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Abstract: In this study, the specific differential phase (Kdp) is applied to attenuation correction for
radar reflectivity ZH and differential reflectivity ZDR, and then the corrected ZH , ZDR, and Kdp
are studied in the rain rate (R) estimation at the X-band. The statistical uncertainties of ZH , ZDR,
and R are propagated from the uncertainty of Kdp, leading to variability in their error characteristics.
For the attenuation correction, a differential phase shift (Φdp)-based method is adopted, while
the statistical uncertainties σ(ZH) and σ(ZDR) are related to σ(Kdp) via the relations of Kdp-specific
attenuation (AH) and Kdp-specific differential attenuation (ADP), respectively. For the rain rate
estimation, the rain rates are retrieved by the power-law relations of R(Kdp), R(Zh), R(Zh, Zdr),
and R(Zh, Zdr, Kdp). The statistical uncertainty σ(R) is propagated from ZH , ZDR, and Kdp via
the Taylor series expansion of the power-law relations. A composite method is then proposed to
reduce the σ(R) effect. When compared to the existing algorithms, the composite method yields
the best performance in terms of root mean square error and Pearson correlation coefficient, but shows
slightly worse normalized bias than R(Kdp) and R(Zh, Zdr, Kdp). The attenuation correction and
rain rate estimation are evaluated by analyzing a squall line event and a prolonged rain event.
It is clear that ZH , ZDR, and Kdp show the storm structure consistent with the theoretical model,
while the statistical uncertainties σ(ZH), σ(ZDR) and σ(Kdp) are increased in the transition region.
The scatterplots of ZH , ZDR, and Kdp agree with the self-consistency relations at X-band, indicating
a fairly good performance. The rain rate estimation algorithms are also evaluated by the time-series of
the prolonged rain event, yielding strong correlations between the composite method and rain gauge
data. In addition, the statistical uncertainty σ(R) is propagated from ZH , ZDR, and Kdp, showing
higher uncertainty when the large gradient presents.

Keywords: rain rate estimation, attenuation correction, X-band weather radar

1. Introduction

The radar reflectivity (ZH), differential reflectivity (ZDR), and specific differential phase (Kdp) plays
an important role in various hydrological and meteorological applications for X-band polarimetric
weather radars, such as quantitative precipitation estimation [1–3], hydrometeor classification [4,5],
and raindrop size distribution retrieval [6,7].

The major limitation of the X-band frequency is strong rain attenuation effects on the conventional
ZH , but the X-band radars have some advantages over the longer wavelengths, including finer
resolution with a smaller antenna, easier mobility, and lower cost. The radars with dual-polarization
capacity can also measure the backscattering properties of hydrometeors at two orthogonal
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polarizations, providing polarimetric variables such as ZDR and Kdp [8–11]. As the parameter Kdp is
the phase measurement of the radar wave, it is immune to the attenuation effects on the scattering
amplitudes [12]. Therefore, the Kdp can be used for the attenuation correction of ZH and ZDR
via the relations of Kdp-specific attenuation (AH) and Kdp-specific differential attenuation (ADP),
respectively. [13] showed that AH and ADP have a linear relation with Kdp, and thus the path-integrated
attenuation (PIA) is closely related to the differential phase shift (Φdp). The Φdp-based algorithm has
been improved for the X-band radars [14–16], and adapted to the S- and C- band radars [17,18].
In [19] obtained the total PIA from the increase in Φdp, and proposed an optimization method called
the ”ZPHI” rain-profiling algorithm. For ZDR correction, [20] calculated the path-integrated differential
attenuation from the increase in Φdp. [21] notably applied the self-consistency relations of ZH , ZDR,
and Kdp, leading to a self-consistent ZPHI algorithm. Later, this method was adapted to and evaluated
using the X-band radars [22,23]. Although the self-consistent ZPHI method yielded the “optimal”
coefficients for the correction, [24] argued that the Φdp-based algorithm gives a good performance with
a minor degradation when compared to the ZPHI algorithm.

Moreover, ZH , ZDR and Kdp are important variables for radar rain rate (R) estimation, which
have been intensively investigated during the past decade [25–31]. In the United States, the WSR-88D
operational radar network is primarily used for this purpose, but the S-band radars may not fully
cover the surface precipitation at the far-range due to terrain blockage and Earth’s curvature effect.
Nevertheless, X-band radars can fill the observational gaps by providing enhanced sampling near
the ground [32]. Consequently, X-band radars can provide accurate surface precipitation data suitable
for hydrological applications. It is well known that the radar rain rate estimation is sensitive to
raindrop size distribution (DSD), which varies in space and time in the same storm. The high
spatiotemporal resolution of X-band radar data can capture the variability of the DSD, producing
accurate microphysical information of the storm. Furthermore, the rain rate estimation using the R(Kdp)

relation is less sensitive to DSD variation when compared to those for the R(Zh) and R(Zh, Zdr)

relations [33], but the R(Kdp) algorithm is affected by the mean drop shape [34]. The X-band R(Kdp)

algorithm is much more sensitive to lower rain rates than those at S- and C-band frequencies, suggesting
that the X-band radar is suitable for lighter rainfall events. In addition, the R(Kdp) algorithm is also
immune to partial beam blockage and hail contamination [35,36].

In [37], we proposed a Gaussian mixture method (GMM) for Kdp estimation, which can not only
retrieve mean Kdp, but also obtain the statistical uncertainty of Kdp, denoted as σ(Kdp). In this study,
we apply Kdp to the attenuation correction and the rain rate estimation for the X-band radar
at the University of Missouri (MZZU) to provide radar hydrological applications. The corrected ZH
and ZDR have good agreement with the self-consistency relations for the X-band radars, while the rain
rate retrievals are consistent with the rain gauge data. The statistical uncertainties of ZH , ZDR and
R(Kdp), denoted as σ(ZH), σ(ZDR) and σ(R), are propagated from GMM σ(Kdp), leading to variability
in their error characteristics. The statistical uncertainties of ZH , ZDR, Kdp, and R can be used to study
the propagation of uncertainty in the hydrological model.

This paper is organized as follows. Section 2 introduces the experimental site, the radar system and
the radar-gauge data. Section 3 briefly describes the data masking for the clutter removal, the Gaussian
mixture method for Kdp estimation, and the propagation of uncertainty in the attenuation correction.
Section 4 derives the algorithms of R(Kdp), R(Zh), R(Zh, Zdr) and R(Zh, Zdr, Kdp) for the rain rate
estimation, and investigates the propagation of uncertainty of R from the uncertainties of ZH , ZDR and
Kdp. Furthermore, a composite method is proposed to reduce the effect of the uncertainty of R. Section 5
evaluates the attenuation correction and rain rate estimation by analyzing two rainfall cases, one of
which is a squall line event and the other is a prolonged rain event. The time-series of the prolonged
rain event is compared to the radar-gauge data. Finally, Section 6 concludes the paper. In addition,
Appendix A discusses the propagation of the uncertainty in the ZPHI method and the associated rain
rate estimation.
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2. Experimental Site and Data

This study analyzes the rainfall measurements collected by the MZZU radar and rain gauges (RGs)
during the Missouri Experimental Project to Stimulate Competitive Research (EPSCoR). In this section,
we first discuss the significance of weather radar surveillance in central Missouri, and then describe
the radar system and data.

2.1. Significance of Weather Radar Surveillance in Central Missouri

Central Missouri has a typical continental climate characterized by strong seasonality
in precipitation due to the inland location. In summer, moist and warm air masses from the Gulf
produce abundant rain by frontal and convective processes. The total amount of summer precipitation
is twice than that of winter precipitation on average. In winter, dry and cold air masses invade from
northern plains, producing rain, snow and mixed-phase precipitation. Spring and fall are transitional
seasons when the precipitation abruptly changes due to fast-moving cold fronts. Additionally,
hail occurs throughout the entire year, but it is more likely to be observed in spring. In all, central
Missouri is a good experimental location to study a variety of precipitating events using the radar
observations.

In Missouri, the amount of precipitation water averages 1083 mm per year, a large portion of which
is evaporated back to the atmosphere or transpired by plants. In the summer months when the loss
of the water is high, a drought may occur due to the lack of rainfall. According to [38], if a month
has a precipitation amount of less than 40% of the climatological average, the average probability of
drought is about 15%. Furthermore, for the months of April through October, the probability of drought
is 13% when three consecutive months have a precipitation amount of less than 60% of the historical
average. The drought may occur as a result of precipitation deficiency, indicating the importance of
precipitation surveillance in central Missouri.

Central Missouri is drained by tributaries of the Missouri River, which flows eastward
into the Mississippi River. Tributary flooding is expected once or twice per year,
while thunderstorm-producing flash flooding occurs more frequently in the minor streams in spring.
In contrast, the main steam flooding caused by prolonged periods of heavy rain is less frequent,
but it may occur in the summer. On the other hand, there are about 30 tornadoes in Missouri each year,
including 8 strong or violent tornadoes. Records show that about 70% tornadoes occur between March
and June, during which 25% occur in March. Notably, tornadoes have been reported in Missouri every
year. Because of the high spatiotemporal resolution, the radar can provide timely warnings to reduce
the fatalities and economic losses of flooding and tornadoes.

2.2. System and Dataset Description

As part of the EPSCoR program, a new X-band dual-polarization Doppler radar (MZZU) was
deployed in South Farm Research Center (38.906◦ N, 92.269◦ W) in central Missouri in mid-2015.
The data have been available in real-time since September 2015. During the study period between
April 2016 and June 2018, the MZZU radar operated in a volumetric scanning mode at 9 elevation
angles to obtain instantaneous measurements of precipitation every 3–5 min. The radar range is equally
sampled every 260 m between 1.3 and 94.64 km, yielding 360 gates for each ray. Moreover, the radar
uses a parabolic dish antenna with a beam width of 1.27◦, leading to an angular resolution of about 1◦.
For a distance of 60 km, the radar beam gives a width of approximately 1 km. Overall, the radar can
obtain the data satisfying the criteria of a minimum temporal resolution of 1–5 min and a minimum
spatial resolution of 1 km, as recommended by [39,40].

From 6 April 2016 to 2 June 2018, the radar collected 19,698 volumetric scans. To analyze
the performance of radar quality control, we selected two representative events occurred on
7 March 2017 and 2–4 July 2016. Table 1 presents the storm characteristics, including movement,
size, shape, duration and type. On one hand, the convective case records the phenomena of rain and
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hail accompanied with tornadoes. When the storm is propagating southeastward, it is manifested
as a straight-line shape, lasting 5–6 h. On the other hand, the stratiform case presents prolonged rain
on a relatively large scale.

Table 1. Summary of two events for attenuation correction and rain rate estimation.

Date Type Phenomena Movement Shape and Size Duration

7 March 2017 Convection Rain, hail, and tornado Southeast Squall line, small scale 5 h
2–4 July 2016 Stratiform Rain Northeast Mesoscale 27 h

The radar rain rate is retrieved by polarimetric variables and compared to the RG data.
Under the radar coverage, there are four RGs with a minimum resolution of 0.254 mm (or 0.01 inch),
including Bradford Farm (38.897◦ N, 92.218◦ W), Sanborn Field (38.942◦N, 92.320◦W), Auxvasse
(39.089◦N, 91.999◦W) and Williamsburg (38.907◦N, 91.734◦W). Their horizontal distances to the radar
are 4.4 km, 6.0 km, 30.8 km, and 46.2 km, respectively, leading to radar beam heights at 0.8◦

tilt of 315 m, 337 m, 724 m and 999 m above sea level (ASL), respectively. Due to radar side
lobes, the radar measurements at Bradford and Sanborn suffer from clutter contamination, giving
a reduction of correlation coefficient of the MZZU-RG comparison data. Therefore, we consider
the second elevation at 2◦ at Bradford and Sanborn, with the beam heights of 410 m and 465 m
ASL, respectively. The rain gauges are carefully maintained and calibrated at least once a year for
hydrological applications, and a simple quality control is performed to remove zeros and anomalously
high values (250 mm in an hour).

It is noted that the radar collects instantaneous measurements every 4–5 min, whereas
RGs obtain the precipitation accumulations over 60 min. Therefore, it is necessary to average
12–15 consecutive radar scans to derive the hourly rain amounts. Moreover, the radar and RG
data may both include some uncertainties, such as spatial variability of rainfall, measurement errors,
calibration errors, resolution errors, Kdp-rain rate conversion errors and errors due to winds and local
disturbances (e.g., [41,42]). The uncertainties related to the spatial variability and measurement errors
become even larger during the events of flash flooding [2]. To have a better agreement between the two
types of instruments, the radar estimates are averaged across an area of 2◦×0.5 km, i.e., 1 azimuthal
angle and 1 range gate on either side of an RG. The selected smoothing region is consistent with
the previous studies at other frequencies (e.g., [43]).

3. Quality Control

The quality control of the weather radar data is crucial for the radar products and model analysis.
In this section, we first remove the clutter using a simple clustering procedure and then estimate the Kdp
data fields with a Gaussian mixture method (GMM). Finally, we derive the attenuation-corrected ZH
and ZDR and their statistical uncertainties with the GMM Kdp.

3.1. Clutter Removal

The noise and residual clutter in ZH , ZDR, and Φdp need to be removed prior to the rain rate
estimation. As this step is independent of the Kdp estimation and attenuation correction, the existing
techniques may be adopted with respect to the radar specifications and research purposes [44–46].
In this study, a simplified Gaussian mixture method is applied to the MZZU radar data [37]. The range
profile of Φdp is first separated into multiple clusters, each of which corresponds to a data segment.
Secondly, a segment is classified into weather and clutter by comparing the weight of each data segment
with the pre-set thresholds. Thirdly, the clusters are evaluated based on the types of the segments.
Fourthly, azimuthally isolated data points are removed to yield the clean Φdp data. Finally, the ZH and
ZDR data are processed referring to the clean Φdp.
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3.2. Kdp Estimation

The prevalent method for Kdp estimation is a linear regression model (LRM), which fits a first-order
polynomial function to the range profile of Φdp [12]. It is formulated as

y = β0 + β1x + ε, (1)

where Φdp is denoted as y, the radar range is denoted as x, β0 is the intercept, β1 is the slope, and ε

is the error. The error ε is individually and independently distributed, and drawn from a zero-mean
Gaussian distribution with variance σ2. The specific differential phase Kdp is then estimated by
the slope β1, yielding:

LRM Kdp = β1 =
∑n

i=1(xi − x̄)yi

∑n
i=1(xi − x̄)2 , (2)

where n is the number of gates and x̄ is the mean value in the n gates. As ε is the only stochastic
variable, i.e., σ2(y) = σ2, the variance of Kdp is estimated as

LRM σ(Kdp) = σ2(β1) =
σ2

∑n
i=1(xi − x̄)2 . (3)

For linear polarization, σ2 is related to the variance in phase for each of the two polarizations [47],
leading to σ(Φdp) = 2.61◦ using 32 pulses for the MZZU radar. By substituting to Equation (3), it
yields σ(Kdp) = 0.1 deg km−1 if we apply 31 range gates with a gate spacing of 260 m. Moreover,
as the variance of Kdp is a constant inherited from σ2(Φdp), lower Kdp has higher coefficient of

variation
(

σ(Kdp)/Kdp

)
compared to higher Kdp. For example, if the radar collects a datum of

Kdp = 0.1 deg km−1, its coefficient of variation is about 100%, whereas the coefficient of variation is
only 10% for Kdp = 1.0 deg km−1.

Nevertheless, it is clear that the assumption of σ2(ŷ) = σ2 may not always hold when
the randomness of y is considered in the data generation model. If the variable y follows a probability
distribution with mean ȳ and variance σ2(y), the estimate ŷ is

ŷ = ȳ, (4)

σ2(ŷ) = σ2(y) + σ2. (5)

From Equations (4) and (5), we can see that the data generation model leads to a better
representation of the random error of Φdp. Therefore, [37] proposed a probabilistic method based
on a Gaussian mixture model for Kdp estimation using the MZZU radar data. The Gaussian mixture
method (GMM) can not only estimate the expected values of Kdp by differentiating the conditional
expectation of Φdp, but also calculate the variance of Kdp by regarding the errors in the calculation of
the first derivative of Φdp.

In this method, the range gate and the Φdp data are fitted into a Gaussian mixture, i.e.,

p(x, y) =
m

∑
i=1

wiN (x, y; µi, Σi), (6)

where x is the range gate, y is the Φdp, m is the number of components in the mixture, wi is a weight
with ∑m

i=1 wi = 1, and N (x, y; µi, Σi) represents a multi-variant Gaussian distribution with mean

µi =

(
µx

i
µ

y
i

)
and covariance Σi =

(
Σxx

i Σxy
i

Σyx
i Σyy

i

)
. The parameters are iteratively computed by



Remote Sens. 2020, 12, 1072 6 of 28

an Expectation-Maximization algorithm. Subsequently, the probability of y conditioned on x is also
a Gaussian mixture, yielding

p(y|x) =
m

∑
i=1

wy|x
i N (y; µ

y|x
i , Σy|x

i ), (7)

wy|x
i =

wiN (x; µx
i , Σxx

i )

∑m
j=1 wjN (x; µx

j , Σxx
j )

, (8)

µ
y|x
i = µ

y
i + Σyx

i (Σxx
i )−1(x− µx

i ), (9)

Σy|x
i = Σyy

i − Σyx
i (Σxx

i )−1Σxy
i , (10)

where wy|x
i , µ

y|x
i , and Σy|x

i are the conditional weight, mean, and covariance, respectively.
The mean differential phase shift Φdp is then retrieved by the mathematical expectation of

Equation (7). Let fi(x) = wiN (x; µx
i , Σxx

i ) and f (x) = ∑m
i=1 fi(x), the expected value of y conditioned

on x is expressed as

GMM Φdp = E(y|x) =
m

∑
i=1

fi(x)
f (x)

(aix + bi), (11)

ai = Σyx
i (Σxx

i )−1, (12)

bi = µ
y
i − Σyx

i (Σxx
i )−1µx

i . (13)

Meanwhile, its variance is given as

σ2(y|x) =
m

∑
i=1

wy|x
i

[
Σy|x

i +
(

µ
y|x
i

)2
]
−
(

m

∑
i=1

wy|x
i µ

y|x
i

)2

. (14)

Substituting Equation (14) to Equation (5), the variance of Φdp is finally obtained by

GMM σ2(Φdp) = σ2(ŷ|x) = σ2 +
m

∑
i=1

wy|x
i

[
Σy|x

i +
(

µ
y|x
i

)2
]
−
(

m

∑
i=1

wy|x
i µ

y|x
i

)2

. (15)

For simplicity, we assume that σ is 2.61 deg km−1 for the MZZU radar.
By taking the derivative of Equation (11) with respect to the radar range x, Kdp is retrieved by

GMM Kdp = E′(y|x) = 1
f 2(x)

{
m

∑
i=1

m

∑
j=1

fi(x) f j(x)

[(
x− µx

j

Σxx
j
−

x− µx
i

Σxx
i

)
(aix + bi) + ai

]}
, (16)

Moreover, the variance of Kdp is approximated by a Taylor series expansion, i.e.,

GMM σ2(Kdp) = σ2(ŷ′|x) ≈ [E′′(y|x)]2σ2(φdp) = (K′dp)
2σ2(φdp), (17)

where σ2(Φdp) is given in Equation (15). The derivative of Kdp is expressed as

K′dp = 2
m

∑
i=1

ai(w
y|x
i )′ +

m

∑
i=1

(aix + bi)(w
y|x
i )′′, (18)
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where

(
wy|x

i

)′
=

gi(x)
f 2(x)

=
1

f 2(x)

m

∑
j=1

f j(x) fi(x)

(
x− µx

j

Σxx
j
−

x− µx
i

Σxx
i

)
, (19)

(
wy|x

i

)′′
=

g′i(x) f (x)− 2 f ′(x)gi(x)
f 3(x)

, (20)

f ′(x) = −
m

∑
j=1

x− µx
j

Σxx
j

f j(x), (21)

g′i(x) =
m

∑
j=1

f j(x) fi(x)

(
x− µx

i
Σxx

i
−

x− µx
j

Σxx
j

+
1

Σxx
j
− 1

Σxx
i

)
. (22)

It can be found that Kdp is estimated by the derivative of the mathematical expectation of Φdp
conditioned on the range x, while the variance of Kdp is related to the range derivative of Kdp and
the variance of Φdp.

It is known that the X-band radar data are affected by ambiguous Φdp and backscattering
differential phase shift δco ([37], Figure 5). To correct these errors, we compare the means of two
consecutive clusters along the range. If the latter cluster has a mean larger than the former one by
80◦, the latter one is labeled as ambiguous Φdp and unfolded by adding 180◦. On the other hand,
the latter cluster is removed due to δco if its mean is 85◦ smaller than the former one or if its weight is
less than 0.0501.

Moreover, a finite impulse response (FIR) filter is applied to reduce the Kdp variances [48]. In [37],
the filtering for each ray is optimized in terms of relative square error, leading to a window length
between 29 and 33 gates for the MZZU radar. As discussed in [49], the spatial resolution gives a strong
correlation with the temporal resolution, giving a relation of r = 5t0.3 where t in min and r in km.
If the radar data are updated every 4.5 min, the spatial resolution requires a minimum of 7.85 km,
equivalent to 31 range gates.

3.3. Attenuation Correction

It is important to do the attenuation correction before the rain rate estimation, as the Mie scattering
significantly affects the power measurements at X-band frequency. The attenuation effects at X-band
are significant due to the scattering and absorption of raindrops along the wave propagation path [12].
The T-matrix simulations show that AH and ADP at X-band are about 10 times and 5 times larger than
those at S- and C-band, respectively [13,50]. Nevertheless, Kdp is insensitive to the attenuation effects,
and therefore useful for determining AH and ADP as a function of range. In this section, we apply
GMM Kdp to the attenuation correction for the MZZU radar.

The specific attenuation is related to the integral of the raindrop size distribution (DSD) and
the imaginary part of forwarding scattering amplitude, which is defined as

AH,V = 4.343× 10−3
∫ ∞

0
N(D) · ={ fhh,vv(0, D)}dD, (dB km−1) (23)

where D is the raindrop size in millimeter, N(D) is the drop spectrum in m−3mm−1, ={·} is
the imaginary part and fhh,vv(0, D) are the forward scattering amplitudes at the horizontal and vertical
polarizations, respectively. The specific differential attenuation is then given as

ADP = AH − AV . (dB km−1) (24)
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As Kdp is also related to the forward scattering amplitude, AH and ADP may be calculated by
an exponential function of Kdp, respectively, i.e.,

AH = αKγ1
dp, (25)

ADP = βKγ2
dp. (26)

where α, β, γ1, and γ2 are constant coefficients. The variables ZH and ZDR are then corrected by

Zatt
H = Zraw

H + 2
∫ r

0
AH(s)ds, (27)

Zatt
DR = Zraw

DR + 2
∫ r

0
ADP(s)ds. (28)

where Zatt
H and Zatt

DR are corrected ZH and ZDR, respectively, and Zraw
H and Zraw

DR are raw ZH and ZDR,
respectively. For simplicity, we assume the coefficients γ1 and γ2 are unity, leading to a φdp-based
attenuation correction method [13],

Zatt
H = Zraw

H + α[φdp(r)− φdp(0)], (29)

Zatt
DR = Zraw

DR + β[φdp(r)− φdp(0)], (30)

where φdp(0) is the initial φdp, and φdp(r) is the re-constructed φdp at the rth gate. The coefficients α

and β depend on the radar frequency, DSD and drop shape [23,51]. With the assumption of the drop
shape of [13,52] calculate α and β using the T-matrix simulation based on observed DSDs. Following
this work, we derive α and β as 0.25 and 0.05, respectively, using the MZZU-RG comparison dataset.
The coefficients are similar to the ones presented in the previous studies [14,53].

From Equations (29) and (30), the variance of corrected ZH and ZDR are related to the variance
of φdp and the variance of raw ZH and ZDR, respectively. By assuming that ZH , ZDR, and φdp are
independent, we have

σ2 (Zatt
H
)
= σ2 (Zraw

H ) + α2σ2
[
φdp(r)

]
, (31)

σ2 (Zatt
DR
)
= σ2 (Zraw

DR ) + β2σ2
[
φdp(r)

]
, (32)

where σ
(
Zraw

H
)

and σ
(
Zraw

DR
)

are 1.36 dB and 0.436 dB for the MZZU radar, respectively.
Equations (31) and (32) indicate that the attenuation correction may increase the uncertainties for
ZH and ZDR, and consequently produce higher errors in the ZH and/or ZDR-based rain rates. Finally,
we use the ZH and ZDR after the attenuation correction in the rain rate estimation, while the variables
in linear units are calculated by

ZH = 10× log10(Zh), (33)

ZDR = 10× log10(Zdr), (34)

where Zh is in mm6m−3 and Zdr is unitless.

4. Rain Rate Estimation

In this section, the rain rate estimation algorithms are first derived from the MZZU-RG comparison
data, and the statistical uncertainties σ(R) are then calculated by considering the propagation
of the uncertainties of Zh, Zdr, and Kdp in the power-law relations. The algorithms of R(Zh),
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R(Zh, Zdr), R(Kdp), and R(Zh, Zdr, Kdp) are optimized in terms of the root mean square error (RMSE).
It is defined as

RMSE =

√
∑N

i=1 (Ri − Gi)
2

N
, (35)

where N is the sample size, Ri is the radar hourly rain amount, and Gi is the hourly gauge data.
In addition to RMSE, the normalized bias (NB) and Pearson correlation coefficient (CORR) are also
calculated to analyze the accuracy of the algorithms. They are given as

NB =
∑N

i=1(Ri − Gi)

∑N
i=1 Gi

, (36)

CORR =
∑N

i=1(Ri − R̄)(Gi − Ḡ)√
∑N

i=1(Ri − R̄)2
√

∑N
i=1(Gi − Ḡ)2

, (37)

where R̄ and Ḡ are the sample means for radar and gauge, respectively.

4.1. Retrieval of R

The linear radar reflectivity Zh is the sixth order moments of DSD [12,54], while the rain rate R is
about 3.67th order moment. Consequently, the rain rate may be retrieved via a power-law relation of
Zh and R [55],

R(Zh) = 0.238Z0.411
h , (38)

where Zh is in units of mm6m−3, and the coefficients of 0.238 and 0.411 are optimized for the MZZU-RG
data. To reduce the sensitivity to the variability of DSD, Zdr is incorporated into R(Zh), leading to
the R(Zh, Zdr) algorithm, i.e.,

R(Zh, Zdr) = 0.0833Z0.602
h Z−1.727

dr . (39)

Nevertheless, the R(Zh) and R(Zh, Zdr) algorithms suffer from the absolute radar calibration
errors and the Mie effects at X-band [56]. As Kdp is a phase measurement, the R(Kdp) algorithm is
often used to improve the accuracy of the rain rate estimation at X-band, yielding

R(Kdp) = 17.33K0.92
dp . (40)

It is noted that the R(Kdp) algorithm may have a lower range resolution than R(Zh) and R(Zh, Zdr)

due to the window smoothing. Therefore, Zh, Zdr, and Kdp are combined to obtain a tradeoff between
the accuracy and the resolution. The R(Zh, Zdr, Kdp) algorithm is given as

R(Zh, Zdr, Kdp) = 9.6046Z0.072
h Z−0.017

dr K0.824
dp . (41)

Figure 1 gives a comparison between the radar rain rates and the RG data obtained by
Equations (38)–(41). The scatterplots allow an easy examination of the algorithms, especially when
the one-to-one line (red line) is included. The rain rates that perfectly match the RG data would fall on
this line.

In Figure 1, the radar data of 1151 h contain 1940 points available for the four RGs. The majority
of the points are associated with small R (light rain), followed by a sizeable number of points with
medium R (moderate rain). The points with high R (heavy rain) only take a small portion but make
a significant contribution to the total rain amounts. Looking at the scatterplots in more detail, we can
see that R(Zh) (Figure 1a) gives a clear underestimation with a considerable amount of the points
below the red line. As a result of the effects of the Mie scattering, negative outliers are clearly identified
in the region of RG larger than 20 mm and radar R less than 10 mm. In addition, there are a small
number of points above the red curve, leading to large RMSE of 2.97 and small CORR of 0.63. Moreover,
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the R(Zh, Zdr) algorithm (Figure 1b) has a similar trend to R(Zh) due to the Mie effect, giving RMSE of
2.87, NB of 0.05 and CORR of 0.67.

Figure 1. Comparison between hourly rain amounts of RG and MZZU radar: (a) R = 0.238Z0.411
h ,

(b) R = 0.0833Z0.602
h Z−1.727

dr , (c) R = 17.33K0.92
dp , (d) R = 9.6046Z0.072

h Z−0.017
dr K0.824

dp . The data were
collected between 6 April 2016 and 2 June 2018.

The R(Kdp) and R(Zh, Zdr, Kdp) algorithms improve the estimation of R when compared to
R(Zh) and R(Zh, Zdr). The scatterplots in Figure 1c,d show a better concentration on the red line with
noticeable changes for higher R. According to Figure 1c, R(Kdp) has improved the R in the bottom-right
region, yielding remarkable RMSE and ρRG at 2.22 and 0.81, respectively. The discrepancy still exist
in the region of heavy rain, particularly for R larger than 20 mm. Furthermore, R(Zh, Zdr, Kdp)

in Figure 1d are similar to R(Kdp) in Figure 1c, while the points with higher R concentrate on the red
line. Consequently, the RMSE and CORR of R(Zh, Zdr, Kdp) are better than those of R(Kdp). In contrast,
the NB of R(Zh, Zdr, Kdp) is a little worse, leading to a value of −0.05.

4.2. Retrieval of σ(R)

By using the perturbation analysis [12], the statistical uncertainty σ(R) in Equation (38) is given as

σ(R)
R

= 0.411
σ(Zh)

Zh
, (42)

σ(ZH) = 10 log10

[
1 +

σ(Zh)

Zh

]
, (43)
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where ZH = 10 log10(Zh). Similarly, the variance of R(Zh, Zdr) is expressed as

σ2(R)
R2 =

[
0.602

σ(Zh)

Zh

]2

+

[
1.727

σ(Zdr)

Zdr

]2

, (44)

σ(ZDR) = 10 log10

[
1 +

σ(Zdr)

Zdr

]
, (45)

where ZDR = 10 log10(Zdr). It is noticeable that σ(R) in Equations (42) and (44) are independent
of the absolute values of Zh and Zdr. In contrast, Kdp is in a linear scale, and thus the statistical
uncertainty σ(R) is related to Kdp and σ(Kdp), leading to the expression of

σ(R)
R

= 0.92
σ(Kdp)

Kdp
. (46)

Finally, the variance of R in Equation (41) is derived as

σ2(R)
R2 =

[
0.072

σ(Zh)

Zh

]2

+

[
0.017

σ(Zdr)

Zdr

]2

+

[
0.824

σ(Kdp)

Kdp

]2

. (47)

It is known that R(Kdp), R(Zh, Zdr), and R(Zh, Zdr, Kdp) are less sensitive to the DSD variability
than the conventional R(Zh). However, the polarimetric algorithms yield higher statistical uncertainty
of R due to the uncertainties of Zdr and Kdp [31]. This problem is obvious when R is small. As shown
in Figure 1, R(Kdp) and R(Zh, Zdr, Kdp) give a significant improvement over R(Zh) and R(Zh, Zdr) for R
exceeding 10 mm h−1, whereas R(Zh) and R(Zh, Zdr) have a better estimation for R less than 5 mm h−1.
The explicit solution is to combine all the available algorithms by considering their statistical errors at
a particular location in a certain period of time. For example, the rain rate estimation algorithms can
be selected based on the reflectivity thresholds to reduce the effects of the statistical uncertainty for
lower rain rates [57].

Nevertheless, it is difficult to determine the hard thresholds for various rain rate estimation
algorithms, and the thresholds may be biased due to the statistical uncertainties of Zh, Zdr, and Kdp,
particularly for X-band radars. The rain rate algorithms can then be combined softly by adding a weight
for each rain rate algorithm, leading to a composite method [58,59]. In this method, the weight is
calculated by multiplying the inverse of the statistical uncertainty σ(R) by a normalized constant ai, i.e.,

R =
n

∑
i=1

ai
σ(Ri)

Ri, (48)

where ∑n
i=1

ai
σ(Ri)

= 1 and Ri includes R(Zh), R(Zh, Zdr), R(Kdp), and R(Zh, Zdr, Kdp).
It can be seen that this method uses the statistical errors as a function of range gates to yield

the variability of R. The previous research often analyzes the errors of Zh, Zdr, and Kdp from
a view of signal processing [47], leading to a constant σ(R)/R except for R(Kdp). In this study,
we also consider the propagation of the statistical uncertainties of Zh, Zdr, and Kdp in the rain rate
estimation. To determine the coefficient ai in Equation (48), it is straightforward to set ai as the value
of σ(Ri) if the corresponding algorithm has the smallest σ(Ri) weighted by the absolute values Ai of
the polarimetric values. Therefore, the composite method selects the rain rate with the smallest σ(R)
as derived from the four algorithms:

R = arg min
Ri

Aiσ(Ri), (49)

where Ai is equal to Zh, Zdr, and Kdp, respectively.
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Figure 2 compares the rain rates estimated by radar algorithms in Equations (38)–(41) and
Equation (49) to the RG data. The accompanying colors show the radar algorithms of R(Kdp) (blue),
R(Zh) (cyan), R(Zh, Zdr) (yellow), R(Zh, Zdr, Kdp) (green), and the composite method (red). Consistent
with the RG data, the entire body of rain rates by the composite method is predominantly made up
of light rain with only a small quantity of moderate rain and heavy rain making up the remainder.
Among the five radar algorithms, the composite method yields the best performance for light rain,
showing a narrow spread around the reference line. Furthermore, the composite method has a slightly
higher variation for moderate rain when compared to R(Kdp), as the red dots tend to less close to
the reference line than the blue dots. Nevertheless, the rain rates by the composite method well
concentrate on the reference line for heavy rain.

Figure 2. Comparison between hourly rain amounts of RG and radar rain rates. The blue, cyan,
yellow, green, and red dots represent the rain rates by R(Kdp), R(Zh), R(Zh, Zdr), R(Zh, Zdr, Kdp),
and the composite method, respectively.

When we study the associated RMSE, NB, and CORR, it is apparent that R(Kdp), R(Zh, Zdr, Kdp),
and the composite method all have their advantages. The RMSE and CORR for the composite
method are the best among the five algorithms, yielding improved results of 2.08 and 0.84,
respectively. In particular, the RMSE for the composite has a significant improvement over R(Kdp) and
R(Zh, Zdr, Kdp). However, R(Kdp) and R(Zh, Zdr, Kdp) still outperform the composite method in terms
of NB.

5. Case Studies

The detailed analyses of individual cases are important for the accuracy assessment for the quality
control and rain rate estimation for the MZZU radar. We have selected two rainfall events, including
a squall line event on 7 March 2017 and a prolonged rain event on 2–4 July 2016.

5.1. Squall Line Event: 7 March 2017

On 7 March 2017, a squall line developed along a southeastward advancing cold front,
and eventually entered central Missouri in the evening. Meanwhile, the rotation of the base of
a northeastward-ejecting upper trough led to a strong mid-level jet, which contributed to vertical shear
profiles and large 0–1 km shear for the organized storms by coupling with an intensifying southwesterly
low-level jet. The supercells and bowing structures embedded in the squall line produced mainly
damaging wind and large hail, with a few tornadoes along the path.
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Figure 3 illustrates the MZZU radar observations of the squall line event at 0411 UTC. It is clear
that the plan position indicators (PPIs) of ZH , ZDR, and Kdp depict a straight-line structure with
a length of about 180 km and a width of 15–30 km. The squall line moved at a speed of 60–70 km h−1

in a direction normal to the northeast-southwest orientation of the line.

Figure 3. Plan position indicators (PPIs) of (a) raw ZH , (b) corrected ZH , (c) σ(ZH), (d) raw ZDR,
(e) corrected ZDR, (f) σ(ZDR), (g) LRM Kdp, (h) GMM Kdp, and (i) σ(Kdp). The data were collected at
0411 UTC on 7 March 2017. The axes are in kilometers from the radar.

Figure 3g and h both show strong convective cells (Kdp > 3 deg km−1) with horizontal widths
of a few kilometers surrounded by moderate echoes (1 < Kdp < 3 deg km−1). Notably, GMM Kdp
(Figure 3h) presents a series of intense cells in the center of the line, with a maximum of greater than
8 deg km−1. The edge of the line center appears to be jagged with forward extending protrusions.
By taking a closer look at the leading edge, we can see a bow echo with a horizontal scale of 10 km,
where corrected ZH is more than 60 dBZ (Figure 3b), corrected ZDR is 4–6 dB (Figure 3e) and GMM
Kdp is about 2 deg km−1. These radar signatures signify the occurrence of hail, which is consistent
with the surface hail report at Columbia, Boone County (38.95◦ N, 92.33◦ W) at the time of 9 min
later than the radar PPIs. At either side of the center, a number of weaker convective cells are aligned
along the line, showing a symmetric shape of the storm. In contrast, LRM Kdp (Figure 3g) tends to
yield an extended region of the convective cores, but the maximum Kdp values are considerably lower.
When compared to GMM Kdp, LRM Kdp obscures the manifestations of the serrated leading edge and
elongated rain cells, increasing difficulties for the analysis of the storm structure.

Moreover, the radar echoes for the trailing stratiform cannot be observed due to strong attenuation
at X-band caused by the leading edge. Nevertheless, GMM Kdp shows a narrow sector of the stratiform
rain behind a notch-like concavity at the leading edge. The concave structure is also associated with
the bow echo, which may be linked to the mid-level inflow that inserts into the back of the convective
line. The trailing stratiform rain is characterized by low Kdp and relatively small Kdp gradients.
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Likewise, LRM Kdp depicts a uniformly distributed signature for the stratiform rain. The blank
regions within LRM Kdp are produced by missing Φdp data, since the signal-to-noise ratio is below
the noise threshold. In contrast, the Gaussian mixture method can provide meaningful Kdp via the joint
probability density function of Φdp at these regions, though the statistical uncertainty σ(Kdp) tends to
be increased (Figure 3i).

The statistical uncertainty σ(Kdp) gives a further insight into the radar signatures of GMM Kdp.
Figure 3i shows that σ(Kdp) is increased in the convective regimes due to significant Kdp gradients.
However, the largest σ(Kdp) is not well associated with the highest Kdp value, but it occurs at a location
between the leading edge and the trailing stratiform, with a large Kdp gradient. It may imply that
the significant σ(Kdp) is an indicator of the transition regimes [60], where the DSDs are unique.
In addition, the trailing stratiform regimes have smaller σ(Kdp) compared to the leading convection
due to relatively stable Kdp values.

As illustrated in Figure 3a,d, raw ZH and ZDR are affected by the rain attenuation. In Figure 3a,
the rear part of the leading edge shows raw ZH of 20–30 dBZ, weaker than the typical signatures of
convective rain. Moreover, the attenuation effects lead to a ZH gap between the leading edge and
the rain cell at the far range. On the other hand, raw ZDR (Figure 3d) is unrealistically lower than −1
dB after passing the front part of the leading edge. As Kdp is immune to the attenuation, it is applicable
for the attenuation correction via Equations (29) and (30). Figure 3b,e depict that corrected ZH and ZDR
in the leading edge have been intensified by about 10–20 dBZ and 1–3 dB, respectively, while the gap
in the trailing part is transformed to a region of stratiform rain. Moreover, it is notable that the strong
attenuation produces a “V”-shape echo in the hail region at X:−20~−15 km and Y: 15~20 km. The high
Kdp values have given significant compensation to corrected ZH and ZDR, leading to intense echoes
in this region. However, the correction using GMM Kdp has the radial effects, particularly for the
regions with missing values in raw ZH and ZDR. It may be due to the Kdp smoothing and the constant
α and β in Equations (29) and (30), respectively.

The statistical uncertainties σ(ZH) and σ(ZDR) inherit σ(Kdp) via Equations (31) and (32),
and therefore σ(ZH) and σ(ZDR) for corrected ZH and ZDR are larger than those for raw data.
According to Figure 3c,f, σ(ZH) and σ(ZDR) are significant at the regions of high Kdp gradients,
as σ(ZH) and σ(ZDR) are positively related to σ(Kdp). In Figure 3c, it can be seen that σ(ZH) is
negligible relative to the magnitude of corrected ZH . When σ(ZH) reaches the maximum, it is less than
1% of the corresponding ZH magnitude. In contrast, σ(ZDR) is on the same order as the magnitude of
corrected ZDR. At the point with the largest σ(ZDR), the ratio of σ(ZDR) and ZDR can reach more than
20%, which is much higher than the upper limit for ZDR error. Overall, the attenuation correction using
GMM Kdp introduces relatively large errors for ZDR, leading to higher uncertainty when corrected
ZDR is used to retrieve the rain rate.

To give a further evaluation of the attenuation correction, the corrected ZH and ZDR are compared
to the self-consistency relations of ZH , ZDR, and Kdp [12,21,23,53,61]. Self-consistency relations are
related to the drop size distribution [62]. In this study, we adopt the Pruppacher–Beard linear fit [63],
yielding the following relations for the X-band radar:

ZDR =


0 ZH ≤ 9.5

0.051ZH − 0.486 9.5 < ZH ≤ 55
2.319 ZH ≥ 55

, (50)

Kdp = 1.37× 10−3 × 100.068ZH × 10−0.042ZDR , (51)

Kdp/Zh = 1.2× 10−4 − 4.1× 10−5ZDR (ZDR < 1.6), (52)

where ZH = 10 log Zh and Zh is in mm6m−3.
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Figure 4 compares the scatterplots of corrected ZH , corrected ZDR and GMM Kdp to
the self-consistency relations in Equations (50)–(52). As depicted in Figure 4a, Kdp increases greatly
when raw ZH is above 30 dBZ, showing a large difference from the self-consistency relations.
In contrast, in Figure 4b, there is a low and steady increase in Kdp when ZH is between 10 and
40 dBZ, following a significant Kdp jump when ZH is larger than 40 dBZ. The most noteworthy increase
is recorded for ZH greater than 50 dBZ, where Kdp rises dramatically from 4 to 8 deg km−1. Overall,
the ZH-Kdp points after the correction have good agreement with the self-consistency relations.

Figure 4. Scatterplots of (a) raw ZH and Kdp, (b) corrected ZH and Kdp, (c) raw ZDR and Kdp,
(d) corrected ZDR and Kdp, (e) raw ZDR and the ratio of Kdp and raw Zh, and (f) corrected ZDR and
the ratio of Kdp and corrected Zh for the data presented in Figure 3, where ZH = 10 log(Zh). The color
scale is the number of points, and the black lines show the theoretical self-consistency relations.

In Figure 4c,e, the points of ZH-ZDR and ZDR-Kdp/Zh can be separated into two data clusters with
high populations, which remain after the attenuation correction in Figure 4d,f. As shown in Figure 4d,
the cluster concentrated on 2 dB has a steady increasing trend, which agrees with the self-consistency
relations. However, the higher slope of the cluster indicates that the coefficient β in Equation (30) is
not optimal for the MZZU radar. On the other hand, the cluster centered at ZH of 50 dBZ and ZDR of
4 dBZ are likely produced by a mixture of rain and hail, as melting hail or raindrops with ice cores
make a significant contribution to ZDR. In addition to the ZH-Kdp and ZH-ZDR relations, it is evident
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that the ratio of Kdp and Zh also shows a dependency on ZDR. As ZDR rises, Kdp/Zh tends to drop
steadily, following a similar trend with the scattering simulation [54].

Through Equations (38)–(49), we can retrieve the rain rates and their uncertainties. As might
be expected, R(Zh) (Figure 5a) and R(Zh, Zdr) (Figure 5b) give an underestimation at the center
of the leading edge, with the maximum rain rates of no more than 40 mm h−1. In contrast,
R(Kdp) (Figure 5c) and R(Zh, Zdr, Kdp) (Figure 5d) produce the values as high as 100 mm h−1,
indicating intensive rain cells. What remains truly remarkable is that Kdp-based algorithms yield
the meaningful rain rate estimation in the hail-contaminated regions at X-band. Somewhat surprisingly
however, according to Figure 5b–d, R(Zh, Zdr), R(Kdp), and R(Zh, Zdr, Kdp) present some missing data
in the trailing stratiform due to negative values in ZDR and Kdp.

Figure 5. Plan position indicators (PPIs) of (a) R(Zh), (b) R(Zh, Zdr), (c) R(Kdp), (d) R(Zh, Zdr, Kdp),
(e) composite R, and (f) composite σ(R). The corresponding polarimetric data were presented
in Figure 3.

According to Figure 5e, the composite method shows the rain rate results similar to R(Kdp)

in the leading edge. Likewise, the statistical uncertainty (Figure 5f) for the composite method has given
higher values in the transition regime, which is consistent with the uncertainty of ZH , ZDR, and Kdp.
However, it is clear the trailing stratiform in the composite method is characterized by lower R, giving
the improvement of rain rate estimation in this region.

It is found that the elongated shapes in the convective cores may be resulted from the radial
effect of R(Kdp) as the Kdp is estimated independently for each ray. Furthermore, the Kdp is applied
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to the attenuation correction along the radial, and thus R(Zh, Zdr, Kdp) gives the discontinuity
in the azimuthal direction. However, the strong vertical winds have a large contribution to the raindrop
size distribution as well as fall speed, leading to uneven rain in space. The updrafts may lift the smaller
raindrops and enhance the coalescence process during the falling. Therefore, the rain rates increase
when the updrafts exist in the area. On the other hand, the radar ray may spread after a number
of range gates, while the radar variables and the resulting rain rates are averaged over the volume.
If the small convective cells present in a few adjacent radar gates, the rain rates within these gates may
be higher than the surrounding gates, giving the discontinuity in space.

In conclusion, the quality control is effective for ZH , ZDR, and Kdp in the rain regions of the squall
line event. The data of GMM Kdp, corrected ZH and ZDR can provide an insight into the storm
structure, and the scatterplots are consistent with the self-consistency relations at X-band. Furthermore,
it is evident that R(Kdp) and R(Zh, Zdr, Kdp) have better results than R(Zh) and R(Zh, Zdr) at X-band,
and the composite method gives some improvements in the trailing stratiform regime.

5.2. Prolonged Rain Event: 2–4 July 2016

From 2 July 2016, a weak lee-side trough formed at the southern Rocky Mountains and moved
toward Missouri. It persisted over central Missouri and produced large areas of precipitation.
Meanwhile, a cold front trailing from the low advanced southeastward across the radar surveillance
area, causing convective rain and strong winds.

Figure 6 illustrates the radar PPIs at 0339 UTC on 3 July 2016, when the convection embedded
in the stratiform is approaching. By briefly glancing at the PPIs for this event, the radar intensity is
considerably weaker than that for the squall line event in Figure 2. According to the data in Figure 6e,h,
corrected ZDR and GMM Kdp are characterized by low values in the widespread stratiform regime,
indicating small and less-oblate raindrops. Moreover, the evaporation below the melting layer may
further decrease Kdp as a result of mass flux changes [64]. In the west and northwest of Figure 6h,
GMM Kdp shows some pockets of convective cells with moderately large values (>2 deg km−1).
As the updrafts in the convection are narrow, the convective cells are manifested as a small number of
adjacent range gates of intensified Kdp.

Figure 6. Same as Figure 3, but the data were collected at 0339 UTC on 3 July 2016.
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Notably, a small number of range gates are discarded at the edge due to a low signal-to-noise
ratio. Nevertheless, GMM Kdp has reduced the effects of the missing data when compared to LRM
Kdp (Figure 6g), leading to continuous regions of precipitation. Furthermore, GMM Kdp tends to
produce larger but fewer pockets of small and negative values, which gives a slight improvement over
LRM Kdp. The ring echo of negative Kdp near the radar center results from the switching of short and
long pulse repetition frequencies (PRFs). In addition, stable Kdp yields negligible σ(Kdp) (Figure 6i)
in the stratiform regime, while negative Kdp (<−1 deg km−1) increases σ(Kdp) at northeast and south
of the PPI.

Figure 6b and a compare corrected ZH to raw ZH for the stratiform event. The major changes for
ZH occur in the west and northwest of the PPI, where ZH has been increased by 10–25 dBZ. In the raw
data (Figure 6a), the convective cells appear to be a number of isolated pockets with maximum ZH of
no more than 45 dBZ. After the correction (Figure 6b), there is an extended region of ZH larger than
45 dBZ, while the cores of the cells reach about 60 dBZ. It is noteworthy that ZH at X: −80~−70 km
and Y: 0~20 km have been significantly intensified as a result of high Kdp. Moreover, the uncertainty
σ(ZH) in Figure 6c is very similar to the constant error of 1.36 dB. In the south, σ(ZH) has reached
about 1.8 dB due to increased σ(Kdp).

Likewise, Figure 6d and e show ZDR before and after the correction, respectively. The main
difference between the two data is that raw ZDR (Figure 6d) has small and negative values in the sector
from west to north, whereas corrected ZDR (Figure 6e) shows the values larger than 1 dB in this region.
Looking at the data in more detail, the attenuation correction has also enhanced ZDR in the stratiform
region, increasing from −1 to 0.5 dB. Figure 6f shows that σ(ZDR) is very small, except for the echoes
at the edge of the southern part.

Moreover, Figure 7 shows the scatterplots of ZH , ZDR, and Kdp. According to the data
in Figure 7a,b, we can discern a clear trend in the relationship between ZH and Kdp. When ZH
is below 35 dBZ, Kdp has a slow and steady increase, ranging from near zero to a few tenths’ deg km−1.
The specific differential phase then gives a dramatic rise when ZH is between 35 and 45 dBZ. The high
probability falls in the region of ZH between 20 and 38 dBZ and Kdp between 0 and 0.5 deg km−1

for the stratiform rain. Furthermore, it can be seen that the attenuation correction has intensified ZH ,
giving better agreement with the reference curve when Kdp is above 1.7 deg km−1. Although Kdp
can reach as low as −0.5 deg km−1 due to the PRF switching and phase fluctuation, the negative Kdp
has a relatively low number concentration.

The scatterplots in Figure 7c,d give a positive correlation between ZH and ZDR, which is consistent
with the reference curve. In contrast with the squall line event, the points in the stratiform event
concentrate on one rain cluster with ZDR between 0 and 2 dB. By comparing corrected ZDR (Figure 7d)
to raw ZDR (Figure 7c), it can be found that the attenuation correction has reduced the number of points
with negative ZDR and also widened the distribution of corrected ZDR. These effects are apparent
in the scatterplots of ZDR and Kdp/Zh as illustrated in Figure 7e,f. Moreover, corrected ZDR has been
shifted toward the positive direction, indicating more oblate raindrops. However, there is a small
mismatch between the high probability regions of Kdp/Zh in Figure 7f and the reference curve due to
low coefficient α.
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Figure 7. Same as Figure 4, but the data were collected at 0339 UTC on 3 July 2016.

In addition to ZH , ZDR, and Kdp, Figure 8 depicts the PPIs of the rain rates retrieved by R(Zh),
R(Zh, Zdr), R(Kdp), and R(Zh, Zdr, Kdp) and the composite method for the stratiform rain event.
It is clear that R(Kdp) (Figure 8c) has a similar distribution to Kdp (Figure 6h), as R(Kdp) is almost
linearly proportional to Kdp. The principal improvement of the composite method (Figure 8e) is
that it has filled gaps within the regions where R(Kdp) presents the missing values, and therefore
the rain accumulations are increased in these regions. By taking a closer look at the embedded
convection, we can see that R(Kdp) (Figure 8c), R(Zh, Zdr, Kdp) (Figure 8d) and the composite method
(Figure 8e) produce values as high as 60 mm h−1, whereas R(Zh) (Figure 8a) and R(Zh, Zdr) (Figure 8b)
are generally below 50 mm h−1. On the other hand, the composite method can present uniformly
distributed rain in the stratiform region, which is characterized by σ(R) between 0.5 and 5 mm h−1

as shown in Figure 8f. When compared to the squall line event, σ(R) is generally small for this
stratiform event.
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Figure 8. Same as Figure 5, but the data were collected at 0339 UTC on 3 July 2016.

In addition, the negative Kdp is not used for attenuation correction or rain rate estimation in this
paper. However, the negative values are frequently shown in the stratiform rain due to the fluctuation
of phase measurements. To reduce this effect, we have set the rain rates with negative Kdp to zero,
leading to a continuous region of rain.

Indeed, the discontinuity of the attenuation correction and rain rates by Kdp is inevitable.
In Figure 8, we present the instantaneous data to give the best comparison between the composite
method and the power-law methods. When comparing with the rain gauge data, we take an average
over the area of 3 gates × 3 azimuths. There are a number of sophisticated solutions for rain rate
estimation, such as the areal rain rate estimation using negative Kdp [65] and X-band radar network [66].

To validate the algorithms for the rain rate estimation, we also present the time series of
the prolonged rain event that occurred on 2–4 July 2016. Figure 9 depicts an example of hourly
accumulated rain amounts using Equations (38)–(41) and (49). This is a portion of the time series
at Bradford (Figure 9a), Sanborn (Figure 9b), Auxvasse (Figure 9c) and Williamsburg (Figure 9d).
It is clear that the time series show different trends at the four sites, indicating that the convective rain
embedded in the stratiform has influenced the four sites in varying degrees.
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Figure 9. Time series of hourly rain amounts of RG (black), R(Kdp) (blue), R(Zh) (cyan), R(Zh, Zdr)

(yellow), R(Zh, Zdr, Kdp) (green) and the composite method (red) at (a) Bradford, (b) Sanborn,
(c) Auxvasse and (d) Williamsburg. The error bars represent the statistical uncertainties associated
with the composite method. The data were collected between 0000 UTC and 2300 UTC on 3 July 2016.

At Bradford (Figure 9a), the rain rates remain steady during the first five hours, followed by
a sudden rise at 06 UTC before a slight decline at 07 UTC. The time series of the rain rates arrive at a peak
at 08 UTC, and then fall sharply over the following five hours. There is a slight increase up to a few
millimeters when the rain rates drop steadily and finally reach the lowest point at 18 UTC. Overall,
the radar algorithms for the rain rate estimation have given an underestimation when compared
to the RG data. As the magnitudes of the rain rates go up, the gap between the radar and RG
becomes wider, reaching about 10 mm at the peak. By observing the individual PPIs, we can find that
the radar data may be affected by strong signal attenuation. However, the attenuation correction cannot
sufficiently compensate the radar signal at some time periods, producing smaller total amounts when
the rain rates are accumulated over an hour. Moreover, the composite method (red) yields the best
agreement with the RG data among the five algorithms, but its statistical uncertainties (error bars)
are considerably large. In contrast, R(Zh) and R(Zh, Zdr) present very small values at the peaks,
and relatively larger values for the rest of the time interval. In addition, R(Zh) and R(Zh, Zdr) have
very low correlations with RG, indicating a poor performance.

Figure 9b,c show the time series of the rain rates at Sanborn and Auxvasse, respectively. According
to the graph, the trends for the rain rates at both sites are very similar, and strong correlations with
RG can be found. It can be seen that the rain rates over the first three hours remain stable before
rising steadily between 03 and 05 UTC. Remarkably, however, the rain rates shoot up to 40 mm
at Sanborn and 25 mm at Auxvasse at 07 UTC. As then the rain rates decrease dramatically, and remain
at a few millimeters until 19 UTC. Moreover, the time series at Sanborn and Auxvasse show clear
gaps between the radar and RG, but the gaps have been reduced when compared to that at Bradford.
Among the five algorithms, the composite method still gives the best performance in terms of RMSE,
NB, and CORR. Notably, the rain rates produced by the composite method at the peaks of Sanborn
and Auxvasse are higher than R(Kdp) and R(Zh, Zdr, Kdp), yielding better agreement with the RG.
In contract, R(Zh) and R(Zh, Zdr) show a moderate underestimation at this point. Overall, R(Kdp),
R(Zh, Zdr, Kdp), and the composite method is consistent with the RG for higher rain rates, as Kdp is
more sensitive to heavy rain. On the other hand, R(Zh), R(Zh, Zdr), and the composite method have
good agreement for lower rain rates, but R(Zh) and R(Zh, Zdr) produce significant bias at the plateaus,
leading to considerable RMSE, NB, and CORR.
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As illustrated in Figure 9d, the time series of the rain rates at Williamsburg have weak correlations
with the RG. It is clear that the time series exhibit three local peaks at 06, 10, and 18 UTC, respectively.
However, the first peak of the rain rates is found at a time one hour later than the RG though
the magnitude at this time is consistent with the RG. At the second and third peaks of RG, the rain rates
generally produce much smaller values than the RG with relatively stable trends. These differences
may be due to the radar beam spread at the far range. As Williamsburg is 46.2 km away from
the radar center, the width of the range gate reaches about 700 m, covering an area of 700 × 260 m2.
In contrast, the measurement area of a tipping bucket gauge is only a few hundred cm2. The difference
between the areal rainfall and the point rainfall leads to significant bias and uncertainty, which can
reduce the accuracy of the radar rain rate estimation [67]. Furthermore, referring to the timing of
the peaks at Sanborn and Bradford, it can be found that the rain cell passed the radar center between
06 and 08 UTC, which may have coincided with heavy rain at Williamsburg. However, the signal
attenuation at X-band reduces the magnitude of the measurements at Williamsburg at this time,
although Kdp may not very sensitive to the attenuation. In addition, the peak may be shifted to
the subsequent hour if the heaviest rain is right at 07 UTC since the rain gauges collect the samples
every hour.

To give a further assessment, Figure 9 illustrates the statistical uncertainties σ(R) (error bars)
associated with the composite method. By briefly glancing at the time series, it is apparent that there
are considerable variations in σ(R)s at the four sites between 02 and 19 UTC. At Bradford (Figure 9a),
σ(R) remains large in most of the times, and then gives a moderate increase at 06 UTC, reaching
about 25 mm. Standing a similar trend, σ(R) at Sanborn (Figure 9b) peaks at the same time, but it has
even larger magnitudes when compared to Bradford. Furthermore, the average σ(R) at Sanborn is
generally higher than the others. In contrast, σ(R) at Auxvasse exhibit narrow plateaus at 06 UTC
due to the steady trend at this time. In addition, there is a steady trend for σ(R)s at Williamsburg
(Figure 9d), with an average of a few tenths of a millimeter.

If we look more closely at Figure 9, we can discern that the largest σ(R) often occurs with the high
variations of the rain rates. During the periods of 05 to 09 UTC, all the four sites present one or more
peaks, leading to larger σ(R) correspondingly. However, the increased σ(R) is not always related to
the peaks of the rain rates. For example, σ(R) at Sanborn at 06 UTC is about three times larger than
the peak at 07 UTC.

In conclusion, the quality control can effectively retrieve Kdp and correct the attenuations in ZH
and ZDR for the prolonged rain event on 2–4 July 2016. The comparison between the scatterplots
and the self-consistency relations confirms that the attenuation correction yields a good performance.
Furthermore, the radar algorithms for the rain rate estimation have been derived from the MZZU-RG
dataset, yielding a fairly good agreement with the RG for the prolonged rain event. The major
improvement of the composite method is that it can fill the missing data in the stratiform regions,
and provide the lower statistical uncertainties for the rain rates. From the time series data, it is clear
that σ(R) is often associated with the variation of the rain rates rather than its magnitude.

6. Conclusions

In this study, the quality control and rain rate estimation were investigated using the MZZU
X-band dual-polarization radar in central Missouri. For quality control, a simple data masking
technique was adopted to remove the clutter data in the radar reflectivity (ZH), differential reflectivity
(ZDR) and differential phase shifts (Φdp). The Gaussian mixture method (GMM) was then applied to
the specific differential phase (Kdp) estimation, which can not only retrieve the expected value of Kdp
but also calculate the statistical uncertainty σ(Kdp).

For the attenuation correction, the data of Kdp and σ(Kdp) were used to correct ZH and ZDR.
The Φdp-based method was adopted with the assumption that the specific attenuation (AH) and
specific differential attenuation (ADP) were linearly proportional to Kdp. Meanwhile, the statistical
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uncertainties σ(ZH) and σ(ZDR) were propagated from σ(Kdp), leading to the variability in their error
characteristics. The corrected ZH , ZDR, and Kdp were finally investigated in the rain rate (R) estimation.

For the rain rate estimation, the radar rain rates were retrieved by ZH , ZDR, and Kdp via
the power-law relations, while the statistical uncertainty σ(R) was propagated from σ(Zh), σ(Zdr),
and σ(Kdp). The coefficients in R(Kdp), R(Zh), R(Zh, Zdr), and R(Zh, Zdr, Kdp) were optimized
with the comparison data of the MZZU radar and rain gauge (RG). It was clear that R(Zh) and
R(Zh, Zdr) gave an underestimation for higher rain rates, but R(Kdp) and R(Zh, Zdr, Kdp) improved
the estimation of higher rain rates, giving remarkable root mean square error (RMSE), normalized
bias (NB) and Pearson correlation coefficient (CORR). Furthermore, the statistical uncertainty σ(R)
was approximated by a first order Taylor series expansion of the power-law relations. To reduce
the effects of σ(R), the composite method was proposed by combining the existing rain rate algorithms
based on the inverse of their σ(R). It was found that the composite method yielded the best
performance in terms of RMSE and CORR, but showed slightly worse NB when compared to R(Kdp)

and R(Zh, Zdr, Kdp).
Two rainfall cases were evaluated, including a squall line event on 7 March 2017 and a prolonged

rain event on 2–4 July 2016. In the squall line event, the serrated leading edge, the elongated convective
cells and the trailing stratiform were manifested in the Kdp, giving a clear picture of the storm structure.
It was notable that σ(Kdp) was increased with the Kdp gradient, while the significant σ(Kdp) indicated
the transition region between the regimes of the leading convection and the trailing stratiform.
The radar reflectivity and differential reflectivity were intensified as a result of the attenuation
corrections, leading to realistic radar signatures. It was found that σ(ZH) was very small relative to
corrected ZH , whereas σ(ZDR) was significant relative to corrected ZDR. Furthermore, the scatterplots
of corrected ZH , corrected ZDR and Kdp had fairly good agreement with the self-consistency relations
at X-band, indicating the effectiveness of the attenuation corrections. The rain rate retrieved by
the composite method was compared to R(Kdp), R(Zh), R(Zh, Zdr), and R(Zh, Zdr, Kdp). It was clear
that the composite method produced the meaningful rain rates in the regions with missing data, giving
the best performance among the five rain rain algorithms. In the composite method, the statistical
uncertainty σ(R) was fairly high in the transition regime but relatively small in the leading edge and
the trailing stratiform.

The prolonged rain event was dominated by the widespread rain, showing weaker radar echoes
than the previous case. In this event, the Kdp was characterized by low values in the stratiform regime
and by moderately large values in the convective regime, due to differences in the mean vertical velocity
and particle growth mechanisms. It was notable that the GMM Kdp reduced the effects of the missing
values and also slightly improved negative Kdp. The statistical uncertainty σ(Kdp) was negligible,
except for the negative Kdp regions at the northeastern and southern parts. By applying the Kdp to
the attenuation corrections, ZH and ZDR were given a considerable rise in the convective regime, while
ZDR was also enhanced in the stratiform regime, yielding realistically positive values. The statistical
uncertainties σ(ZH) and σ(ZDR) were very close to the constant errors, but they were increased
in the negative Kdp regions. To further validate the attenuation corrections, the scatterplots of ZH , ZDR,
and Kdp were compared to the reference curves obtained by the self-consistency relations at X-band.
The high probability regions were consistent with the reference curves, indicating reliable correction
results for the prolonged rain event. Moreover, ZH , ZDR, and Kdp were applied to the retrievals
of the rain rates via R(Kdp), R(Zh), R(Zh, Zdr), and R(Zh, Zdr, Kdp). It was clear that the composite
method filled the missing data as presented in R(Zh, Zdr), R(Kdp), and R(Zh, Zdr, Kdp), and also
provided the smallest σ(R). In the case study of a prolonged rain event, clear gaps were shown
in the time series of the four RG sites within the radar coverage. Nevertheless, strong correlations were
found between the radar rain rates and RG, indicating a fairly good performance. Among the five
algorithms, the composite method had the best agreement with RG. Furthermore, the statistical
uncertainty σ(R) was considerable in the time series, and σ(R) was related to the variation of the rain
rate rather than its magnitude.
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It was apparent that the relations of AH − Kdp and ADP − Kdp were related to the raindrop
size distribution, shape and temperature, leading to moderate bias in the attenuation corrections
if constant coefficients α and β were used. In the future, the self-consistent ZPHI method will be
applied to the attenuation corrections for the MZZU radar, following the work of [21,22]. The statistical
uncertainties σ(AH) and σ(ADP) will also be derived from σ(Φdp) via the Gaussian mixture model.
For rain rate estimation, the R(AH) and R(AV) algorithms will be derived to retrieve the rain rate [68],
while the statistical uncertainties σ(RAH) and σ(RAV) will also be calculated by σ(AH) and σ(AV),
respectively. Some discussions have been provided based on the Z-PHI method in Appendix A.
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Appendix A. Attenuation-Based Rain Rate Estimation

From the examples in Section 5, it can be seen that the attenuation corrections of ZH and
ZDR using GMM Kdp introduce moderate bias when compared to the self-consistency relations
in Equations (50)–(52). This is because the relations of AH-Kdp and ADP-Kdp are subject to drop
shape, DSD, and temperature. First, the coefficients α and β in Equations (25) and (26) are assumed to
be constants, but α and β are closely related to the axis ratio [12]. The change of axis ratio may lead to
the variations of α and β at each range gate. Secondly, Kdp is less sensitive to raindrops with spherical
shapes (D < 0.5 mm), whereas AH and ADP are related to the liquid water content contributed by all
sizes of drops [69]. Furthermore, for the median diameter D0 larger than 2.5 mm, AH and ADP are
proportional to D0 × Kdp, and therefore α and β increase as D0 rises. If raindrops with D0 larger than
2.5 mm exist along the path, the attenuation corrections based on constant α and β may not be reliable.
Thirdly, the scattering simulations which derive α and β depend on the ambient temperature [70].
As given in [17], α and β under various temperatures fall into a band rather than a straight-line.
For accurate attenuation correction, α and β cannot be assumed as constants, but derived from a range
of values corresponding to the band.

To tackle these problems, [21] extended the methods of [19,20], which use the increase of Φdp to
calculate the range integrals of AH and ADP. They also optimize α(r) by minimizing the difference
between the measured Φdp and the Φdp reconstructed from AH , and then obtain β(r) following
the self-consistency relation of ZH and ZDR. This method is later adapted to the X-band [22].
In addition, the specific attenuation AH at each range gate can be used to retrieve the rain rate
R via a power-law relation between AH and R.

As the variance σ2(Φdp) is obtained by GMM, the variance σ2(AH) can then be derived from
σ2(Φdp) by a first-order Taylor series expansion. By assuming the variance of raw ZH is negligible,
σ2(AH) is given as

σ2(AH) =

(
dAH

d∆Φdp

)2

σ2(∆Φdp), (A1)

σ2(∆Φdp) = σ2(Φdp(rm)) + σ2(Φdp(r0)), (A2)

http://agebb.missouri.edu/weather/stations/index.php
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where the range from r0 to rm is a rain cell. Let x be 1− 10−0.1αb∆Φdp , and then we can see that

dAH
d∆Φdp

=

(
Z′bh

I(r0; rm)− xI(r0; r)
− I(r0; r)Z′b

(I(r0; rm)− xI(r0; r))2

)
dx

d∆Φdp
, (A3)

dx
d∆Φdp

= − ln(10)× 10−0.1bα∆Φdp . (A4)

The notations in Equations (A1)–(A4) follow [12]. Moreover, the variance σ2(ADP) can be
estimated via the self-consistency relation, i.e.,

σ2(ADP) =

(
β

α

)2
σ2(AH). (A5)

The variances σ2(AH) and σ2(ADP) can be used to calculate σ2(ZH) and σ2(ZDR)

in the attenuation correction of [21]. Furthermore, AH and ADP are used in the rain rate estimation via
the AH-R and AV-R relations [68,71]. They are given as

R(AH) = aAb
H , (A6)

R(AV) = cAd
V , (A7)

where AV = AH − ADP. Therefore, the statistical uncertainty of R can be obtained by

σ(R)
R(AH)

= b
σ(AH)

AH
, (A8)

σ(R)
R(AV)

= d
σ(AV)

AV
. (A9)
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33. Sachidananda, M.; Zrnić, D.S. Differential propagation phase shift and rainfall rate estimation. Radio Sci.
1986, 21, 235–247. [CrossRef]

34. Wang, Y.; Chandrasekar, V. Algorithm for estimation of the specific differential phase. J. Atmos. Ocean. Technol.
2009, 26, 2565–2578. [CrossRef]
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