices can accurately measure the wind up to large heights. A whole one-year
lidar measurement campaign, however, nowadays is considered to be cost-intensive. A combination
of a short-term lidar measurement with a measurement mast, thus, has the potential to reduce the
uncertainty in vertical extrapolation of the wind resource while limiting the costs of the measurement
campaign.

The principle of combining mast and lidar measurement was investigated before by
Lackner et al. [8]. They proposed to use a shear correction factor derived from the short-term wind
data at hub height to improve the extrapolation of the mean wind speed. For wind energy applications,
however, the mean wind speed is often not sufficient. A precise determination of the annual energy
production (AEP) of wind turbines generally requires further statistics like the frequency distribution
of the wind speed at the specific site. In addition to that, time-dependent curtailment (e.g., noise
mitigation, protection of animals with time-dependent activity, load balancing in the electricity grid)
often make a certain temporal resolution of the wind data desirable.

This article builds on and further develops the approach of [8]. In contrast to [8], the focus is put
on the analysis of extrapolation methods yielding time series of wind speed at the extrapolation height.

It is well known that α strongly depends on all factors influencing the wind profile, such as
atmospheric stability [10–14] and surface characteristics [7,12,14,15]. Thus, α is highly site-dependent
and changes on a daily and annual course [10,11,13,16]—i.e., it strongly varies with meteorological
conditions. In a first step, therefore, temporal patterns of the variation of the power law exponent
with height are investigated. After that, several extrapolation strategies are developed and analyzed.
The method proposed by Lackner et al. [8] is adapted to wind-speed time series and a slightly more
complex linear regression approach is tested. This approach is then extended by using the temporal
variation of additional environmental variables in the extrapolation to account for the meteorological
conditions. A range of mast and target heights which are relevant for modern wind energy projects is
investigated.

2. Measurement Data and Experimental Setup

For the analysis in this paper, data from ten tall wind profiles are used (Table 1). All data are
collected using pulsed Doppler lidars manufactured by Leosphere [17] in Doppler beam swinging
mode (DBS). Detailed information about the functionality of these remote sensing devices can be found
in, e.g., [18]. The measurement sites are scattered around Germany and located at sites with terrain
of varying complexity. This ensures a high diversity regarding the orography and the surface of the
investigated sites.
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Table 1. Details of the measurement sites; d indicates the displacement height estimated as 2/3 of
the height of trees near the measurement location (as often done in wind energy applications when
performing vertical extrapolation [7,19,20]). The duration of each measurement is exactly one year.
The measurements were carried out at different one-year periods between May 2014 and August 2018.
At Sites 4 and 9, no measurement data were available at the 60 m level.

Site Orography and Surface Cover d [m] Measurement Heights [m] Device Used for Measurement

Site 1 hilly, forested 18 60, 80, 100, 140, 200 WindCube V2
Site 2 slightly hilly, forested 18 60, 80, 100, 140, 200 WindCube V2
Site 3 mainly flat, forested 16 60, 80, 100, 140, 200 WindCube V2
Site 4 hilly, sparsely forested 12 80, 100, 140, 200 WindCube V1
Site 5 slightly hilly, barely forested 0 60, 80, 100, 140, 200 WindCube V1
Site 6 slightly hilly, forested 16 60, 80, 100, 140, 200 WindCube V2
Site 7 hilly, forested 16 60, 80, 100, 140, 200 WindCube V1
Site 8 slightly hilly, no trees 0 60, 80, 100, 140, 200 WindCube V1
Site 9 slightly hilly, sparsely forested 14 80, 100, 140, 200 WindCube V1
Site 10 slightly hilly, forested 14 60, 80, 100, 140, 200 WindCube V2

The measurement devices collect measurement data with an output frequency of about 1 Hz and
use four to five measurements to derive the wind vector [17,21]. From this data, 10-min statistics are
calculated. Measurement data with availability below 80% within a 10-min interval were excluded
from the analysis; data with CNR (Carrier to Noise Ratio) values below −21 dB (for Windcube V1) or
−23 dB (WindCube V2), respectively, were filtered out internally by the measurement devices before
averaging. Unrealistically high or low measurement values were identified as measurement errors
and removed. In case of missing data at one of the heights used for the extrapolation, all data were
removed at the respective time stamp.

The evaluation of the different extrapolation strategies was performed by dividing the
measurement data of the wind profiles into two parts. The lower part of the profile was assumed to be
available for the whole measurement period (one year). This corresponds to installing a (short) met
mast on site. Short periods of the wind speed data at the target height were used representing the
short-term lidar measurement. The extrapolation results were then compared to the data of the whole
measurement period (one year) at the target height. In this study, mast heights of 80 m and 100 m are
investigated. The target heights were chosen to be 140 m and 200 m, which is motivated by the large
height and size of modern wind turbines. This results in four combinations of mast and target heights.

3. Methodology

3.1. The Power Law

Using the power law, the wind profile in the lower atmosphere can be described as [6]:

v2 = v1

( z2 − d
z1 − d

)α
(1)

where v1 and v2 are the wind speeds on heights z1 and z2, respectively. The displacement height d is
used to account for the vertical displacement of the wind profile in forested terrain. When wind speed
measurements at two heights are available, α can be determined from Equation (1) and the wind profile
can be extrapolated vertically. In this study, the power law exponent in the height range of the mast,
αL, was calculated using the data from the top of the (virtual) mast and the adjacent measurement
height 20 m below (i.e., when the mast height was set to 80 m, the wind data at 60 m and 80 m was
used). When using a short-term lidar measurement supplementary to a met mast, the wind conditions
at the target height of extrapolation zt can be measured and, thus, the power law exponent above the
mast, αH , can be determined. The respective measurement setup is shown in Figure 1.
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Figure 1. (Theoretical) measurement setup and power law exponents αL in the height range of the mast
(i.e., between z1 and z2) and αH between mast top and target height (z2 and zt), respectively.

3.2. Extrapolation Strategies

A precise determination of the power law exponent (PLE) is key to accurate wind speed
extrapolations. Considering this goal, four different strategies which incorporate the short-term
lidar data in the extrapolation process are investigated here. Each of these extrapolation strategies
yields a corrected power law exponent αc, which is then used for the extrapolation.

Average PLE

One of the main issues of a mast-based extrapolation using the power law is that the measured
α often does not reflect the wind shear above the mast top accurately (i.e., αL 6= αH in Figure 1).
When a short-term lidar measurement is carried out next to the mast, the power law exponent in
the height range between the mast top and the target height, αH , can be measured directly (see
Figure 1). The simplest approach is to derive an average αH from the short-term lidar data and to
use it for the extrapolation (i.e., αc = αH). The mean value of αH is calculated by averaging the
10-min wind speeds within the lidar measurement period and applying Equation (1). The wind
shear measured in the height range of the mast is disregarded completely in this extrapolation
strategy.

Simple Ratio

The second extrapolation strategy uses a simple relationship between the two power law
exponents αH and αL and is based on work published by Lackner et al. [8]. In the simplest
case, the relationship can be expressed by the ratio of the mean values of the two power law
exponents, Rα, determined in the lidar measurement period:

Rα =
αH
αL

(2)

This relationship is used to adjust the αL value(s) in the period in which no lidar measurement is
available and extrapolation has to be conducted (extrapolation period). The corrected power law
exponent is then calculated as:

αc = RααL (3)

In contrast to Lackner et al. [8], who extrapolated yearly mean wind speeds, the analysis in
this work is based on the extrapolation of ten-min wind speed values. Therefore, the method is
adapted on time series in two different ways:
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1. Deriving one single αc by applying Equation (3) on the annual mean value of αL. This is
equivalent to the method of [8] (delivers the same mean wind speed value) but applied on
the time-series values of wind speed.

2. Deriving a time-series of αc values by applying Equation (3) on each time-series value of
αL in the extrapolation period. Hence, individual 10-min αc values are used to perform the
extrapolation.

For both cases, Rα is calculated using the mean wind profile based on mean wind speeds in the
lidar measurement period.

These methods are named Simple Ratio Mean and Simple Ratio Time-Series (TS) approaches as in 1.
one mean αc and in 2. various time-series αc values are derived.

Linear Regression

In a further step, this approach is extended and a linear model is introduced to describe the
relationship between αH and αL. An ordinary linear regression of the time-series values of αH and
αL (measured during the lidar measurement period) is performed yielding the two regression
parameters b0 and b1. In the extrapolation period, the relationship is applied yielding 10-min
values of αc:

αc = b0 + b1αL. (4)

To ensure a high quality of the linear regression procedure, it is necessary to exclude very high
or low values of the correlated parameters. Thus, αL and αH values were excluded from the
calculation of b0 and b1 which were below (or above) the lowest (or highest) 5% of the αL values
measured during the whole year at the respective site.

Classification Approach

As will be shown in Section 4.2, Rα varies in time and can not be considered as a constant
parameter. In the fourth approach, therefore, additional climatological variables are included
in the extrapolation process which are expected to correlate with the temporal variation of Rα.
This is done by binning the measurement data with respect to atmospheric variables which are
measured on site. Within each bin, one set of b0 and b1 is derived. In the extrapolation period,
the values of b0 and b1 are chosen according to the respective value of the classification variable at
the corresponding timestamp. Hence, a classified linear regression is performed.

As for the Linear Regression approach, αL and αH values which were below (or above) the lowest
(or highest) 5% of the αL values measured during the whole year were excluded from calculating
the values of b0 and b1 in the respective bins.

When a time-series based extrapolation with a temporal resolution of 10 minutes is performed,
very high (or low) power law exponents can occur. This occurs mainly in case of small wind speeds
at one of the heights used in Equation (1). These values do not necessarily represent erroneous
measurement data but can bias the extrapolation result. Due to the exponential structure of the power
law, this aspect is especially momentous for very high values of the power law exponent. Therefore,
values exceeding the 98% quantile of the measured αL at each site were set to the 98% quantile value
before performing the extrapolation. This threshold was applied for every extrapolation process
guaranteeing the comparability of the results.
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3.3. Selection of Classification Variables and Classification Procedure

For the extrapolation based on the Classification Approach, a classification variable needs to be
defined. This parameter has to be available during the whole measurement campaign and therefore
cannot be part of the lidar measurement only. A homogeneous distribution throughout the year is
advantageous. Moreover, its availability from standard measurements in the wind energy community
is also desirable.

From a physical perspective, several factors influence the shape of the wind profile. One of the
main reasons for temporal variations in wind shear are changes in atmospheric stability. Unfortunately,
measurements of atmospheric stability were not available at the sites investigated in this study.
In addition, it is usually not measured in resource assessments for wind energy applications. Therefore,
atmospheric stability is not considered as a classification variable here.

Temperature obviously has a strong seasonal and diurnal cycle. Additionally, it is closely related
to atmospheric stability. However, temperature has the disadvantage that it is distributed very
inhomogeneously throughout the year in most regions which limits the applicability. Therefore,
additionally to temperature, the relative deviation of each temperature value from the respective daily
mean (“relative temperature”) is used in this study.

Wind speed is known to be connected to atmospheric stability [22] and is selected as a
classification variable.

Besides atmospheric stability, further important factors influencing the wind profile are surface
roughness and orography [7,10,11,23,24]. In a heterogeneous landscape, the wind direction is strongly
correlated with the roughness and orography in the upstream fetch and is therefore selected as a
classification variable.

Turbulence usually has a strong relation to wind shear. For this reason, both turbulence and
standard deviation of the horizontal wind speed provide classification variables. It is noted that vertical
profiling wind lidars are known to not measure the standard deviation of wind speed accurately when
compared to cup or sonic measurements [25,26]. In this study, however, the standard deviation of the
wind speed is only used as a classification variable and, while present, these errors are expected to be
of minor importance.

Finally, relative humidity, air density, and air pressure (near the surface) are tested as they often
show a good correlation with different meteorological situations.

For the sake of simplicity, the analysis in this paper is restricted to one single classification variable,
although it is noted that the classification could also be based on multiple variables concurrently.

The classification in this study is based on dividing the data homogeneously into six classes.
Initially, the two outer class bins are determined as containing the lowest or highest 5% of the one-year
data of the classification variable. Afterwards, four additional classes are defined in between these
bins equidistantly. In the case of classification according to wind direction, six 60-degree sectors
were chosen.

To guarantee a sufficient basis for deriving reliable correction factors, a minimum amount of
144 values in each bin was defined, implying that at least one full day of measurement data are
available. This value is based on considerations in the guide on wind measurements of the International
Electrotechnical Comission [27] where an amount of 144 10-min values is recommended when, e.g.,
a linear regression is performed for different wind direction bins. While in [27] wind speeds from
different locations are correlated, the procedure in this study is applied on power law exponents from
different height ranges.

Whenever less than 144 values are detected in one bin, the respective values (b0, b1) are calculated
by using the data from all bins. This is equivalent to simply using the parameters of the Linear
Regression approach.
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3.4. Statistical Analysis and Definition of Error Scores

The (simulated) short-term lidar measurements start every odd day of the year running through
the measurement data. This yields more than 180 different, homogeneously separated starting dates.
The measurement duration is varied from only a few days up to half a year. Therefore, both the
sensitivity of the results to the lidar measurement duration as well as seasonality can be analyzed.

Each time, a time series at the target height is generated by using the measurement data at the
target height during the short-term lidar measurement period and extending it with the extrapolated
data from the respective extrapolation strategy (see Figure 2). The resulting one-year time series is then
compared to the measured wind speeds at the target height (reference data) using the following metrics:

1. Error in (annual) mean wind speed Emean

2. Error in frequency distribution E f req

The wind speed data are divided into bins ranging from 0 to 20 m/s (bin width of 1 m/s,
with an additional bin containing all values larger than 20 m/s). The relative frequency of the
assessed wind speed values in each bin is compared to the relative frequency of the reference
data. Averaging over the deviations using the root mean square error (RMSE) yields the error
score E f req.

3. Error in the theoretical energy production of a wind turbine Eenergy

The third error score is based on the theoretical energy output of a wind turbine. A power curve
of a 3.2 MW wind turbine (see [28]) is used to calculate the (theoretical) one-year energy output
from the extrapolated and the reference wind speed time series at the target site. This power
curve has a cut-in wind speed at 2 m/s and reaches the nominal power at 14 m/s. At wind
speeds of more than 25 m/s, no energy is converted (cut-out wind speed). The energy values
related to extrapolated and reference data are then compared (relative deviation) resulting in the
error score Eenergy.

Figure 2. Methodology of the selection of the lidar measurement period and extrapolation. αc is
derived using the mast data at heights z1, z2 and the lidar data at the target height zt during the lidar
measurement period (red). During the extrapolation period, the mast data are extrapolated from z2 to
zt. The extrapolated data (blue) then are merged with the lidar data. Finally, the resulting time series is
compared to the reference data at zt (grey).

This procedure is carried out independently for all measurement periods and all measurement
sites. After that, an average value of these single extrapolation errors related to one lidar measurement
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duration is calculated. This yields the overall accuracy of each of the different extrapolation strategies
averaged over all sites. In general, the RMSE is used here to calculate the average error value. In
order to investigate the effects of seasonality (see Section 4.4.2), however, this is done using the
arithmetic mean.

In some cases, the results are compared to the respective extrapolation accuracy when using
only met mast data. In this benchmark scenario, the time-series values of αL are used for the vertical
extrapolation (applying the 98% threshold criterion described in Section 3.2).

4. Results and Discussion

4.1. Height Dependence of the Power Law Exponent

Besides its function in the extrapolation, Rα provides a good measure to analyze patterns in wind
shear with height and time. Rα, calculated from the (annual) mean wind profiles at each site is shown
in Figure 3.

Figure 3. Height dependence of the power law exponents expressed by using the quantity Rα. Shown
for four different combinations of z1, z2 and zt using annual mean wind speeds. Note that, at Site 4
and Site 9, no measurement data at the 60 m level were available (see Table 1).

In many cases, Rα differs significantly from the value of 1 confirming a strong variation of α with
height. In general, this is most pronounced for large distances from mast to target height. Furthermore,
Rα varies strongly from site to site indicating a dependency on site-related properties.

For most sites and height combinations, Rα is below 1 representing a decrease of the power
law exponent with height. This is in line with the theoretical considerations in [7] and indicates a
systematic overestimation of the wind shear when using a measured αL and Equation (1) for the vertical
extrapolation of wind speed. However, in some cases, an increase can be identified. This phenomenon
was also found in other studies (e.g., [8,11]).

In general, a strongly height-changing power law exponent (represented by high or low Rα values)
inevitably leads to high extrapolation errors when αL is used for the extrapolation. An overestimation of
the wind shear (Rα < 1) directly leads to an overestimation in the extrapolated wind speed. The opposite
is the case if α increases with height and the power law exponent in the height range of the mast is
smaller than the “true” wind shear above the mast top (Rα > 1). For large extrapolation distances (e.g.,
extrapolating from 80 to 200 m), the power law exponent measured in the height range of the mast,
or the power law in general, can hardly be seen to be suitable and high extrapolation errors can be
expected.
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4.2. Seasonal Variations of the Wind Profile

Figure 4 depicts the relative seasonal deviation of α from its annual mean. In summer, smaller α

values are observed, while winter is characterized by larger shears. The main reason for this behavior
is the changing atmospheric stability regime. In Central Europe (the region under investigation
in this paper), summers are usually characterized by a higher occurrence of unstable conditions,
while in winter stable conditions are more frequent. In their analysis of wind shear in Cabauw,
Gualtieri et al. [13] did not find such a clear seasonal pattern in α. However, they only analyzed
data for significantly lower heights. More similar results to Figure 4 were obtained by, e.g., [16,29].
The height dependence of the seasonality is rather small for the investigated height range.

Figure 4. Relative deviation of monthly power law exponents from the yearly mean (based on monthly
mean wind speeds), shown for different height ranges. The results from all measurement sites are
averaged arithmetically yielding one curve per height combination.

While several studies have investigated the seasonal variations of wind shear [10,11,13,16,29,30],
the authors are not aware of systematic evaluations of changes in seasonal patterns of α with the
height range considered—i.e., the seasonality of Rα. Figure 5 shows monthly Rα values for different
height combinations.

Figure 5. Relative deviation of monthly Rα values from the yearly mean (based on monthly mean
values of wind speed). Averaged over all sites and shown for different height ranges.

The observed pattern is similar to the pattern in α (Figure 4), especially the winter months are
characterized by a high deviation from the yearly mean. The fact that the seasonal cycle of the power
law exponent is more pronounced for αH than it is for αL generally results in lower Rα values in
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summer than in winter. The magnitude of the seasonal variation strongly depends on the height
combination considered. Interestingly, the values related to the heights above 80 m form a plateau
in the summer months. This fact can probably be explained by stronger mixing of the winds of
the different layers due to more unstable stratification. The effect of converging wind conditions,
as mentioned above, appears to be more pronounced at higher altitudes. Note that at two sites no
measurement data were available at the 60 m level which may somehow restrict the comparability.
The seasonal patterns as observed in Figure 5, however, are not affected by this.

4.3. Extrapolation Errors in Wind Speed

Figure 6 shows Emean for a short, a medium, and a long lidar measurement period (30, 90, and 180
days). Mast and target height are set to z2 = 80 m and zt = 140 m. Results for other height combinations
are very similar. Compared to the average extrapolation error using only the met mast data (3.79%), all
extrapolation methods incorporating the short-term lidar data yield a significant improvement.

Figure 6. Extrapolation errors Emean for z2 = 80 m, zt = 140 m and varying durations of the lidar
measurement; for extrapolation without short-term lidar data, Emean = 3.79%.

As expected, Emean decreases with increasing lidar measurement duration for all extrapolation
strategies. On the one hand, this is due to more data which increases the representativity of the
measurement and ensures higher reliability of the derived parameters (i.e., αH , Rα, b0, and b1). On the
other hand, the wind speed at the target height is measured directly over a longer period. For this
period, no extrapolation is necessary (see Figure 2). This automatically reduces the error.

Clearly, in comparison to the other extrapolation strategies, the Average PLE approach delivers the
worst results. On average, however, it still yields better results than extrapolating without additional
lidar data (i.e., using only mast data) even after a lidar measurement duration of 30 days.

In case of very short lidar measurement periods, the Simple Ratio Mean approach delivers the
most accurate mean wind speeds. The respective error, however, does not decrease appreciably when
the lidar measurement is extended. Thus, for the long lidar measurement (180 days), the Simple Ratio
Time-Series, the Linear Regression, and the Classification approaches all yield better results. The best
results for a measurement period of 180 days are achieved by a classification according to relative
humidity. Moreover, a classification according to relative or absolute temperature, air density, or wind
direction yields comparable results.

These results indicate that, in case of very short lidar measurement periods, a classification does
not improve the estimation of the mean wind speed compared to the non-classified Linear Regression or
Simple Ratio Mean approaches. This can be explained by the fact that only a small amount of data are
available which makes the calculations in the classification scheme less reliable.

Figure 7 shows the error in the frequency distribution of wind speed, E f req. E f req amounts to
0.56% when no short-term lidar data are used (extrapolating using only mast data). As for Emean,
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the Average PLE method shows the worst performance. The analysis also reveals that the Simple
Ratio Mean approach cannot reproduce the frequency distribution accurately despite its high accuracy
in mean wind speed. The Simple Ratio Time-Series, the Linear Regression as well as the Classification
approaches yield more accurate frequency distributions. Interestingly, all these methods are based
on using time series of αc. This stresses the importance of considering the temporal variability of the
wind profile for the height-dependent wind speed distribution. In practical applications, this aspect
is often neglected. The time-series based extrapolation methods, introduced in this paper, directly
address this phenomenon. At the same time, they avoid the problems of deriving general models
for the height-dependent shape of wind speed distributions above the surface layer (as reported by,
e.g., [31]) and in complex terrain. A comparison of the different methods reveal that, on average,
slight improvements are achieved when the classification procedure (e.g., for wind direction) is
integrated in the linear regression process.

Figure 7. Extrapolation errors E f req for z2 = 80 m, zt = 140 m and varying durations of the lidar
measurement; for extrapolation without short-term lidar data, E f req = 0.56%.

4.4. Extrapolation Errors in Energy Yield

4.4.1. Dependence on Lidar Measurement Duration

In Figure 8, the results for Eenergy are presented in more detail for selected extrapolation strategies.
Here, the Eenergy values are shown for all the different combinations of mast and target height
investigated in this study. As expected, Eenergy is significantly higher for larger height ranges.

Again, the Average PLE approach generally shows itself to be the most inaccurate way to integrate
the lidar data into the extrapolation process. This can be found for all the investigated height
combinations according to Figure 8. For short height ranges (Figure 8c), this procedure even increases
the error compared to an extrapolation using only met mast data when the lidar measurement is
carried out over less than two months.

In contrast, the Linear Regression method performs significantly better. Binning the data
with respect to wind direction or relative humidity (Classification approach) further improves the
extrapolation accuracy. This is particularly pronounced for long lidar measurement periods when a
larger amount of data are collected and a solid calculation of the parameters of linear regression within
each bin is possible.
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(a) (b)

(c) (d)

Figure 8. The average extrapolation error Eenergy in dependence of the duration of the lidar
measurement (RMSE over all sites and starting times), for (a) z2 = 80 m and zt = 140 m; (b) z2 = 80 m
and zt = 200 m; (c) z2 = 100 m and zt = 140 m; (d) z2 = 100 m and zt = 200 m. The black dashed lines
represent the errors of the scenario of extrapolating without lidar data.

Both Simple Ratio approaches tested in this study show worse performance compared to the
methods based on linear regression. The probable reasons for this are that, while Simple Ratio Mean
cannot deliver an accurate wind speed distribution, the Simple Ratio Time-Series approach has a smaller
accuracy regarding the mean wind speed. Similar to the results for the mean wind speed (see Figure 6),
the Simple Ratio Mean method performs better for short measurement periods, while the Simple Ratio
Time-Series performs better for longer measurement periods (for three out of four investigated height
combinations).

When compared to the extrapolation using only met mast data, the extrapolation accuracy
generally is increased significantly already after a lidar measurement period of only a few days. When
the lidar measurement is carried out over a period of one to two months, the extrapolation error can
be reduced by more than 60% on average. A further increase of the lidar measurement period only
slightly reduces the error.

4.4.2. Seasonality

In a next step, dependencies of the extrapolation accuracy with respect to the temporal position of
the lidar measurement in the year are investigated. Due to their good performance in extrapolating
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wind speed and energy yield (Sections 4.3 and 4.4.1), the analysis is limited to the Linear Regression
and the Classification (relative humidity and wind direction) approaches. As a baseline comparison,
the Average PLE approach is also shown. The seasonal course of Eenergy (arithmetic mean over all sites)
is shown in Figure 9. The lidar measurement duration is set to an exemplary duration of 60 days.
(Increasing the lidar measurement duration flattens the lines and decreases the amplitudes but does
not change the essential conclusions discussed below.) Figure 9 therefore gives an impression on
systematic biases connected to seasonal aspects of the wind climate.

(a) (b)

(c) (d)

Figure 9. The average extrapolation error Eenergy for different extrapolation approaches in dependence
of the start of the lidar measurement, for (a) z2 = 80 m and zt = 140 m; (b) z2 = 80 m and zt = 200 m;
(c) z2 = 100 m and zt = 140 m; (d) z2 = 100 m and zt = 200 m. Selected lidar measurement duration:
60 days.

The seasonal patterns observed in Eenergy resemble those in Figures 4 and 5. In summer, generally
smaller α and Rα values occur while in winter higher values are more frequent. As discussed, this is
likely due to seasonal variations in atmospheric stability conditions. These aspects directly result
in large underestimations of the Average PLE approach when the lidar measurement is performed
in summer and large overestimations when the lidar measurement is carried out in winter periods.
Applying the Linear Regression method significantly decreases the seasonal biases. When a classification
according to relative humidity is applied, the systematic “summer bias” can be decreased further while
a classification according to wind direction allows for achieving slightly more accurate results when
the lidar measurement is carried out in winter.
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To the authors’ knowledge, relative humidity is generally not known for having a significant
influence on the wind profile. Instead, relative humidity as an environmental variable can probably
rather be considered to reflect other variables (mainly atmospheric stability), which, in turn, influence
the wind profile. Heating and cooling of the air reduces or increases the value of relative humidity.
Hence, the relative humidity of the air varies similarly to atmospheric stability, with solar radiation.

At the measurement sites investigated in this study, a substantial variation in relative humidity
can only be detected in spring or summer months. In fall or winter, however, almost only high relative
humidity values occur. As a consequence, for most classification bins, only a relatively small amount
of values is then available to calculate b0 and b1. This is the likely reason that no improvement is
achieved compared to the non-classified Linear Regression approach when the lidar measurement is set
to a winter period.

While for all extrapolation strategies some seasonality remains, the systematic biases can be
reduced when the Classification approach is used.

5. Conclusions

It was shown that the accuracy in the vertical extrapolation of wind speed can be increased
significantly when short-term lidar measurements at the target height are used. Lidar measurements
with a duration of only a few weeks already yielded very good results.

In this context, the power law exponent (serving as a quantity describing the wind shear) was
analyzed, revealing a strong variation of the power law exponent from site to site as well as a
strong height dependence. In particular, the latter aspect leads to high extrapolation errors when the
mast measurement is extrapolated over a large height range and underlines the need for advanced
extrapolation procedures. Carrying out an additional lidar measurement is one possibility to face
this issue. As could be shown, the methodology of incorporating the lidar data into the extrapolation
process is decisive in this context. A simple ratio approach proved to deliver very accurate mean wind
speeds. Larger errors, however, occurred in determining the frequency distribution of wind speed or
the theoretical energy production of a wind turbine. A linear regression procedure proved to yield the
highest extrapolation accuracies in general. Binning the data with respect to certain meteorological
conditions further increased the extrapolation accuracy as seasonal biases, connected to the temporal
position of the lidar measurement in the year, could be decreased. Wind direction and, unexpectedly,
relative humidity served as advantageous classification variables here.

All in all, lidar measurement periods of only one to two months proved to be sufficient to decrease
the extrapolation error in (theoretical) energy yield by around 50% to 70% on average. The effect
is especially momentous for large extrapolation height ranges. Hence, the presented extrapolation
strategies deliver a possibility to decrease the extrapolation error even for large extrapolation ranges
on a level that can be seen acceptable in wind resource assessment. This can be seen to be especially
momentous when considering future trends in the wind energy industry as turbine heights are
expected to continue to increase.
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Abbreviations

The following abbreviations are used in this manuscript:

AEP Annual Energy Production (of a wind turbine)
PLE Power Law Exponent
RMSE Root Mean Square Error
TS Time Series
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