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Abstract: Cloud contamination has largely limited the application of the Moderate Resolution 
Imaging Spectroradiometer(MODIS) normalized difference snow index (NDSI). Here, a novel gap-
filling method based on spatial-temporal similar pixel interpolation was proposed to remove cloud 
occlusions in MODIS NDSI products. First, the widely used Terra and Aqua combination and three-
day temporal filter methods were applied. The remaining missing NDSI information was estimated 
by using similar eligible pixels in the remaining cloud-free portion of a target image through a 
spatial-temporal similar pixel selecting algorithm (SPSA). The MODIS daily NDSI product data 
from 2003 to 2018 in the Qinghai–Tibetan Plateau (China) was used as a case study. The results 
demonstrate that the three-step methodology can generate almost completely cloud-free, daily 
MODIS NDSI images, reducing the cloud-gap fraction from >45% to less than 1.5% on average. The 
validation results of the SPSA method exhibited a high accuracy, with a high R2 exceeding 0.78, a 
low mean absolute error of 2.77%, a root mean square error of 3.78%, and a 96.92% overall accuracy. 
The proposed method can fill cloud gaps without a significant loss of accuracy, especially during 
snow cover transition periods (autumn and spring), which may provide more accurate cloud-free 
NDSI data for climate change and energy balance studies. 

Keywords: MODIS; NDSI; cloud cover; gap-filling; spatial-temporal similar pixel; spatiotemporal 
correlation 

 

1. Introduction 

As an integral part of the Earth’s climate system, seasonal snow is one of the most variable land 
cover types throughout the year and has a strong impact on the radiation and energy balance, 
hydrological and biogeochemical cycles, and even human activities [1,2]. Snow cover characteristics, 
such as the cover extent and duration, are also crucial parameters in hydrological and ecological 
process models [3]. Moreover, meltwater from glaciers and seasonal snow packs provide water for 
nearly one-sixth of the world’s population [4] and more than one-fifth of China’s population, with 
the Tibetan Plateau being the main source of meltwater in China. Therefore, in recent years, the study 
of snow distribution and its spatiotemporal changes has become the focus of numerous studies [5–
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13], such that the timely and accurate acquisition of snow distribution information has become critical 
[9,14,15]. 

Satellite images acquired using remote sensing can provide continuous spatiotemporal 
information on snow coverage over long time series and on a global scale, which is advantageous to 
a large number of researchers [16–22]. Among other widely-utilized snow cover assessment methods, 
MODIS products have become one of the main data sources for ice and snow research due to their 
global coverage, long time series (i.e., the databases are currently updated and have been maintained 
since 2000), high spatial (e.g., 500 m) and temporal (e.g., daily) resolutions, and free access, which 
allow for real-time, accurate, and large-scale snow cover variation monitoring [14]. Extensive studies 
[23–28] have demonstrated that MODIS products exhibit an excellent snow extraction performance, 
with an overall accuracy exceeding 90% under clear-sky conditions. Nonetheless, cloud occlusion in 
MODIS snow cover products often leads to numerous data gaps, which hinders their promotion and 
adoption in environmental research. 

A large number of algorithms have been developed to improve the spatiotemporal continuity of 
MODIS snow products over the past decade [14,25,29–42]. Traditional cloud removal algorithms can 
be divided into four types: temporal, spatial, spatiotemporal, and multi-source fusion methods [14]. 

The Terra and Aqua combination (TAC) method is the simplest and most transparent of the 
temporal methods [40,43–45] and has, thus, become the most popular temporal approach. The TAC 
method can decrease the cloud-gap fraction (CGF) by up to 5%–20% without significantly sacrificing 
the product accuracy [43,46]. The specific rules are the following [14]: if a pixel is cloudy in one 
product, but cloud-free in another (Aqua or Terra), the cloudy pixel will be updated using the 
classification of the cloud-free pixel. Temporal filtering is another popular temporal method that 
directly replaces cloudy pixels using information from previous or subsequent day (or days) pixels 
[21]. However, since snow cover is assumed to remain constant throughout a given temporal interval, 
the accuracy in snow-transitional periods is lower than that in snow-stable periods [47]. 

Furthermore, the spatial filter (SF) and snow line (SNOWL) approaches are among the main 
spatial methods, of which the most common is the SF [39,40,48]. This method consists of replacing a 
cloudy pixel by using four or eight neighboring non-cloud pixels [14]. The SNOWL method [13,38], 
which is also known as the snow transition elevation method [39,49], reclassifies the cloudy pixels as 
snow or land according to the snowpack elevation distribution; cloudy pixels above the snow line 
will be classified as snow, while those below the snow line will be classified as land. 

The spatiotemporal method combines the spatial and temporal methods alternately and 
successively [21]. Therefore, this method is essentially a combination and extension of the temporal 
and spatial methods. 

Substitution is the essence of the above methods, i.e., finding cloud-free pixels to replace cloud-
covered pixels. Except for the snowline method, these methods have the following common 
limitations: 1) The cloud-free pixel used for replacement is typically near the cloudy pixel, regardless 
of the difference in time or space. In other words, the selection of non-cloud pixels is limited by 
distance. Regarding the time difference, the time window is typically set to 2–7 days. In a spatial 
neighborhood, the distance is even smaller, with a spatial window of only 3 × 3 pixels. 2) The 
prediction accuracy tends to decrease with increasing distance [50], such that users must make a 
tradeoff between de-clouding accuracy and de-clouding efficiency. 

The multi-source data fusion method entails the fusion of MODIS products and microwave 
remote sensing data (e.g., Advanced Microwave Scanning Radiometer on Earth Observing System, 
AMSR-E/AMSR-2). Although this method can remove all cloud contamination, large errors are also 
introduced due to the coarse resolution of microwave remote sensing [30]. Wang et al. [43] also report 
that the accuracy of this method is more dependent on the accuracy of the AMSRE product itself. 

Currently, two versions of the MODIS daily snow product have been widely used in most 
studies (i.e., version 5 [51] and version 6 [52]). In version 5, the binary and fractional snow cover are 
provided, where both of which are calculated based on the normalized difference snow index (NDSI) 
through a specific threshold for binary snow cover products [53,54] or a linear regression relationship 
for fractional snow cover (FSC) products [55]. In 2016, MODIS version 6 was released, which no 
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longer provides binary snow cover products but instead offers NDSI products, which can be regarded 
as continuous numerical products [52,56]. Compared with binary snow cover products, NDSI 
products can provide more information, which is more conducive to hydrological and ecological 
process simulations. Additionally, the increased data content (NDSI product) allows for flexibility in 
using the datasets for specific regions and end-user applications [56]. However, traditional cloud 
removal methods have mainly focused on cloud removal for discrete MODIS binary snow cover 
products (i.e., snow or snow-free). Currently, there are relatively few studies on cloud removal 
algorithms for continuous snow cover products (such as the NDSI product in version 6), and there 
have not been many studies that have performed cloud removal for fractional snow cover (FSC, V5) 
products. Dozier et al. [42], for example, first applied the spatiotemporal cube concept to snow 
products in 2008, filling in the gaps in the cloud by interpolating cubic splines in time on each pixel. 
Tang et al. [25] also used the cubic spline interpolation algorithm to de-cloud MODIS FSC products 
monitoring the Qinghai–Tibetan Plateau. Dozier’s algorithm, however, considers only a small 
number of local neighbors; Tang’s algorithm is a simple one-dimensional time interpolation 
algorithm that only considers the time information associated with snow cover and does not include 
the spatial characteristics of snow cover. In the case of a substantial number of continuous cloud cover 
days, a large number of outliers will be generated. 

Dong et al. proposed a cloud removal algorithm for binary snow cover products based on station 
observations and optical data, whereby the conditional probability that a given cloudy pixel 
represents snow cover can be calculated to reclassify the residual cloudy pixels [36,57,58] on the 
condition that the snow depth (SD) is higher than zero at a nearby station [14]. The presence of snow 
in one cloudy pixel can be predicted with data from neighboring weather stations. This method has 
been reported as effective, especially during snow season [36,57,59]; however, the distribution and 
number of meteorological stations limit, to a certain degree, the predictive ability of the snow cover 
reconstruction [14]. Cheng et al. [60] developed a novel approach based on a similar pixel 
replacement method. A spatiotemporal Markov random fields (STMRF) function was developed to 
identify the most appropriate cloud-free pixels to replace a cloudy pixel in MODIS land surface 
temperature products. Hou et al. [30] further developed Cheng’s algorithm, applied it to MODIS FSC 
snow products, and conducted experiments in Xinjiang (China), which yielded good results. The 
validation results based on cloud mask assumptions exhibited a high accuracy, with a high R2 
exceeding 0.8, a lower root mean square error (RMSE) of 0.1, an overestimation error (Equation (13)) 
of 1.13%, an underestimation error (Equation (14)) of 1.4%, an overall accuracy (Equation (12)) of 
93.72%, and a spatial efficiency of 0.78 [30]. 

Here, we propose a novel gap-filling method based on non-local spatiotemporal similar pixels 
and conditional probabilities to eliminate cloud occlusion in daily MODIS NDSI products. This 
algorithm first determines the possible NDSI range of cloudy pixels through spatial similarity, after 
which, the temporal similarity is used as an index to select similar pixels in the cloud-free areas to fill 
the cloud-covered area in the MODIS NDSI products. Therefore, our study focuses on the following 
three goals: (1) a comprehensive assessment of cloud contamination severity in MODIS NDSI 
products (version 6) across the Qinghai–Tibetan Plateau (TP); (2) an evaluation of the potential 
applicability of existing widely-used binary product-based cloud removal methods to continuous 
NDSI products; and (3) the development and accuracy assessment of an innovative cloud removal 
algorithm based on spatiotemporal pixel similarity. 

2. Study Area and Data 

2.1. Study Area 

The Qinghai–Tibetan Plateau (TP) is located in the central Eurasian continent. It ranges 1532 km 
from north to south (26°00′12″N to 39°46′50″N) and 2945 km from west to east (73°18′52″E to 
104°46′59″E), covering an area of over 2.5 million km2 (Figure 1). The TP has a mean elevation 
exceeding 4000 m above sea level (m.a.s.l.) and is among the areas most sensitive to global climate 
change [61]. The TP features a wet and warm summer (from June to August) and a cool and dry 
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winter (from December to February) [62]. Winter temperatures exhibit a large spatial variation, 
ranging from −25 °C in the west to −15 °C in the east [63], providing favorable conditions for the 
preservation of snow cover. Summer temperatures across the TP are generally above 0 °C; however, 
due to very high altitudes and low temperatures (given the decreasing rate of temperature with 
altitude), the abundant precipitation in the summer still causes snowfall in high altitude areas. In the 
southeastern TP, the East Asian Summer Monsoon and Indian Monsoon produce heavy precipitation 
in the summer season. In the western part, westerly winds bring abundant precipitation in winter 
and early spring, mostly in the form of snow [64]. 

Unlike in northeastern China and northern Xinjiang, China, the snow cover in the TP is relatively 
low (less than 1 cm), where the status of the snow cover changes rapidly due to numerous factors, 
such as high solar radiation and high wind speeds [10], which may result in sublimation and snow 
drifting. In certain parts of the TP, snow cover can change substantially, even during a single day. 
Moreover, as it is affected by the East Asian Summer Monsoon and Indian Monsoon [62], the 
southeast of the TP exhibits abundant water vapor, which may lead to large amounts of cloud cover 
(especially in the spring and summer). In certain areas, the average annual cloud cover duration is as 
long as 300 days, where the maximum number of continuous cloud-covered days is greater than 20 
days. The rapid change in snow cover status and high cloud-gap fraction provides significant 
challenges to the study of cloud removal algorithms for snow cover products across the TP. 

 
Figure 1. Location and elevation distribution of the Qinghai–Tibetan Plateau (TP), Southwest China. 
Green points indicate the weather stations distributed across the TP. 

2.2. Data 

2.2.1. MODIS NDSI Products 

Two versions of MODIS daily snow products have been widely used in most studies, i.e., version 
5 [51] and version 6 [52]. In version 5, binary and fractional snow cover are provided, both of which 
are calculated based on the NDSI. 
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In contrast, version 6 of the product contains several significant changes. For instance, binary 
and fractional snow cover estimates are no longer available, while only the NDSI is provided. The 
NDSI snow cover for a given pixel is reported as 0%–100% [52]. The pixels with the other eight codes 
may represent missing data (200), no decision (201), nighttime (211), inland water (237), ocean (239), 
clouds (250), detector saturated (254), and filled (255) [52]. There may be two main reasons for the 
release of NDSI products instead of binary snow products or fractional snow cover (FSC) products 
in version 6: First, the threshold of the binary snow cover product (or regression coefficient of the 
FSC product) has significant regional heterogeneity such that the global unified standard cannot 
achieve an optimal effect. Second, both binary snow cover products and FSC products are generated 
based on NDSI products, which can provide more abundant snow information. Therefore, the NDSI 
product released by version 6 of MODIS is more conducive to user customization. 

MODIS Terra and MODIS Aqua daily NDSI products (MOD10A1 and MYD10A1, Collection 
006) from 1 January 2003 to 31 December 2018 were collected from National Snow and Ice Data Center 
(NSIDC) (http://nsidc.org/). Six tiles (i.e., h23v05, h24v05, h25v05, h26v05, h25v06, and h26v06) were 
required to cover the entire TP. The MODIS Reprojection Tool was then used to mosaic each of the 
six tiles via a nearest neighbor resampling method and re-project them from the sinusoidal projection 
into the Universal Transverse Mercator (UTM zone 45) projection with the World Geodetic System 
1984 (WGS84) datum at a 500-m resolution. 

2.2.2. Digital Elevation Model (DEM) Data 

The NASA Shuttle Radar Topography Mission Digital Elevation Model data (SRTM3, 90 m) 
were provided by the Consortium for Spatial Information (CGIAR-CSI) (http://srtm.csi.cgiar.org). 
The DEM data were mosaicked, re-projected, and resampled to achieve consistency with the MODIS 
NDSI images. The elevation and aspect maps were extracted from processed DEM data for further 
analysis. To further analyze the influence of topographical factors (e.g., elevation and aspect) on the 
accuracy of the proposed algorithm, the elevation from 3000 to 6000 m was divided into 31 100-m 
intervals (regions with an altitude greater than 6000 m were considered as one interval). Similarly, 
the aspect from 0° to 360° was divided into 36 10° intervals. 

3. Methodology 

3.1. Analysis of Cloud Gaps in MODIS NDSI Products 

To determine the number of cloud gaps and cloud cover duration in the MODIS NDSI products 
across the TP, we first reclassified the MODIS NDSI products into two categories: cloud-free (NDSI 
value (0 to 100), where inland water was 137), and clouds (250). Some special cases, such as detector 
saturated (254), missing data (200), and no decision (201), were classified as clouds due to the small 
amount of data available (less than 1%). After reclassification, the monthly and annual cloud coverage 
was calculated to analyze the influence of cloud gaps on the MODIS NDSI products across the TP. 

3.2. Gap-Filling Procedure 

3.2.1. Theoretical Basis 

Unlike construction land or vegetation (such as cropland), snow cover is less affected by human 
activities, and thus, is mainly influenced by natural factors, which play an important role in the 
formation and melting of snow. The distribution of snow cover is mainly affected by meteorological 
factors (e.g., moisture content, atmospheric and land surface temperature, and ocean currents), 
topographic factors (e.g., altitude, slope, shady slope and sunny slope, and windward or leeward 
slopes), and other factors (e.g., solar radiation intensity causing snow to melt, snow drifting and 
subsequent snow redistribution, and land-cover type causing different snow melting rates). 
Therefore, when the meteorological conditions, topographic conditions, and other conditions of the 
two pixels are very similar, the snow cover status of the two pixels, which can be measured using 
NDSI to some extent, might also be very similar. This similar information not only includes the local 
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neighborhood similarity (according to the first law of geography), but also includes the non-local 
similarity [65,66]. 

When a pixel is covered by clouds, its NDSI information is lost. Fortunately, this information 
can be estimated from similar pixels from the remaining known region at the same date and time. 
Similar pixels have the following characteristics: (1) they have nearly equal mean NDSI values in a 
relatively small time window [30], (2) they are relatively close to each other in space [67,68], and (3) 
they have similar change trends in multi-temporal images [69]. Further, (4) when they are 
simultaneously observed, they should have close NDSI values. Thus, in this study, we selected 
continuous multi-temporal images to provide auxiliary information. 

Figure 2 illustrates the NDSI distribution of MOD10A1 in a sample area (within 31 × 31 pixels) 
acquired on (a) 7 November 2010 and (b) 14 November 2010. The fifteen-day continuous NDSI values 
of three pixels are presented in Figure 2c. Compared with the pixel in the red box, the blue pixel better 
matched the trend and average value over time of the target pixel, even though it was farther away 
from the target pixel. Therefore, we suggest that the blue pixel was similar to the target pixel, whereas 
the red pixel was not. 

Based on this principle, the missing NDSI values of the cloudy pixels can be calculated from 
similar eligible pixels in the clear sky region on the same day with the help of multi-temporal 
reference images [30]. 

 

Figure 2. Similar and non-similar pixel schematic: (a) 7 November 2010 and (b) 14 November 2010. 
(c) Normalized difference snow index (NDSI) curve of the target pixel (black), similar pixel (blue), 
and non-similar pixel (red) from 2 November 2010 to 16 November 2010 as an example. The NDSI 
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product is a product that has been de-clouded by the Terra and Aqua combination (TAC) and three-
day temporary filtering (3DTF) methods (see Section 3.2.2). 

3.2.2. Gap-Filling Method 

An innovative cloud removal method based on similar pixel replacement was proposed to 
retrieve the missing NDSI information beneath the cloud gaps in the daily MODIS NDSI products. 
The Terra and Aqua combination (TAC) method and a three-day temporal filtering procedure (3DTF) 
were executed first to fill some gaps before the application of a similar pixel selecting algorithm 
(SPSA). Figure 3 illustrates a detailed cloud removal procedure via the MODIS NDSI product gap-
filling method. 

MOD10A1/Terra MODIS

Terra and Aqua Combination

Three-day Temporal Filter

Similar Pixel Selecting Algorithm

Cloud-free MODIS NDSI Product

Cloud Pixel P in the 
target image T

K most similar pixels

Average NDSI of K similar pixels

Determine the possible range 
of the predicted NDSI value [Mean+Delta-ɛ, Mean+Delta+ɛ ]

M Cloud free candidate pixels 
with in the search window 

Calculate the similarity of 
these M pixels

Image T-10

Image T-11

Image T

Image T+11

Image T+10

...
...

Accuracy Assessment

MYD10A1/Aqua MODIS

 

Figure 3. Schematic of the Moderate Resolution Imaging Spectroradiometer(MODIS) daily NDSI 
products gap-filling procedure. 

1. Terra and Aqua Combination (TAC) 

The daily MOD10A1 and MYD10A1 (hereinafter referred to as MOD and MYD, respectively) 
products were first combined due to the characteristics of clouds that move over time [14]. The 
priority was assigned to MOD, as numerous validation studies demonstrated that it had more 
accurate retrievals than did MYD [26,70]. The specific combination strategy was as follows [30]: when 
a pixel was cloud-free in both MOD and MYD, we used the NDSI value in MOD. When a pixel was 
cloud-free only in one of the products, we used the cloud-free NDSI value. 

2. Three-Day Temporal Filter (3DTF) 

Adjacent temporal filtering is based on the assumption that snow will persist on the land surface 
for a certain amount of time [30]. In previous studies, the size of the time filter window (days) varied 
from one to eight days. Due to the special climate conditions of the TP (high wind speeds easily lead 
to snow redistribution and a thin snow layer is easy to melt quickly), the snow state changes rapidly; 
therefore, a long composite period will introduce errors. In this study, the composite days were set 
to three days (i.e., the day of the cloud coverage, as well as the days before and after cloud coverage). 
When a pixel was covered by clouds and was cloudless the day before and after, the NDSI value 
could be calculated using the following formula: NDSI_predict௖௟௢௨ௗ் (௫,௬) = ଵଶ (NDSI_observed௖௟௢௨ௗି௙௥௘௘்ିଵ (௫,௬) + NDSI_observed௖௟௢௨ௗି௙௥௘௘்ାଵ (௫,௬) ),   (1) 

where NDSI_predict௖௟௢௨ௗ் (௫,௬) is the predicted NDSI value of a cloud-covered pixel (𝑥,𝑦) at date T, and NDSI_observed௖௟௢௨ௗି௙௥௘௘்ିଵ (௫,௬)  and NDSI_observed௖௟௢௨ௗି௙௥௘௘்ାଵ (௫,௬)  are the observed NDSI values of the clear-sky 
pixel (𝑥,𝑦) at dates T − 1 and T + 1, respectively. 
It should be noted that the conditions for the application of 3DTF were very strict. Particularly, the 
predicted NDSI value of the cloudy pixel could be calculated only when the pixel was cloudless the 
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day before and after. The input data for this step were the output products of the previous step (i.e., 
a daily combination of MOD and MYD). 

3. Similar Pixel Selecting Algorithm (SPSA) 

The SPSA can be divided into two steps: a) determine the possible range of the NDSI and b) 
search for the most similar pixels within the possible range and calculate the predicted NDSI value. 

A) Determination of the potential NDSI range 

The physical process of snow accumulation and melting follows a predictable spatial pattern 
that occurs yearly [50]. This recurrence is widely acknowledged; however, to our knowledge, it has 
not been implemented in gap-filling procedures for snow cover products. By employing multiple 
years of MODIS snow cover images, this recurrence pattern was used to develop a snow dynamics 
model to reconstruct the missing NDSI information. Specifically, the NDSI value of a certain pixel 
should fluctuate from the multi-year average NDSI value of the pixel at a given moment with a 
certain deviation degree, which can be expressed as: 𝑅𝑎𝑛𝑔𝑒 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 + 𝐷𝑒𝑙𝑡𝑎 ± 𝜀,    (2) 

where Range is the possible range of the NDSI value, Average is the multi-year average NDSI value at 
a certain time (date T as an example), Delta is the anomaly, and 𝜀 is the error term. Therefore, we can 
use this formula to determine the approximate range of the possible NDSI value of a pixel. 

Suppose that pixel P is a cloud-covered pixel at time T in 2015 (here we take 2015 as an example), 
and P’ is the nearest N clear-sky pixels surrounding pixel P at time T in 2015 (Figure 4a). With pixel 
P as the center, the search radius increases from 10 to 50, with a step length of 5, and keeps expanding 
until the termination condition is satisfied (N cloud-free pixels are found or the window size reaches 
50). In this study, N was set to 20. NDSI images at time T of each year from 2003 to 2018 were selected 
as auxiliary data (Figure 4c). According to these historical images, the average NDSI value of P and 
P’ at time T over 15 years can be calculated using the following formula (Figure 4b): 𝑃ଶ଴଴ଷିଶ଴ଵ଼ തതതതതതതതതതതതത = ଵ஼ ∑ 𝑃௬௘௔௥ଶ଴ଵ଼௬௘௔௥ୀଶ଴଴ଵ  (if 𝑃௬௘௔௥  is cloud free),   (3) 

where 𝑃ଶ଴଴ଷିଶ଴ଵ଼ തതതതതതതതതതതതത denotes the multi-year average NDSI value of pixel P at date T during 2003–2018 
and C is the number of cloud-free pixels at date T from 2003 to 2018. 

According to Tobler’s first law of geography (TFL) [67,68], nearby objects are more closely 
related than distant objects. Thus, closer pixels would have more similar attribute values than pixels 
further apart [71]. When pixel P is covered by the cloud, the deviation degree between the cloud-free 
pixels near pixel P and the multi-year average NDSI of their corresponding position can theoretically 
represent, to a certain extent, the deviation degree between the NDSI value of pixel P and its multi-
year average. Therefore, based on the NDSI value of N clear-sky pixels at time T in 2015 (the pixels 
marked as P’ in Figure 4) and the multi-year average NDSI value at time T in their corresponding 
position, it can be calculated that the Delta value of the P pixels (cloud-covered pixels) at time T in 
2015 deviated from the multi-year average P pixels at time T as follows: 𝐷𝑒𝑙𝑡𝑎 = ଵே ∑ (𝑃′ଶ଴ଵହ ூேூୀଵ − 𝑃′ଶ଴଴ଷିଶ଴ଵ଼ ூതതതതതതതതതതതതതതതത), (4) 

where Delta is the anomaly between the NDSI value of P at time T and the multi-year average NDSI 
value of P at time T, and N is the number of cloud-free pixels that are closest to the cloudy pixel P. In 
this study, N was set to 20. Here, 𝑃′ଶ଴ଵହ ூ  is the NDSI value of the ith clear-sky pixel at time T in 2015, 𝑃′ଶ଴଴ଵିଶ଴ଵ଼ ூതതതതതതതതതതതതതത is the multi-year average NDSI value of date T for the ith clear-sky pixel from 2003 to 
2018, and Delta can be either positive or negative. When Delta is positive (or negative), this indicates 
that the NDSI value of pixel P in the target image (take time T in 2015 as an example) is greater than 
(or less than) the multi-year average NDSI value, which can also indicate that the snow cover of the 
target image is more than (or less than) the average historical value. 

Therefore, the value range of pixel P can be roughly determined as follows: 
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𝑁𝐷𝑆𝐼௥௔௡௚௘௉ = 𝑃ଶ଴଴ଷିଶ଴ଵ଼ തതതതതതതതതതതതത + 𝐷𝑒𝑙𝑡𝑎 ± 𝜀, (5) 

where 𝑁𝐷𝑆𝐼௥௔௡௚௘௉  is the range of the predicted NDSI value of pixel P, and 𝑃ଶ଴଴ଷିଶ଴ଵ଼ തതതതതതതതതതതതത is the multi-
year average NDSI value of pixel P from 2003 to 2018 at time T. 𝜀 is the error term, where its value 
in this study was 10. The lower and upper limits for the value range of NDSI were 0 and 100, 
respectively. 
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Figure 4. Sketch map for calculating the range of the predicted NDSI value. (a) NDSI image from date 
T in 2015 as an example, in which P is a cloudy pixel and P’ indicates the closest N cloud-free pixels 
surrounding P (N was set to 20 in this study). (b) Multi-year average NDSI image from date T, in 
which M indicates the multi-year average NDSI value for each pixel. The information in (b) was 
calculated using (c) the historical NDSI images of date T from 2003 to 2018. 

B) Selecting similar pixels 

We then extracted M cloud-free pixels from the target image, which had an NDSI value in the 𝑁𝐷𝑆𝐼௥௔௡௚௘௉  within a 61 × 61 pixel search window centered at location P, as it is exceedingly time-
consuming to search for similar pixels in the entire study area [60]. To guarantee the precision of the 
SPSA, we let M account for at least 3000 pixels in the search window. If this condition was not 
satisfied, the search window was consecutively expanded to 101 × 101, 141 × 141, and 181 × 181 pixels, 
etc., until the entire study area was covered. The search radius was continuously and dynamically 
expanded with a step length of 20. These M cloud-free pixels are referred to as candidate similar 
pixels in this paper. Here, a 21-day time-series dataset from T − 10 to T + 10 was employed as auxiliary 
data (Figure 5). Then, the similarity of each pixel was calculated between these M candidate similar 
pixels and the cloudy pixel P using the following formula: 𝑆𝐼𝑀𝐼௉೔′௉ = ଵே೎೚ೠ೙೟ × ∑ (100 − 𝐴𝐵𝑆(𝑁𝐷𝑆𝐼௉,௧ − 𝑁𝐷𝑆𝐼௉೔′,௧))ே೎೚ೠ೙೟௡ୀଵ , 

𝑖 ∈ ሾ1,𝑀ሿ, 𝑡 ∈ ሾ𝑇 − 10,𝑇 + 10ሿ, ∀𝑁𝐷𝑆𝐼௉,௧ ∈ [0,100], ∀𝑁𝐷𝑆𝐼௉೔′,௧ ∈ [0,100], 
(6) 

where 𝑆𝐼𝑀𝐼௉೔ᇲ௉  is the similarity between cloud-covered pixel 𝑃 and the ith cloud-free candidate pixel 𝑃௜ᇱ (the value of i ranges from 1 to M) and 𝑁𝐷𝑆𝐼௉,௧ and 𝑁𝐷𝑆𝐼௉೔ᇲ,௧ are the NDSI observations of pixels 𝑃 and 𝑃௜ᇱ at time t, respectively. We note that this calculation can be performed only if both pixels 𝑃 
and 𝑃௜ᇱ have NDSI observations at time t. Here, 𝑁௖௢௨௡௧ is the number of days in the 21-day time 
window when both pixels 𝑃  and 𝑃௜ᇱ  have NDSI observations. 𝑆𝐼𝑀𝐼௉೔ᇲ௉  represents the degree of 
similarity between these two pixels, whose value ranges from 0 to 100. 
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Figure 5. Sketch map for calculating the similarity index, SIMI. 

We note that if the number of valid simultaneous observations between a candidate pixel and 
the target pixel is small in the 21-day time domain, the similarity between these two pixels may not 
be reliable. Therefore, the pixel will be removed from the candidate pixel list. In this study, the 
minimum threshold of simultaneous effective observations was set to 11 times. 

Then, according to the similarity, K cloud-free candidate similar pixels, P’, which were the most 
similar to the cloud-covered pixel, P, were selected. The K value can be customized according to user 
requirements and was set to 20 in this study. Finally, the predicted NDSI value for cloudy pixel P 
was calculated as the arithmetic NDSI mean of the K candidate similar pixels. 

The software used in this study was the Interactive Data Language (IDL, version 8.4). 

3.3. Validation 

3.3.1. Validation Method Based on a “Cloud Mask Assumption” 

Previous studies have typically used snow depth (SD) observations of meteorological stations to 
estimate cloud removal algorithms for the MODIS binary products; however, this validation method 
has problems regarding the verification of MODIS NDSI products. First, there is no clear linear 
relationship between the SD and NDSI [72]; second, the SD of the weather station cannot represent 
the entire pixel at a scale of 500 m (given the scale mismatch between the weather station and the 
pixel). Finally, the distribution of meteorological stations across the TP is mostly concentrated in the 
bottom of the valley at a lower altitude (Figure 1), which is hardly representative of the entire region 
due to its low spatial density; furthermore, there are no records from certain inaccessible and highly 
mountainous areas where the snow cover duration is longer. Therefore, another validation method 
based on a “mask assumption” was adopted in this study. The cloud gaps from other cloudy MODIS 
NDSI images were used to simulate cloud masks for the “cloud-free” MODIS NDSI image, which is 
regarded as the true ground information [40,48,73]. 

The accuracy of the three sub-steps was evaluated independently and sequentially. The cloud 
removal results of the former method were the input data of the latter method. That is, the input data 
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of the TAC method were the MOD10A1 and MYD10A1, while the output results were the TAC 
products, which were used as the input products of the 3DTF method. The cloud removal result 
(3DTF product) of the 3DTF method was used as the input product for the SPSA cloud removal 
method, and finally, the cloud-free MODIS NDSI product was produced using the SPSA method 
(Figure 3). 

The first two steps (TAC and 3DTF) do not include spatial neighborhood information from 
cloudy pixels and only consider the temporal information from cloudy pixels. Therefore, their 
verification method is relatively simple. The specific method is as follows: 

A) For the TAC method: cloud-free pixels with NDSI values ranging from 0 to 100, both in the 
MOD10A1 and MYD10A1, were selected as test samples from 2003–2018. Pixels from MOD10A1 
were taken as the true values, while the corresponding pixels from the MYD (at the same 
location) were taken as the predicted value. Equations (7)–(11) express the evaluation indicators. 

B) For the 3DTF method: from 2003 to 2018, the cloud-free pixels with an NDSI value ranging from 
0 to 100 within three consecutive days were selected as test samples, while the observed value 
of the middle day (date T) was taken as the true value. The arithmetic mean of the previous day’s 
(date T − 1) NDSI and the latter day’s (date T + 1) NDSI was taken as the predicted value. 
Equations (7)–(11) express the evaluation index. 

It should be noted that the evaluation of these two cloud removal methods (TAC and 3DTF) was 
performed day-by-day from 2003 to 2018. Each day, all pixels that satisfied these conditions were 
selected as verification samples. Thus, the accuracy indexes were available for each day. 

C) For the SPSA method: a one-day cloud mask assumption was employed for validation. The 
specific details are outlined below. 

The empirical cumulative distribution function (ECDF) [21,30] of the cloud-gap fraction was 
calculated based on the 3DTF product from 2003 to 2018 and is shown in Figure 6. Cloud contamination 
with a cloud-gap fraction corresponding to the 25th, 50th, and 75th percentile of the ECDF (hereafter 
abbreviated as P25, P50, and P75, respectively) are considered low, moderate, and high rates of cloud 
contamination [30]. The images with a cloud gap fraction closest to P25, P50, and P75 for each month were 
selected and the corresponding cloud masks were extracted for each month. We then selected three 
MODIS NDSI images with the lowest cloud-gap fraction for each month from 2003 to 2018 to be 
designated as “cloud-free” images (i.e., a total of 36 images were selected as “true” images). Each selected 
“cloud-free” NDSI image was related to three mask images, resulting in a total of 108 validation images 
from the 16-year study period. The acquisition date, cloud-gap fraction, and snow fraction information 
from the true images and cloud mask images selected in this study are summarized in Table 1. 

 
Figure 6. Empirical cumulative distribution function (ECDF) of the multi-year average cloud-gap 
fraction for each month in the 3DTF product from 2003 to 2018. As an example, the purple, pink, and 
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yellow boxes represent the cloud-gap fraction under the P25, P50, and P75 conditions, respectively 
for October. Thus, the images with a cloud-gap fraction closest to 9.2% (purple box), 17.5% (pink box), 
and 24.1% (yellow box) were selected as the October cloud mask. 

Table 1. Information regarding the true and cloud mask images used in this study. 

Image Month 
P25 P50 P75 

Date CGF (%) Date CGF (%) Date CGF (%) 

True image 

Jan 18/022 1.52  03/020 1.75  07/028 3.26  
Feb 09/039 3.22  14/032 3.42  10/053 4.40  
Mar 15/084 2.16  10/078 3.10  13/064 3.12  
Apr 07/107 1.09  12/092 2.26  06/119 3.17  
May 09/139 2.03  11/125 2.76  04/129 3.89  
Jun 13/161 2.09  16/155 4.83  13/163 5.05  
Jul 15/206 2.46  08/188 8.49  03/204 9.16  

Aug 11/239 4.62  13/215 6.24  10/219 9.18  
Sep 04/258 0.94  07/260 1.33  15/273 1.36  
Oct 13/282 0.01  16/276 1.08  17/292 1.17  
Nov 10/313 1.20  03/306 1.22  16/315 1.35  
Dec 16/342 1.70  05/349 1.85  17/344 2.51  

  P25 P50 P75 

Cloud mask 
image 

 Date CGF (%) Date CGF (%) Date CGF (%) 
Jan 03/013 13.12  18/029 19.88  09/025 31.09  
Feb 13/040 16.51  04/054 26.31  14/040 39.92  
Mar 15/082 17.19  16/089 26.25  17/073 37.87  
Apr 08/120 20.09  09/119 28.46  06/104 37.18  
May 06/138 20.96  08/127 30.19  18/130 39.24  
Jun 12/170 26.79  03/177 34.20  14/181 43.19  
Jul 07/212 27.22  18/198 34.63  16/206 43.56  

Aug 04/230 24.42  18/231 32.75  03/241 40.53  
Sep 11/263 18.60  04/245 26.32  04/248 33.54  
Oct 15/285 8.66  07/295 17.52  05/276 23.88  
Nov 07/331 5.78  09/325 9.86  09/315 16.30  
Dec 05/355 7.23  05/335 12.90  09/344 19.67  

* The date is marked in the following format: yy/ddd, where “yy” refers to the year and “ddd” 
represents the day of the year (DOY). CGF stands for “cloud-gap fraction.” 

3.3.2. Performance Metrics for NDSI 

Five performance evaluation criteria (i.e., mean error (ME), mean absolute error (MAE), mean 
absolute percentage error (MAPE), root mean square error (RMSE), and the coefficient of 
determination (R2)) were employed and calculated using the following equations: 𝑀𝐸 = ଵே෌ (𝑥௜௉௥௘ௗ௜௖௧௘ௗ −  𝑥௜ை௕௦௘௥௩௘ௗ)ே௜ୀଵ ,   (7) 𝑀𝐴𝐸 = ଵே ∑ 𝐴𝐵𝑆ே௜ୀଵ (𝑥௜௉௥௘ௗ௜௖௧௘ௗ −  𝑥௜ை௕௦௘௥௩௘ௗ),    (8) 𝑀𝐴𝑃𝐸 = ଵே ∑ 𝐴𝐵𝑆ே௜ୀଵ ൫𝑥௜௉௥௘ௗ௜௖௧௘ௗ −  𝑥௜ை௕௦௘௥௩௘ௗ൯ ÷ 𝑥ை௕௦௘௥௩௘ௗതതതതതതതതതതതത  × 100%,   (9) 𝑅𝑀𝑆𝐸 = ටଵே෌ (𝑥௜௉௥௘ௗ௜௖௧௘ௗ −  𝑥௜ை௕௦௘௥௩௘ௗ)ଶே௜ୀଵ ,     (10) 

𝑅ଶ = ( ଵேିଵ෎ (௫೔ುೝ೐೏೔೎೟೐೏ି௫ುೝ೐೏ഢ೎೟೐೏തതതതതതതതതതതതതതതതఙುೝ೐೏೔೎೟೐೏ )(௫೔ೀ್ೞ೐ೝೡ೐೏ି௫ೀ್ೞ೐ೝೡ೐೏തതതതതതതതതതതതതതതఙೀ್ೞ೐ೝೡ೐೏ )ே
௜ୀଵ )ଶ,   (11) 

where 𝑥௜௉௥௘ௗ௜௖௧௘ௗ  is the estimated NDSI value of the ith cloud mask pixel, 𝑥௜ை௕௦௘௥௩௘ௗ  is the 
corresponding true NDSI value, N is the total number of cloud mask pixels, and 𝜎௉௥௘ௗ௜௖௧௘ௗ  and 𝜎ை௕௦௘௥௩௘ௗ denote the standard deviations of the estimated and true NDSI value, respectively. 
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3.3.3. Classification Accuracy 

Binary snow cover products (snow-covered or snow-free) are still widely used in water cycles, 
global climate change, water and heat energy balances, and other research fields. NDSI products can 
be converted into binary snow cover products according to specific thresholds [51], and thus, they 
serve as input parameters for numerous hydrological and climate models. To evaluate the accuracy 
of cloud-free NDSI products obtained by the proposed cloud removal algorithm when converted into 
binary snow cover products, the confusion [74] matrix method (Table 2), which is recommended by 
several studies [14,32,35,75,76], was used in this study to evaluate the classification accuracy of 
different cloud removal algorithms. The threshold for the binary classification used in this study was 
40, which is recommended by the MODIS standard snow cover product. 

Table 2. Confusion matrix comparing the observed and predicted MODIS binary snow cover product. 

  Observed NDSI 
  NDSI (≥𝛔) NDSI (<𝛔) 

Predicted NDSI 
NDSI (≥𝛔) ss sn 
NDSI (<𝛔) ns nn 

*ss, sn, ns, and nn (s refers to snow and n refers to no snow) are the number of correctly hit, false positives, false 
negatives, and correctly rejected pixels, respectively. The σ is the defined threshold values of the observed and 
predicted NDSI values that determine whether a MODIS pixel is covered by snow. In this study, the standard 
threshold of 40, recommended by the MODIS products, was adopted, i.e., σ was set to 40. 

Three validation indices are defined as follows: 𝑂𝐴 = (௦௦ା௡௡)(௦௦ା௦௡ା௡௦ା௡௡) × 100%,    (12) 𝑂𝐸 = ௡௦(௦௦ା௦௡ା௡௦ା௡௡) × 100%,   (13) 𝑈𝐸 = ௦௡(௦௦ା௦௡ା௡௦ା௡௡) × 100%,    (14) 

where the overall accuracy (OA) is the probability that a MODIS pixel is correctly classified as snow 
or snow-free; UE and OE represent the underestimation and overestimation snow error, respectively. 
A perfect estimation of MODIS gives OA = 1, and OE = UE = 0. A completely failed estimation of 
MODIS is OA = 0, and UE + OE = 1 [30]. 

4. Results 

4.1. Cloud Gaps in MODIS NDSI Products across the TP 

An understanding of the spatial and temporal distribution characteristics of clouds across the 
TP is the basis and premise for selecting an appropriate and effective cloud removal method [30]. 
After investigating the cloud gaps in the MODIS NDSI products of the TP, we found that the annual 
average cloud-gap fraction of the study area was 41.62%–47.38% for Terra and 50.61%–56.32% for 
Aqua from 2003 to 2018, with mean cloud-gap fractions of 44.06% and 53.55%, respectively (Figure 
7). The results show that the mean number of cloudy days was 151–172 days for MODIS Terra NDIS 
images and 184–206 days for MODIS Aqua NDSI images, with means of 161 and 195 cloudy days, 
respectively (Figures 7 and 8). Although there were slight differences in the extent and duration of 
cloud contamination from year to year, the spatial distribution and pattern of cloud coverage from 
year to year across the TP seemed relatively stable. 
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Figure 7. Mean cloud-gap fraction and cloud-gap duration of the MODIS NDSI products from 2003 
to 2018. MOD and MYD refer to MOD10A1 and MYD10A1 products, respectively. 

 
Figure 8. Cloud-gap duration maps across the TP, with average values from 2003 to 2018: (a) 
MOD10A1 and (b) MYD10A1. Clouds (250), missing data (200), and no decision (201) were all 
regarded as clouds in this study. 

Overall, the MYD10A1 (obtained from Aqua at 13:30) had approximately 9% more cloud 
coverage than MOD10A1 (obtained from Terra at 10:30). This may have resulted from temperature 
increases, vegetation transpiration, and increases in soil evaporation throughout each day, which 
created conditions that favored cloud formation. The distribution of cloud contamination across the 
TP was very uneven, with high values mainly concentrated on the southeastern part of the TP, 
especially in the Hengduan mountain regions. The annual average cloud cover duration of these 
areas exceeds 250 days, making cloud removal very challenging. 

MODIS Terra NDSI products were taken as an example to further analyze the relationship 
between cloud coverage and time. The monthly average cloud coverages in different elevation zones 
are shown in Figure 9. Based on Figure 9, the monthly multi-year average cloud coverage for each 
elevation zone demonstrated that the proportion of cloud cover in the TP changed with time, which 
occurred as follows: all areas (except for areas with altitudes above 6000 m) showed a similar seasonal 
cycle, reaching their maximum values in summer (June, July, and August), and had an average cloud 
cover of 54.1% (for all areas except the areas above 6000 m). When autumn arrived, the cloud coverage 
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began to decline rapidly from September and reached the minimum value in November (with a mean 
value of 25.7%). Winter and the following spring showed a gradually increasing trend. The opposite 
trend was observed for areas over 6000 m.a.s.l. Cloud coverage peaks in the winter were as high as 
80% in January, and were relatively low in the summer, at approximately 40%. This may have been 
due to MODIS misinterpreting the snow cover as clouds at high altitudes [77]. 

 
Figure 9. Monthly average cloud-gap fraction of MODIS Terra NDSI products in different elevation 
zones. 

Despite the high cloud cover over the TP, most of the cloud cover was concentrated in the 
summer months. This was beneficial for cloud removal in snow products, as previous studies [33,34] 
indicate that, in the summer, when the temperature is at its highest, the remaining snow can be 
considered permanent snow cover, which only exists on the peaks of the highest mountains. This 
type of snow can be considered perennial (i.e., there is always snow under the cloud cover). This 
significantly reduces the need for cloud removal in binary snow products [33,34]. In autumn and 
spring, when the snow cover was sensitive to global climate change, cloud cover was relatively low, 
which facilitated the cloud removal procedure. 

4.2. Effectiveness of the Gap-Filling Methodology 

Figure 10 presents the mean cloud-gap fraction in different months after the execution of each 
gap-filling step. The TAC and 3DTF reduced the cloud gaps by an average of 8.19% (compared to the 
original Terra data) and 9.43%, respectively. The SPSA method removed the remaining ≈25% of cloud 
gaps, leaving only less than 1.5% on average. 
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Figure 10. Mean cloud-gap fraction in different months after the execution of each gap-filling step. 
The cloud-gap fraction refers to the average fraction over the 16 years that were monitored. TAC: 
Terra and Aqua combination, 3DTF: Three-day temporal filtering, SPSA: Similar pixel selecting 
algorithm. The dashed horizontal line represents the average cloud-gap fraction. 

Figure 11 illustrates the spatial distribution of the average number of cloud-gap days (CGDs) for 
the MOD, TAC, and 3DTF products at a seasonal scale. The results indicate that the cloud occlusion 
in the TP was significantly mitigated by the TAC and 3DTF methods. The TAC algorithm reduced 
the number of the CGDs for the MOD products from 41.9, 49.0, 30.6, and 31.8 days to 35.3, 38.8, 23.5, 
and 26.6 days, for spring, summer, autumn, and winter, respectively. Moreover, the 3DTF algorithm 
further reduced these values to 26.1, 30.6, 16.2, and 19.3 days, respectively. For the 3DTF product, the 
areas with CGDs below 30 days in the autumn and winter accounted for 88.9% and 84.1% of the total 
area of the TP, respectively, which suggests a relatively small need for cloud removal in autumn and 
winter. During the spring and summer, areas with more than 60 days of CGD accounted for 3.4% and 
6.9% of the entire TP. This part of the region presented the most difficulties for cloud removal via the 
SPSA method due to a lack of effective temporal information. 
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Figure 11. Seasonal average number of cloud-gap days (CGDs) based on different cloud removal 
methods. The left column refers to the MOD product, the middle column refers to the TAC product, 
and the right column refers to the 3DTF product. (a), (b), (c), and (d) refer to spring, summer, autumn, 
and winter, respectively. 

Figure 12 shows a time-series example of cloud-free NDSI distribution maps after the TAC, 
3DTF, and SPSA gap-filling steps. The remaining cloud-gapped fraction decreased to less than 1% 
after the multi-step cloud removal procedure. Figure 12 displays a complete snowfall and snowmelt 
dynamic process. From 3 January 2010, it first began to snow in western TP. Over the next few days, 
with the movement of the weather system, the snow rapidly spread across the eastern part of the 
Tibetan plateau, reaching the maximum snow-covered area on 5 January. Over the next four days, 
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the snow melted rapidly. The entire process of snowfall and melting occurred very rapidly, in less 
than a week, which reflected the rapid changes in the characteristics of the TP snow state. 

 
Figure 12. Time series of the NDSI maps after the TAC, 3DTF, and SPSA gap-filling steps. The time 
series begins on 3 January 2010 and ends on 8 January 2010. 
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4.3. Accuracy Assessment 

4.3.1. Accuracy Assessment of the Terra and Aqua Combination (TAC) Method 

Figure 13 illustrates the performance metrics for NDSI and the classification accuracy of  
the TAC filter. 

 
Figure 13. Performance metrics for NDSI and classification accuracy of the TAC filter. (a) Box plot of 
MAE (yellow), RMSE (blue), and R2 (pink) for the TAC algorithm. The top and bottom of each box are 
the 75th and 25th percentiles, respectively. The whiskers show the 5th (bottom) and 95th (top) 
percentiles. The horizontal line inside each box represents the median, while the dot inside each box 
is the mean. (b) Scatterplot of the overall accuracy (OA) for the TAC algorithm. (c) Scatterplot of the 
underestimation error (UE, black dot) and overestimation error (OE, red dot) for the TAC algorithm. 
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Based on Figure 13a, the MAE and RMSE had a similar seasonal cycle. Figure 13a shows that the 
low value of the MAE and RMSE occurred in winter (December, January, and February) and summer 
(June, July, and August), with MAE = 2.57 and RMSE = 3.77 for winter and MAE = 2.45 and RMSE = 
3.41 for summer. The high value occurred in the spring (March, April, and May) and autumn 
(September, October, and November), with MAE = 3.38 and RMSE = 4.28 for spring and MAE = 2.86 
and RMSE = 3.81 for autumn. MAE (or RMSE) was lower in winter because the temperature was at 
its lowest in the year, such that it was easy to preserve the snow cover and the snow cover state did 
not change easily. Therefore, the observed values for the MOD (crossing at 10:30) and MYD (crossing 
at 13:30) are relatively close. The reason for the low MAE (or RMSE) in summer was that the snow 
cover on the TP only appeared in high-altitude areas of the highest mountains in the summer. The 
average NDSI of the entire TP was the minimum NDSI of the entire year, such that the MAE (or 
RMSE) was also relatively low. 

Spring, however, was the season in which snow began to melt. With the gradual increase in 
temperature, the snow status changed rapidly, such that the observed values of MOD (crossing at 
10:30) and MYD (crossing at 13:30) could change due to temperature and solar radiation. MAE (or 
RMSE) also showed a trend that first increased and then decreased in the spring. R2 was lower from 
June to September, averaging only 0.52, while the annual average R2 was 0.67. 

The classification accuracy and performance metrics for NDSI had similar characteristics (Figure 
13). The lowest value of the overall accuracy appeared in the spring (OA = 96%), followed by autumn 
(OA = 97%). High values for the OA occurred in winter (OA = 98.1%) and summer (OA = 98.2%). The 
error in the OA was mainly derived from the UE. The UE showed a significant trend over time, with 
high values appearing in spring (UE = 3.2%) and autumn (UE = 2.6%). The reason for this could be 
that the NDSI values observed by the MYD were lower than those observed by the MOD due to the 
snow melting caused by the temperature rise at noon. This phenomenon was most evident in the 
spring. 

Overall, the NDSI values observed using MOD and MYD had a good consistency, with an 
annual average MAE of 2.82. In winter, the consistency was higher, with an MAE of only 2.57. In 
spring and autumn, the MAE values were 3.38 and 2.86, respectively. This indicates that the overall 
de-clouding accuracy of the MOD and MYD fusion method was high, and therefore, this method can 
be employed for cloud removal. 

4.3.2. Accuracy Assessment of the Three-Day Temporal Filter (3DTF) Method 

Figure 14 illustrates the performance metrics for NDSI and the classification accuracy of the 
3DTF. Both the OA and UE changed with time (season), while the OE showed a relatively 
insignificant change with time. The OA was the lowest in spring and autumn (97.2% and 97.6%, 
respectively) and the highest in winter and summer (both exceeding 99%). The annual OE was 
maintained at a very low level (only 0.5%) and depended weakly on time. This indicates that the 
decrease in the OA was mainly due to the contribution of the UE, which was also consistent with the 
findings demonstrated in Figure 14. The annual average OA was high, reaching 98%; the annual 
average value of the UE was 2%, which was greater than that of the OE (0.5%). 



Remote Sens. 2020, 12, 1077 21 of 34 

 

 

Figure 14. Performance metrics for NDSI and the classification accuracy of the 3DTF. (a) Box plot of 
MAE (yellow), RMSE (blue), and R2 (pink) for the 3DTF algorithm. The top and bottom of each box 
are the 75th and 25th percentiles, respectively. The whiskers show the 5th (bottom) and 95th (top) 
percentiles. The horizontal line inside each box represents the median while the dot inside each box 
is the mean. (b) Scatterplot of the overall accuracy (OA) for the 3DTF algorithm. (c) Scatterplot of the 
underestimation error (UE, black dot) and overestimation error (OE, red dot) for the 3DTF algorithm. 

The error associated with the 3DTF method mainly derives from the UE, where the peak UE 
value appeared in the spring and autumn, which was consistent with the snow cover characteristics 
of the TP. The snow layer on the TP was thin, the snow patch was relatively broken, the solar radiation 
was strong, the wind speed was high, sublimation was common, and the snow state changed rapidly. 
As the snow depth was shallow and the snow episodes were short, the snow cover that accumulated 
in the morning of date T may have melted in the afternoon of the same date or at date T + 1. In other 
words, in such a scenario, the NDSI of date T − 1 was zero (the accumulation of snow had not yet 



Remote Sens. 2020, 12, 1077 22 of 34 

 

begun), the NDSI of date T was high (snow began to accumulate on date T), and the NDSI of date T 
+ 1 was low (snow cover began to melt). In this case, the 3DTF method underestimated the NDSI 
value. Moreover, this phenomenon was more common in snow-accumulation (autumn) and snow-
melting periods (spring). On the other hand, in winter, due to the low temperature, the snow cover 
state was more likely to be consistent, such that the UE was low. The reason for the low UE in summer 
was that the snow cover was only distributed on the highest mountains of the TP in summer. The 
snow cover is generally considered to be permanent snow cover, which is in a relatively stable state. 
Therefore, the UE in summer was low and the OA was high. 

In general, the accuracy of the 3DTF method was very high. The annual average OA reached 
98% but the accuracy varied with time. The OA was high in stable periods (winter and summer) but 
relatively low in the snow-accumulation (autumn) and snow-melting periods (spring). 

4.3.3. Accuracy Assessment of the Similar Pixel Selecting Algorithm (SPSA) 

According to the validation method introduced previously, the cloud removal experiment was 
conducted on 108 samples, and the performance of the SPSA algorithm was evaluated regarding the 
two aspects of performance metrics for NDSI and classification accuracy (Table 3). Overall, the 
accuracy of the SPSA algorithm was high. In terms of the performance metrics for NDSI, the annual 
averages were as follows: MAE was 2.77, RMSE was 3.78, and R2 was 0.78. In terms of the 
classification accuracy, the annual average OA was 96.92%, the OE was quite low at only 1.10%, and 
the UE was greater than the OE at 1.98%. Therefore, it can be inferred that the main error source of 
the SPSA algorithm was the UE. 

The performance of the SPSA algorithm was different for the four seasons (Table 3), among 
which, the accuracies for autumn, winter, and spring were close, whereas the situation in summer 
was unique. Among autumn, winter, and spring, autumn had the highest accuracy, followed by 
spring and winter. It is worth noting that, although the absolute indicators (i.e., the MAE, RMSE, and 
OA) in autumn were better than those in winter and spring, the relative indicators (MAPE) in autumn 
were slightly higher than those in winter and spring at 37.84%. This was mainly due to less snow 
cover in autumn compared with winter and spring, such that the relative error was larger. 

Table 3. Performance metrics for NDSI and the classification accuracy for the similar pixel selecting 
algorithm (SPSA). 

Category Index Autumn Winter Spring Summer Annual Average 

Performance metrics for NDSI 

MAE 2.25  3.63  3.49  1.69  2.77  
RMSE 3.42  4.52  4.30  2.86  3.78  

R2 0.82  0.84  0.85  0.62  0.78  
MAPE 37.84% 31.39% 29.25% 71.12% 42.40% 

Classification accuracy 
OA 97.45% 95.65% 96.04% 98.54% 96.92% 
OE 0.90% 1.66% 1.32% 0.53% 1.10% 
UE 1.64% 2.69% 2.64% 0.94% 1.98% 

Summer had the lowest MAE (1.69) and RMSE (2.86) of the year and the highest overall accuracy 
(OA = 98.54%) for the whole year, but its relative error was the worst (MAPE = 71.12%). The R2 was 
also the lowest for the whole year at only 0.62. Therefore, a high summer accuracy (low MAE and 
RMSE, high OA) was considered to be a “false high precision.” The reason for this “false high 
precision” was that there was less snow cover in the summer and more snow-free areas. Even if the 
snow was misclassified in snowy areas, it accounted for only a small portion of the total, such that 
the OA was still high. The SPSA algorithm for summer was limited as summer was the season with 
the highest number of days covered by clouds in a year (Figure 11(b3)), i.e., the number of days 
covered by clouds in certain pixels during summer was nearly 80 days. These pixels did not provide 
valid temporal information. There was little temporal information available during the similarity 
pixel calculation, such that there was a reduction of the accuracy in the SPSA algorithm (R2 was only 
0.62). However, summer snow usually exists only in the high-altitude mountains, which is 
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considered permanent snow [33,34]. The snow state is relatively stable, such that the remaining 
clouds in summer can be removed by other methods [33,34]. 

Figure 15 details the SPSA algorithm. The date associated with the data was 08/010, with an 
image size of 400 × 400 pixels (approximately 40000 km2) (a) and 600 × 600 pixels (approximately 
90,000 km2) (b). Based on Figure 15, the SPSA algorithm could remove almost all cloud contamination. 
From a visual perspective, the SPSA algorithm could restore the missing snow information beneath 
the cloud, rendering the predicted snow distribution pattern highly consistent with the observed 
snow distribution pattern. However, the SPSA algorithm also had certain missing points. The 
omission areas were mostly concentrated in the transition area between snow and land, but not in 
the center of large areas covered with snow. We speculate that the reason for this was a relatively 
thin snow layer in this part of the snow–land boundary, as well as rapid changes in the snow state, 
particularly with newly fallen thin snow, which melted within a short period. Therefore, the 
information provided in the time dimension (both before and after the snow) had a lower NDSI value, 
such that the selection of a similar pixel introduced error. This was also consistent with the conclusion 
listed in Table 3, i.e., the UE of the SPSA algorithm was approximately twice the OE. The SPSA 
algorithm performed well for large cloud areas (Figure 15b). Even when the cloud coverage exceeded 
75%, the missing NDSI value could be reconstructed. However, certain errors were identified within 
large cloud patches, such as region I in Figure 15b. This may have been due to the large size of the 
cloud patch areas, which increased the distance between the target pixel and similar eligible pixels, 
thus reducing the accuracy of the algorithm. 

 

Figure 15. SPSA results of (a) a small scattered patch of clouds and (b) extensive cloud cover from a 
MODIS image located in southeastern TP. The upper-left panel shows a subset of a true MODIS NDSI 
image from 12/092 ((a) CGF = 3.4%, (b) CGF = 4.6%). The upper-right panel represents the 
corresponding subset of a cloud mask from 08/120 ((a) CGF = 35.59%, (b) CGF = 77.64%) including 
clouds (gray) and clear sky (white). The lower-left panel illustrates the hypothetical target image that 
was generated from the true image and the cloud mask image. The lower-right panel is the 
corresponding reconstructed NDSI image using the proposed SPSA algorithm. 

5. Discussion 

5.1. Impact Factor Analysis of the SPSA Algorithm 

To further analyze the relationship between the accuracy of the SPSA algorithm and the cloud 
occlusion rate, we randomly selected five images with a cloud-gap fraction of less than 3%: 08/313 
(CGF = 1.69%), 10/077 (CGF = 2.18%), 12/092 (CGF = 2.26%), 13/321 (CGF = 2.86%), and 16/318 (CGF = 
1.61%). According to the cumulative frequency of the cloud-gap fraction for the 3DTF product (Figure 
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6), the cloud mask images were selected according to the proportion of the annual mean cloud-gap 
fraction from small to large. A total of 40 cloud mask images were selected. Table 4 lists the dates of 
the true and cloud mask image and the cloud fraction. For each true image scene, 40 cloud masks 
with a different cloud-gap fraction (from 3.42% to 64.68%) were employed. Thus, a total of 200 
combinations were validated. The accuracy of the SPSA algorithm was then evaluated according to 
the previously mentioned cloud mask assumption method. 

Table 4. Date and cloud-gap fraction information for true and cloud mask images. 

Image Date 
CG
F  Date 

CG
F  Date 

CG
F  Date 

CG
F  Date 

CG
F  

(%) (%) (%) (%)  (%) 
True  08/313[1

] 
1.69 10/077[2] 2.18 12/092[3] 2.26 13/321[4] 2.86 16/318[5] 1.61 

Image 

Cloud 
mask  
image 

  

18/092[1
] 

3.42 18/359[9] 13.4 
12/265[17

] 
21.8

7 
17/057[25

] 
30.1

6 
08/265[33

] 
39.8

3 
13/146[2

] 
5.01 

17/127[10
] 

14.4
1 

15/034[18
] 

22.9
2 

11/002[26
] 

31.1
1 

12/009[34
] 

41.3
2 

18/011[3
] 

6.34 
18/135[11

] 
15.7

1 
14/063[19

] 
24 

18/002[27
] 

32.1
1 

06/139[35
] 

43.1
3 

11/116[4
] 

7.49 
15/131[12

] 
16.8

5 
08/204[20

] 
25.0

5 
08/237[28

] 
33.1

2 
08/150[36

] 
44.9

8 
09/299[5

] 
8.62 

05/326[13
] 

18.0
2 

04/036[21
] 

26.0
2 

11/168[29
] 

34.2
6 

17/066[37
] 

46.6
6 

07/304[6
] 

9.75 
13/033[14

] 
19.0

5 
08/078[22

] 
27 

14/080[30
] 

35.5
8 

09/090[38
] 

49.4
1 

18/357[7
] 

10.9
3 

05/285[15
] 

19.9 
11/295[23

] 
28.0

8 
13/149[31

] 
36.9

8 
03/030[39

] 
53.2

1 
17/305[8

] 
12.1

9 
18/263[16

] 
20.9

8 
17/266[24

] 
29.2

3 
14/224[32

] 
38.2

5 
18/183[40

] 
64.6

8 
* The date is marked in the following format: yy/ddd[No.], where “yy” refers to the year, “ddd” represents the 
day of the year (DOY), and No. is the serial number of the observed or cloud mask images. CGF stands for 
“cloud-gap fraction.” 

Figure 16 shows the accuracy indexes. In general, with these 200 images as verification samples, 
the average MAE of the SPSA cloud removal method was 3.78, the average RMSE was 4.60, the 
average R2 was 0.88, and the average OA was 95.49%, which was consistent with the previous results 
in this study. 

Subsequently, we calculated the relationship between the accuracy of these 200 groups of 
samples (RMSE and OA were selected as evaluation indicators), the cloud-gap fraction, and the mean 
NDSI of all pixels under the cloud (mean NDSI of all cloudy pixels). 
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Figure 16. Accuracy evaluation indexes: (a) overall accuracy (OA), (b) mean absolute error (MAE), 
and (c) coefficient of determination (R2). The five rows, from top to bottom, represent different dates 
of the true image, while the 40 columns, from left to right, represent the numbers of the index for cases 
with different cloud-gap fractions, corresponding to 3.42% to 64.48% from 1 to 40, respectively (see 
Table 4). 

Figure 17 shows the scatterplots of the relationships among the various accuracy indexes. The 
results show that the accuracy of the SPSA cloud removal method (RMSE and OA) was independent 
of the cloud-gap fraction (R2 = 0.04 for RMSE and 0.01 for OA). However, both the RMSE and OA had 
a strong correlation with the average mean NDSI value of the pixels under the cloud (R2 = 0.84 and 
0.74, respectively). The RMSE was positively correlated with the mean NDSI of the cloudy pixels, 
while the OA exhibited a negative correlation. 
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Figure 17. Relationships between the accuracy indexes: (a) RMSE and the cloud-gap fraction, (b) 
RMSE and the mean NDSI, (c) overall accuracy (OA) and the cloud-gap fraction, and (d) OA and the 
mean NDSI. 

We then further analyzed the prediction results of 108 scene verification datasets used in Section 
3.3.1 according to the zoning of elevation and aspect. The relationship between accuracy and 
topographical factors (elevation and aspect) also provided indirect evidence for our conclusions. 
Figure 18 demonstrates the accuracy’s changing pattern with elevation and aspect. Accuracy 
generally decreased with increasing elevation. Aspect also affected the accuracy of the SPSA 
algorithm (Figure 18). Specifically, the error associated with the sunny slope was small, while that of 
the shaded slope was large. This effect was especially notable between 4000 and 6000 m above sea 
level, but not below 4000 m or above 6500 m. Low areas (<4500 m) exhibited an overestimation and 
high areas (>4500 m) an underestimation (Figure 18b). 

Previous studies have demonstrated a relationship between snow cover and elevation, which 
generally indicates that snow cover duration increases with elevation [6,62,78–81]. Moreover, snow 
cover duration is lower in sunny slopes relative to shaded slopes due to solar irradiation [78,80]. The 
absolute accuracy of the SPSA algorithm can also be attributed to the consistent spatial distribution 
of snow, which is consistent with our previous observations. 
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Figure 18. Relationship between accuracy and topographical factors (elevation and aspect): (a) mean 
absolute error (MAE) and (b) mean error (ME). A positive ME value indicates that the model 
overestimated the true value, whereas a negative value represents an underestimation. 

This result shows that the accuracy of the proposed method was not affected by the cloud-gap 
fraction and had a good robustness under different cloud cover circumstances. However, the NDSI 
itself affected the accuracy. If the mean NDSI value of cloudy pixels was large, cloud removal was 
more difficult, such that there was a reduction in the accuracy. When the mean NDSI was small (e.g., 
clouds were above snowless areas), cloud removal was much easier. 

5.2. Comparison between TAC, 3DTF, and SPSA 

Previous studies have demonstrated the satisfactory accuracy of existing MODIS cloud gap-
filling methods during the stable-snow-cover phase, but these approaches cannot achieve acceptable 
accuracies in the transition phase characterized by snow cover accumulation and ablation [23,47]. 
Compared with the TAC and 3DTF methods, the SPSA algorithm showed no significant difference 
in accuracy during the stable snow-packed phase (winter) and snow-transition phase (spring and 
autumn) (Table 5). The accuracies during autumn and spring (snow-cover accumulation and ablation 
phase) were not lower than that of winter (snow-packed phase), but slightly higher, which suggests 
that the SPSA method was also effective during the snow transition period. This may have been 
because cloud coverage reached a minimum in autumn, during which, time-series information was 
more abundant, thus facilitating the accurate selection of similar pixels. 

The TAC and 3DTF algorithms are widely used in numerous cloud removal algorithms. 
Typically, these two algorithms are implemented first, followed by other algorithms. However, there 
are relatively few studies on accuracy evaluations for these two methods. This study demonstrated 
that both the TAC and the 3DTF methods had high accuracies, which could provide a theoretical 
basis for future studies. The SPSA algorithm could eliminate the remaining ≈25% cloud gaps without 
a significant loss of accuracy, which was the value of the SPSA algorithm. When using the proposed 
cloud removal method, users can specify how to combine the three algorithms according to their 
requirements. Additionally, the SPSA method can be used independently. 

Table 5. Comparisons among the accuracies of the TAC, 3DTF, and SPSA methods. 

Index Method Spring Summer Autumn Winter Average 

OA 
TAC 96.09% 97.71% 96.95% 97.58% 97.08% 
3DTF 97.90% 98.60% 98.30% 98.71% 98.38% 
SPSA 96.04% 98.54% 97.45% 95.65% 96.92% 

MAE 
TAC 3.39  2.45  2.87  2.58  2.82  
3DTF 1.71  1.32  1.48  1.27  1.45  
SPSA 3.49  1.69  2.25  3.63  2.77  

R2 
TAC 0.75  0.52  0.67  0.75  0.67  
3DTF 0.90  0.82  0.89  0.92  0.88  
SPSA 0.85  0.62  0.82  0.84  0.78  
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5.3. Comparison between SPSA and the Multi-Temporal Backward Filter 

The multi-temporal backward filter (MTBF) has been successfully used by numerous studies 
with the MODIS standard snow products and other satellite data [40,58]. Using the MTBF, Hall et al. 
[82] generated cloud-gap filled daily snow cover extent map products. The cloud pixels on the current 
day of M*D10A1 were replaced with the most recent previous cloud-free pixels (snow/snow-free) 
from the M*D10A1 (see Hall and colleagues [82,83] for details). The method proposed in Hall et al. 
[82] is the method that was selected for the NASA MODIS standard snow cover extent (SCE) products 
because of its ease of use and effectiveness, as well as due to its reliance on data from only one sensor 
at a time to produce the results [83]. This method can also be employed for MODIS NDSI products 
[83]. 

We compared the performance of the SPSA and MTBF algorithms. The input data was the 3DTF 
data for both algorithms, including 108 validation images (see Section 3.3.1). The size of the MTBF’s 
backward temporal window ranged from 1 to 10 days. Based on Figure 19a–c, for the MTBF 
algorithm, with an increase in the size of the backward temporal window, the cloud-gapped fraction 
gradually decreased from 17.2% to 0.87%. We note that with an increasing length of the temporal 
window, the cloud-gap fraction decreased dramatically during the first few days. However, as the 
window size increased, the accuracy of the MTBF algorithm decreased concurrently. For the MTBF, 
there was a trade-off between cloud removal efficiency and accuracy. 

Compared with the MTBF at different temporal window sizes, the accuracy of the SPSA was 
higher. On average, the MAE, R2, and OA of the SPSA (MTBF) algorithms were 2.6 (3.8), 0.88 (0.82), 
and 97.5% (95.2%), respectively. 

For different seasons, improvements to the accuracy of the SPSA in the transition period 
(autumn and spring) were significantly better than that in the stable period (winter). The MAE, R2, 
and OA of the SPSA improved by 1.92 (1.73), 0.05 (0.09), and 2.9% (2.3%), respectively, in spring 
(autumn) while those for winter only improved by 0.72, 0.01, and 1.0%, respectively. This shows that 
the advantage of the SPSA algorithm for snow transitions was more evident. 
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Figure 19. Comparison of the performance of the SPSA and multi-temporal backward filter (MTBF). 
(a), (b), and (c) show the temporal variations in MAE, R2, and OA, respectively, with the length of the 
temporal window. The whiskers show half of the standard deviation. (d), (e), and (f) show the 
accuracy indices of the SPSA and MTBF during different seasons. The top and bottom of each box are 
the 75th and 25th percentiles, respectively. The whiskers show the 5th (bottom) and 95th (top) 
percentiles. The horizontal line inside each box represents the median while the red dashed line inside 
each box is the mean. 

5.4. Advantages and Limitations of the SPSA 

The precision of the SPSA was not affected by the cloud amount (i.e., cloud-gap fraction in a 
given day), which highlights the robustness of this approach. The SPSA algorithm could 
comprehensively account for the spatiotemporal correlation of the MODIS NDSI product time series, 
and thus, it could fully use the spatiotemporal correlation (similarity) of pixels, which also 
contributed to the high precision of the SPSA algorithm, especially during transition periods. 
Nevertheless, given that the SPSA algorithm depends on temporal information (i.e., the algorithm 
requires continuous time-series information to calculate the SIMI similarity index), when clouds 
covered a pixel for a long period, the algorithm was unable to provide effective temporal information, 
such that similar pixels could not be identified. In other words, the SPSA algorithm was limited in 
areas (or seasons) with a large number of consecutive cloudy days, which was why the accuracy of 
the SPSA algorithm was lower in summer (Figure-11(b3)). 

Moreover, the SPSA algorithm still has certain limitations that require improvements. For 
example, in this study, we used fixed parameters M (3000) and K (20) to select M candidate similar 
pixels and K pixels with the highest similarity, which was arbitrary and sub-optimal. In future 
studies, we will attempt to use a variable adaptive algorithm to optimize the parameter selection 
process of the SPSA algorithm. Finally, cloud removal algorithms for pixels that have been covered 
by clouds for long periods should also be further developed. 

6. Conclusions 

Snow cover is one of the Global Climate Observing System (GCOS) essential climate variables. 
MODIS snow cover products have been widely used to investigate the distribution, extent, and 
duration of snow, along with snowmelt timing, which are critical for characterizing Earth’s climate 
system and its changes [82,83]. However, clouds frequently create gaps in the snow cover data, which 
is the most important factor affecting the ability to accurately map the snow cover extent or duration. 
Compared with binary snow cover products, the MODIS NDSI products (version 6) released in 2016 
provide more abundant and continuous information of the snow cover status, thus facilitating the 
development of new cloud removal methods for snow cover products. 

This study first systematically assessed the severity of the cloud contamination of MODIS NDSI 
products (version 6) across the TP. The results demonstrated that clouds were mainly concentrated 
in the southeast. Furthermore, cloud contamination was found to be largely season-dependent. 

A novel cloud removal method was proposed for MODIS NDSI products, which mainly 
included three parts: (a) TAC, (b) 3DTF, and (c) SPSA. The validation results elucidated the 
differences in the efficiency and precision of each algorithm. The cloud removal efficiency of the TAC 
was approximately 9%, reducing the cloud-gap fraction from 45.2% (MOD products) to 35.7% (TAC 
products). The accuracy of the TAC was generally high (MAE = 2.82, R2 = 0.67, and OA = 97.08%); 
however, this was significantly affected by time (season), with high accuracies observed in winter 
and summer, and low accuracies in spring and autumn. 

The 3DTF method could remove approximately 10% of the cloud gaps and reduce the cloud-gap 
fraction from 35% (TAC products) to 25% (3DTF products). The 3DTF method exhibited a high 
accuracy with MAE = 1.45, R2 = 0.88, and OA = 98.38%. The accuracy of this method was also season-
dependent. Specifically, in stable periods, the 3DTF yielded a high precision, whereas, in the 
transition phase of snow cover accumulation (autumn) and ablation (spring), this algorithm had a 
relatively low accuracy, which was similar to the accuracy variation of the TAC method over time. 
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The SPSA method fully considered the effective information of the temporal and spatial 
dimensions to estimate the NSDI for a cloud-covered pixel. The possible range of the cloudy pixel 
NDSI value was first determined using spatial information, and then similar pixels within this 
potential range in the surrounding clear-sky area were selected based on the temporal similarity 
index to predict the missing NDSI information. This algorithm was efficient at filling almost all 
remaining cloud gaps without a significant loss of accuracy. The validation results from 108 one-day 
cloud-masked images based on cloud assumptions showed that the SPSA method provided good 
stability and applicability. The annual averages were as follows: MAE was 2.77, MAPE was 42.40%, 
RMSE was 3.78, and R2 was 0.78. The annual average AO, OE, and UE were 96.92, 1.10, and 1.98%, 
respectively. Even if the cloud-gap fraction exceeded 60% (3DTF products), the SPSA still maintained 
a high accuracy. Compared with MTBF, the SPSA performed better, especially in transition periods 
(autumn and spring). 

The accuracy of the snow products depended on numerous factors. In this study, we mainly 
focused on the accuracy of the gap-filling method but did not address the inherent accuracy of the 
MODIS snow maps because that has been documented elsewhere by numerous previous studies. 
Our study demonstrated that the uncertainty in the SPSA was greater in areas (or seasons) with 
frequent and persistent cloud cover, such as in southeastern TP in summer. 

Various remote sensing products for land surface properties suffer from cloud gaps, which 
largely limit their applications. In this study, the application of NDSI data recovery produced good 
results. The ability of the SPSA for the reconstruction of other data and the gap-filling of continuous 
numerical physical quantities with recurring patterns, such as land surface temperature (LST) or the 
vegetation index (VI), should be examined in the future. Certain aspects of this study will be the 
subject of future investigations. Additionally, the applicability of the SPSA algorithm still requires 
further study to better characterize its strengths and limitations. 

Data Availability: The cloud-free MODIS NDSI data product across the Tibetan Plateau generated in this study 
will be made publicly available from Zenodo at https://zenodo.org/record/3700229#.XmkR-KgzY2w (last access: 
10 March 2020). The codes are also available for download. 
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