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Abstract: This study investigated the feasibility of partitioning the available energy between sensible
(H) and latent (LE) heat fluxes via variational assimilation of reference-level air temperature and
specific humidity. For this purpose, sequences of reference-level air temperature and specific
humidity were assimilated into an atmospheric boundary layer model (ABL) within a variational
data assimilation (VDA) framework to estimate H and LE. The VDA approach was tested at six
sites (namely, Arou, Audubon, Bondville, Brookings, Desert, and Willow Creek) with contrasting
climatic and vegetative conditions. The unknowns of the VDA system were the neutral bulk heat
transfer coefficient (CHN) and evaporative fraction (EF). EF estimates were found to agree well with
observations in terms of magnitude and day-to-day fluctuations in wet/densely vegetated sites but
degraded in dry/sparsely vegetated sites. Similarly, in wet/densely vegetated sites, the variations
in the CHN estimates were found to be consistent with those of the leaf area index (LAI) while this
consistency deteriorated in dry/sparely vegetated sites. The root mean square errors (RMSEs) of
daily H and LE estimates at the Arou site (wet) were 25.43 (Wm−2) and 55.81 (Wm−2), which are
respectively 57.6% and 45.4% smaller than those of 60.00 (Wm−2) and 102.21 (Wm−2) at the Desert
site (dry). Overall, the results show that the VDA system performs well at wet/densely vegetated
sites (e.g., Arou and Willow Creek), but its performance degrades at dry/slightly vegetated sites (e.g.,
Desert and Audubon). These outcomes show that the sequences of reference-level air temperature
and specific humidity have more information on the partitioning of available energy between the
sensible and latent heat fluxes in wet/densely vegetated sites than dry/slightly vegetated sites.

Keywords: turbulent heat fluxes; available energy; variational data assimilation; air temperature;
specific humidity

1. Introduction

The accurate estimation of sensible (H) and latent (LE) heat fluxes is of vital importance in
different disciplines, such as meteorology, ecology, agronomy, and hydrology [1,2]. Turbulent heat
fluxes (H and LE) can be measured by different approaches, such as lysimeter, eddy-covariance
station, Bowen ratio, and large-aperture scintillometer [3–7]. However, measurements of turbulent
heat fluxes are difficult and costly, and therefore are available from a handful of sparse flux tower
networks (e.g., Fluxnet, AsiaFlux, EuroFlux, AmeriFlux, etc.), and field experiments (e.g., Bushland
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Evapotranspiration and Agricultural Remote Sensing Experiment 2008 (BEAREX08), Heihe Watershed
Allied Telemetry Experimental Research (HiWATER), and First International Satellite Land Surface
Climatology Project (ISLSCP) Field Experiment (FIFE), etc.) [8–11]. Consequently, different approaches
have been developed to estimate turbulent heat fluxes [12–16].

In general, there are five major groups of studies for estimating turbulent heat fluxes. The first
group, known as the triangle method, estimates latent heat flux by using empirical relations between
land surface temperature (LST) and vegetation indices (VIs) [17–27]. A number of triangle methods
also use spectral mixture analysis (SMA) to relate the radiometric temperature to subpixel fractions of
substrate (S), vegetation (V), and dark (D) spectral endmembers to estimate LE [28]. In the second
group, the diagnostic method, the surface energy balance (SEB) equation is solved using instantaneous
measurements of LST and micrometeorological data [29–35]. The third group, the combination method,
predicts turbulent heat fluxes by incorporating the LST observations into the Penman–Monteith
equation [36–38]. The fourth group, the land data assimilation system (LDAS), estimates turbulent
heat fluxes by the ensemble Kalman filter (EnKF) approach [39–44].

The fifth group, the variational data assimilation (VDA) method, retrieves turbulent heat
fluxes by assimilating sequences of LST observations into the force-restore and/or heat diffusion
equation [10,45–56]. In these studies, the implicit information in the sequences of LST observations is
used to partition the available energy between the sensible and latent heat fluxes. The performance of
these VDA approaches degrades in wet and/or heavily vegetated sites [57,58]. This occurs because
in these sites, evapotranspiration is at stage-I (energy limited), and is mainly controlled by the state
variables of the atmosphere (i.e., air temperature and humidity) and not LST. These VDA approaches
also require the specification of soil thermal conductivity and heat capacity as well as the deep soil
temperature, which are typically unavailable. Several studies [59,60] enhanced the performance of VDA
approaches by assimilating soil moisture or the antecedent precipitation index (API). Following these
VDA studies, Bateni and Entekhabi [42] analytically showed that the sequences of LST observations
have information on the relative efficiency of surface energy balance components.

In a departure from the use of sequences of LST measurements, several studies showed that
the reference-level air temperature and humidity measurements contain useful information about
soil moisture [61–71] and turbulent heat fluxes [72–80]. However, these studies mostly require the
specification of surface roughness lengths for heat and momentum as well as ground heat flux, which
are often unavailable.

Given the abovementioned shortcomings of the existing VDA approaches, Tajfar et al. [81]
developed a VDA approach that estimates H and LE by assimilating sequences of reference-level
air temperature and specific humidity (i.e., state variables of the atmosphere) into an atmospheric
boundary layer (ABL) model. The main unknowns of the Tajfar et al. [81] VDA approach are the
neutral bulk heat transfer coefficient (CHN) (that scales the sum of H and LE) and evaporative fraction
(EF) (that scales the partitioning of available energy between H and LE). Tajfar et al. [81] tested their
VDA approach only at a grass-dominated sub-humid site in Kansas, and showed that sequences of the
reference-level air temperature and specific humidity have implicit information for constraining CHN
and EF, and retrieving turbulent heat fluxes.

In this study, the VDA approach of Tajfar et al. [81] was tested at six sites to assess how much
information is contained in the sequences of reference-level air temperature and specific humidity
for estimating sensible and latent heat fluxes in contrasting vegetative and climatic conditions. If the
reference-level air temperature and specific humidity measurements have sufficient information, the
CHN and EF, and consequently the turbulent heat fluxes estimates from the VDA approach, will be
close to their true values. If these measurements do not have enough information, the CHN, EF, H, and
LE estimates will be poor.

This paper is structured as follows. Section 2 explains the methodology, including the surface
energy balance (SEB) equation, the ABL model, and the VDA scheme. Section 3 describes the study
sites. The results are given in Section 4. Finally, conclusions are reported in Section 5.
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2. Materials and Methods

2.1. Sensible and Latent Heat Fluxes

The sensible heat flux is given by:

H = ρcpCHN f (Ri)U(T − Ta), (1)

where ρ is the air density, cp is the specific heat capacity of air, U is the wind speed at the reference level
(zre f = 2 m), T is the land surface temperature, Ta is the air temperature at zre f , and f is the atmospheric
stability correction function, which is a function of the Richardson number (Ri). Ri is a measure of
atmospheric stability. The stability correction function (f ) proposed by Caparrini et al. [45] performed
well in previous studies [49–51,53,57,81–83], and thus was used in this study. It is given by f (Ri) = 1 +

2(1 – e10Ri). CHN is the first unknown of the VDA approach, which depends on the characteristics of the
landscape, and is assumed to be constant during each month [49,50,53,57]. CHN is mainly a function of
LAI and to a lesser extent wind speed, friction velocity, solar elevation, and the structure and shape of
vegetation (i.e., crown density and vertical distribution of foliage elements) [50,84–88].

EF is the second unknown of the VDA approach that represents partitioning between the turbulent
heat fluxes, and is defined as the ratio of latent heat flux to the sum of turbulent heat fluxes:

EF =
LE

LE + H
. (2)

Crago [89], Caparrini et al. [46,47], and Bateni et al. [49–51] showed that EF is almost constant for
near-peak radiation hours [09:00–16:00 LT] on days without precipitation. To estimate LE, Equation (2)
can be re-written as follows:

LE =
EF

1− EF
H. (3)

It is worth mentioning that the assumption of daily constant EF and monthly constant CHN are
widely used in VDA studies [42,44,46,47,49,50,53,55,56,81–83] to estimate H and LE.

2.2. Atmospheric Boundary Layer (ABL) Model

A mixed-layer model, which performs well compared to the complicated large eddy simulation
models, is used to simulate ABL processes [81–83,90,91]. The profiles of potential temperature (θ) and
specific humidity (q) are assumed to be constant with height throughout the mixed layer. As shown
in Figure 1, the thin layer between the ground and the mixed layer is called the surface layer (SL).
The surface layer is assumed to be 10% of the mixed-layer top, h (i.e., zSL = 0.1h), and is convectively
unstable during the growth phase of the boundary layer [73,79,81,83].

2.2.1. Energy and Moisture Budget Equations

The potential temperature and specific humidity in the mixed layer are given by:

ρcph
dθ
dt

=
(
Rad + Rgu

)
εm −RAd −RAu + H + Htop, (4)

ρhLv
dq
dt

= LE + LEtop, (5)

where Htop and LEtop are the entrainment sensible and latent heat fluxes from above the mixed layer,
respectively; εm is the mixed-layer bulk emissivity; t is the time; and Lv is the latent heat of vaporization.
Rad and Rgu are the downward longwave radiation from the free atmosphere and upward longwave
radiation from the ground into the mixed layer, respectively. RAd and RAu are the downward and
upward longwave radiative fluxes from within the mixed layer, respectively.
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The potential temperature at the level of 1000 mb (i.e., θa) is obtained from the reference-level
air temperature (Ta) via θa = Ta(P0/Ps)

Rd/cp (where Rd is the gas constant of dry air, Ps is the
surface pressure, and P0 is 1000 mb) [92]. The variations of the potential temperature and specific
humidity profiles within the surface layer can be explained by the Monin–Obukhov similarity theory
(MOST) [78,93]. Hence, θSL and qSL are found from θa and qa using the MOST (see Appendix B). As q
and θ are uniform throughout the mixed layer, the initial conditions for Equations (4) and (5) (i.e.,
θ(t = to) and q(t = to)) are set to be equal to θSL(t = to) and qSL(t = to), respectively.

2.2.2. Radiative Fluxes

The downwelling longwave radiation from the overlying atmosphere (Rad) and the upwelling
longwave radiative flux from the land surface beneath (Rgu) are given by:

Rad = εadσT4
h+, (6)

Rgu = εsσT4, (7)

where σ is the Stefan–Boltzman constant, εad is the effective emissivity above the mixed
layer [73,81,83,94–96], Th+ is the air temperature exactly above the mixed layer [95,96], and εs is
the surface emissivity.

The downward and upward longwave radiative fluxes from within the mixed layer (RAd and
RAu) are presented by:

RAd = εdσθ
4, (8)

RAu = εuσθ
4, (9)

where εd and εu are the mixed-layer downward and upward emissivity, respectively [95,96].

2.2.3. Mixed-Layer Height

The daytime ABL height growth is calculated by [81,83,95–99]:

dh
dt

=
2(G∗ −D1 −D2)θ

ghδθ
+

Hv

ρcpδθ
, (10)

where the various terms in Equation (10) are given by:

G∗ = uSLu2
∗ , (11)

D1 = uSLu2
∗

(
1− e−ϕh

)
, (12)

D2 = 0.4
(

gh
θ

Hv

ρcp

)
, (13)

Hv = H + 0.61θcpE ≈ H + 0.07LE, (14)

where u∗ is the friction velocity; uSL is the wind speed at the top of the surface layer, which is obtained
from the reference-level wind speed (U) via the MOST (the readers are referred to Appendix B); G∗ is
the production of mechanical turbulent energy; g is gravitational acceleration; ϕ is the mechanical
turbulence dissipation parameter, which is set to 0.01 [73,81,83,96,99]; Hv is the virtual heat flux at
the surface; E is the rate of evaporation from ground; and δθ is the potential temperature inversion
strength at the top of the mixed layer.

2.2.4. Inversion Strengths of θ and q

There are instantaneous jumps (inversion strengths) in temperature and humidity (δθ and δq) at
the top of the mixed layer (Figure 1). As shown in Equation (15), the inversion strength of θ increases
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as the boundary layer grows, but it decreases as the boundary layer warms up. Similarly, the inversion
strength of q increases as the boundary layer develops, and it increases (becomes more negative) as the
boundary layer becomes moister (Equation (16)). The magnitudes of these jumps can be calculated by
the following prognostic equations [81,83,100]:

dδθ
dt

= γθ
dh
dt
−

dθ
dt

, (15)

dδq

dt
= γq

dh
dt
−

dq
dt

, (16)

where γθ and γq are the lapse rates in the potential temperature and specific humidity above the
mixed layer.

2.2.5. Entrainment Fluxes

As the boundary layer grows, warm dry air from the free atmosphere enters the mixed layer, and
results in the presence of sensible and latent heat fluxes entrainment (Htop and LEtop). Htop heats up the
ABL and LEtop reduces its humidity [101]:

Htop = AH, (17)

LEtop = ρLvδq
dh
dt

. (18)

A typical value of 0.2 is used for A [81,83,90,91].
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Figure 1. Idealized profiles of the potential temperature (θ) and specific humidity (q) in the atmospheric
boundary layer (ABL), and corresponding fluxes.

2.3. Variational Data Assimilation (VDA) Approach

The unknowns of the VDA system (i.e., CHN and EF) are obtained by minimizing the objective
function J. Two different integral time scales are used in the objective function J. The first one covers the
entire assimilation period in which CHN is assumed to be constant (N = 30 days). The second time scale
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constitutes the assimilation window in which EF is presumed to be constant [t0,t1] = [09:00–16:00 LT].
The objective function J is expressed as:

J(θ, q,λ1,λ2, R, EF ) =
N∑
i=1

∫ t1
to

[θi(t) − θSL,i(t)]
TR−1

θ
[θi(t) − θSL,i(t)]dt

+
N∑
i=1

∫ t1
to
[qi(t) − qSL, i(t)]

TR−1
q [qi(t) − qSL, i(t)]dt

+(R−R′)TB−1
R (R−R′)

+
N∑
i=1

(
EFi − EF′i

)T
B−1

EF

(
EFi − EF′i

)
+

N∑
i=1

∫ t1
to
λ1i(t)

[
ρcphi(t)

dθi(t)
dt −

(
Rad + Rgu

)
εm + RAd + RAu −H −Htop

]
dt

+
N∑
i=1

∫ t1
to
λ2i(t)

[
ρhi(t)Lv

dqi(t)
dt − LE− LEtop

]
dt.

(19)

The first term in the right-hand side of Equation (19) is the quadratic of difference between the top
of the surface layer potential temperature (θSL) and the ABL potential temperature (θ) estimates from
Equation (4). Similarly, the second term is the quadratic of the misfit between the top of the surface
layer specific humidity (qSL) and the ABL specific humidity (q) estimates from Equation (5). Using the
MOST (see Appendix B), θSL and qSL are retrieved from the reference-level air temperature (Ta) and
specific humidity (qa), respectively. To make CHN strictly positive, it is transformed to R via CHN = eR.
The third and fourth terms are the quadratic errors of the unknown parameters (i.e., R and EF) with
respect to their prior values (R′ and EF′). The last two terms are the physical constraints adjoined to
the model through the Lagrange multipliers λ1 and λ2. R−1

θ and R−1
q are the inverse error covariance

matrices of θ and q, respectively. B−1
R and B−1

EF are the inverse background error covariance matrices of
R and EF, respectively. Following Tajfar et al. [81,83], the diagonal elements of R−1

θ , R−1
q , B−1

R , and B−1
EF

are set to 10−1 K−2, 105 (kg/kg)−2, 108, and 109, respectively.
To minimize the objective function, its first variation (δJ) with respect to the independent variables

θ, q, λ1, λ2, R, and EF is set to zero. This leads to a set of the so-called Euler–Lagrange equations that
should be solved simultaneously. The Euler–Lagrange equations are presented in Appendix C.

3. Study Sites

The ability of the VDA approach to partition the available energy between the turbulent heat
fluxes was tested at six sites (namely, Arou, Audubon, Bondville, Brookings, Desert, and Willow Creek)
with contrasting climatic and vegetative conditions. Audubon, Bondville, Brookings, and Willow
Creek are located in the United States (Figure 2). Arou and Desert are situated in the middle reach of
Heihe River basin (HRB) in the Gobi desert in Northern China (http://card.westgis.ac.cn/) (Figure 3).
Audubon (in Arizona) is a grassland water-limited monsoonal site with a temperate arid climate
(https://ameriflux.lbl.gov/sites/siteinfo/US-Aud). Bondville (in Illinois) is a cropland that has a humid
continental climate with hot summers (https://ameriflux.lbl.gov/sites/siteinfo/US-Bo1). Brookings (in
South Dakota) is a grassland with a temperate continental climate and no dry season (https://ameriflux.
lbl.gov/sites/siteinfo/US-Bkg). Willow Creek (in Wisconsin) is a deciduous broad-leaf forest with dense
vegetation cover and significant precipitation (https://ameriflux.lbl.gov/sites/siteinfo/US-WCr). Arou
(in Qinghai) is a dense grassland with high soil moisture (http://data.tpdc.ac.cn/en/data/9074b105-549c-
4f15-b8a5-87602a45134d/). Desert (in Inner Mongolia) is barren soil and has low precipitation and
sparse canopy cover (http://data.tpdc.ac.cn/en/data/77c7bfd5-38d3-41e2-93ce-cb4d8c0d475a/). Leaf
area index (LAI) ranges from 0.00 in Desert (barren land) to 5.67 in Willow Creek (dense forest). Soil
moisture (SM) varies from 0.03 in Desert (dry) to 0.36 in Arou (wet). These sites were chosen to sample
different land cover types (forest, grassland, cropland, and barren land), and cover a wide range of
vegetation density and soil moisture conditions (Table 1).

http://card.westgis.ac.cn/
https://ameriflux.lbl.gov/sites/siteinfo/US-Aud
https://ameriflux.lbl.gov/sites/siteinfo/US-Bo1
https://ameriflux.lbl.gov/sites/siteinfo/US-Bkg
https://ameriflux.lbl.gov/sites/siteinfo/US-Bkg
https://ameriflux.lbl.gov/sites/siteinfo/US-WCr
http://data.tpdc.ac.cn/en/data/9074b105-549c-4f15-b8a5-87602a45134d/
http://data.tpdc.ac.cn/en/data/9074b105-549c-4f15-b8a5-87602a45134d/
http://data.tpdc.ac.cn/en/data/77c7bfd5-38d3-41e2-93ce-cb4d8c0d475a/
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Table 1. Environmental characteristics of the study sites.

Site Year DOY Latitude Longitude Vegetation Type SM* LAI* Elevation (m)

Arou, China 2015 170–259 38.0473◦N 100.4643◦E Grassland 0.36 3.57 3033
Willow Creek, WI 2005 170–259 45.8059◦N 90.0799◦W Forest 0.22 5.67 520

Brookings, SD 2009 176–265 44.3453◦N 96.8362◦W Grassland 0.29 1.72 510
Bondville, IL 2005 182–271 40.0062◦N 88.2904◦W Cropland 0.16 2.24 219

Audubon, AZ 2006 170–259 31.5907◦N 110.5092◦W Grassland 0.12 0.54 1469
Desert, China 2015 170–259 42.1100◦N 100. 9900◦E Barren land 0.03 0 1000
* LAI and SM represent respectively the mean leaf area index (m2 m−2) and soil moisture (m3 m−3) over the modeling
periods. WI: Wisconsin, AZ: Arizona, IL: Illinois, and SD: South Dakota.

LAI and SM are the key factors affecting the partitioning of available energy between the sensible
and latent heat fluxes [50,58,102]. Hence, testing the VDA approach at the abovementioned six sites
provides insights into how much information is contained in the sequences of reference-level air
temperature and specific humidity for partitioning the available energy between H and LE in various
climatic and vegetative conditions.

Soil moisture and half-hourly meteorological data (air temperature and specific humidity, wind
speed, and atmospheric pressure) at the Audubon, Bondville, Brookings, and Willow Creek sites
were retrieved from the AmeriFlux archive (http://www.ameriflux.lbl.gov). The sensible and latent
heat fluxes at these sites were measured by eddy covariance (EC) stations, and are available on
the Ameriflux database. LAI data were obtained from the Global LAnd Surface Satellites (GLASS)
product [103,104]. This product is accessible on the University of Maryland global land cover
facility archive (http://www.un-spider.org/links-and-resources/data-sources/global-land-cover-facility-
university-maryland-nasagofc-gold).

The Multiscale Observation Experiment on Evapotranspiration over the Heihe Watershed Allied
Telemetry Experimental Research (HiWATER-MUSOEXE) provides half-hourly measurements of wind
speed, air temperature, soil moisture, relative humidity, and pressure at the Arou and Desert sites
(http://card.westgis.ac.cn/hiwater) [9,11,105,106]. The sensible and latent heat fluxes were recorded
at these sites by an EC station every 30 min (http://card.westgis.ac.cn/data/e9e38ff4-5a10-4977-9de7-
61e9c25bd333). LAI data at the Arou and Desert sites were also obtained from the GLASS product.
Vegetation height was obtained by in situ measurements [105].

The initial condition for h is required to solve Equation (10). Similarly, the initial conditions for
δθ and δq, and the magnitudes of γθ and γq are needed to integrate Equations (15) and (16) forward
in time. Following Tajfar et al. [81,83], the initial conditions for h, δθ, and δq, and the magnitudes of
γθ and γq were varied from 100 to 500 m, 2 to 6 K, −4.8 × 10−3 to −0.5 × 10−3 kg kg−1, 2 to 8 K km−1,
and −7 × 10−3 to −0.5 × 10−3 kg kg−1 km−1 with the increment of 100 m, 0.4 K, 0.4 × 10−3 kg kg−1,
0.5 K km−1, and 0.5 × 10−3 kg kg−1 km−1, respectively. For each study site, the magnitudes of h (t = to),
δθ(t = to), and δq(t = to), γθ, and γq that lead to a minimum cost function (J) are reported in Table 2.

Table 2. The magnitudes of the initial conditions for h, δθ, and δq, as well as γθ and γq for the study sites.

Site h(to)
(m)

δθ(to)
(K)

δq(to)
(kg kg−1)

γθ
(K km−1)

γq
(kg kg−1 km−1)

Arou 400 4.5 −2.9 × 10−3 5.7 −1.2 × 10−3

Willow Creek 400 4.4 −3.2 × 10−3 5.5 −1.5 × 10−3

Brookings 400 4.0 −2.0 × 10−3 4.5 −0.5 × 10−3

Bondville 400 4.0 −4.0 × 10−3 4.5 −3.0 × 10−3

Audubon 400 2.8 −4.4 × 10−3 3.0 −4.0 × 10−3

Desert 400 2.4 −4.4 × 10−3 3.0 −4.5 × 10−3

The VDA was applied to the Desert (DOYs 170–259, 2015), Audubon (DOYs 170–259, 2006),
Bonville (DOYs 182–271, 2005), Brookings (DOYs 176–265, 2009), Willow Creek (DOYs 170–259, 2005),

http://www.ameriflux.lbl.gov
http://www.un-spider.org/links-and-resources/data-sources/global-land-cover-facility-university-maryland-nasagofc-gold
http://www.un-spider.org/links-and-resources/data-sources/global-land-cover-facility-university-maryland-nasagofc-gold
http://card.westgis.ac.cn/hiwater
http://card.westgis.ac.cn/data/e9e38ff4-5a10-4977-9de7-61e9c25bd333
http://card.westgis.ac.cn/data/e9e38ff4-5a10-4977-9de7-61e9c25bd333
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and Arou (DOYs 170–259, 2015). These modeling periods were chosen because they have a minimum
data gap in H and LE measurements. Linear interpolation was used to fill the data gap [107,108].

4. Results and Discussions

As mentioned previously, CHN and EF are the two key unknowns of the VDA system. Table 3
shows the estimated CHN values from the VDA approach and corresponding LAI values at the six
study sites. CHN is mainly affected by vegetation phenology [44,46,47,50,52,55]. As shown in Table 3,
the variations in CHN estimates are consistent with those of LAI in the wet and/or densely vegetated
sites. For instance, at the Willow Creek site, CHN and LAI decrease slightly during the modeling
periods. At the Arou and Brookings sites, CHN reaches its highest value in the second monthly period
and decreases in the third month. A similar trend is observed in LAI. At the Bondville site, the LAI
and CHN estimates remain almost constant during the modeling periods (DOYs 182–271).

The consistency between the CHN retrievals and LAI weakens in dry/sparsely vegetated sites.
At Audubon, LAI values increase continuously during the modeling periods. However, CHN estimates
decrease slightly in the second monthly period. At the Desert site, LAI is invariant, while CHN shows
slight variations in different assimilation periods. Among the study sites, Desert has the lowest CHN
estimates because it has no vegetation (LAI = 0), while Willow Creek has the highest CHN values due
to its dense vegetation cover (LAI = 5.67). In general, the study sites with higher LAI values (e.g., Arou
and Willow Creek) have higher CHN estimates compared to the sites with lower LAI (e.g., Desert and
Audubon).

Overall, the results show that the CHN estimates agree well with the vegetation phenology at
wet and/or densely vegetated sites, although no information on vegetation density is used in the
VDA approach. These findings indicate that the VDA approach can extract the implicit information
contained in the air temperature and specific humidity measurements to estimate CHN at wet and/or
densely vegetated sites, but its performance degrades in dry and/or slightly vegetated sites.

Table 3. Estimated neutral bulk heat transfer coefficient (CHN) values by the VDA approach at the six
study sites, and corresponding LAI values.

Site DOY CHN LAI

Arou
170–199 0.0102 2.97
200–229 0.0325 4.41
230–259 0.0261 3.35

170–199 0.0245 5.87
Willow Creek 200–229 0.0242 5.84

230–259 0.0222 5.29

Brookings
176–206 0.0054 1.93
207–237 0.0102 2.15
238–265 0.0048 1.07

Bondville
182–211 0.0130 2.23
212–241 0.0150 2.24
242–271 0.0140 2.24

Audubon
170–199 0.0031 0.27
200–229 0.0029 0.57
230–259 0.0033 0.77

Desert
170–199 0.0022 0
200–229 0.0020 0
230–259 0.0010 0

Figure 4 shows the time series of EF estimates at the six study sites. EF values from the measured
H and LE are also shown by open circles in Figure 4. The EF retrievals agree well with the observations
in terms of both the magnitude and day-to-day fluctuations in wet and/or densely vegetated sites (e.g.,
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Arou and Willow Creek). At these sites, the EF values are consistent with the wetting and dry down
events, although no information on rainfall is used in the VDA approach. For example, sharp jumps
are seen in the EF estimates after rainfall events at the Willow Creek site (e.g., DOY 181, 201, 206, 209,
221, 231, and 255), followed by reductions in the EF estimates during dry down events (e.g., DOY
171, 234, 245, 249, and 252). This shows that the sequences of air temperature and humidity have a
significant amount of information on the partitioning of available energy between the turbulent heat
fluxes in wet and/or densely vegetated sites.

The drying rate of land surface is controlled by both land surface properties and atmospheric
factors [109]. At dry/sparsely vegetated sites (e.g., Desert and Audubon), evapotranspiration is at its
second stage (water limited), and thus is mainly controlled by the land state variable (i.e., LST) rather
than the atmospheric state variables (i.e., air temperature and specific humidity). Consequently, the
coupling between EF and the atmospheric state variables is weak, and the retrieval of EF from air
temperature and specific humidity becomes more uncertain. The Desert site is dry on DOYs 170–245.
In this period, the VDA approach performs poorly and the EF estimate show unreasonable spikes.
Towards the end of the modeling period (i.e., DOYs 246–259), the Desert site becomes wet due to
rainfall events, and the EF estimates can capture the variations in the observations. Similarly, the
Audubon site is mostly dry on DOYs 170–210, and thus the VDA cannot robustly estimate EF. However,
it becomes moister on DOYs 210–259, and the EF retrievals follow the observations more closely. These
results indicate that the sequences of air temperature and humidity in dry/sparsely vegetated sites do
not have enough information to constrain EF.

The high soil moisture can result in negative sensible heat flux, which makes EF observations
larger than one [44,110]. This occurs on DOYs 184, 201, 206, 209, and 214 in the Willow Creek; DOY 201
in the Brookings; and DOYs 206 and 242 in the Bondville. Nonetheless, in order to prevent numerical
instabilities, EF estimates are set to be less than 0.99 in the VDA approach, causing the estimations to
deviate from observations when they are above unity.

Table 4 shows the MAE and RMSE of the EF estimates at the six study sites. As anticipated, the
MAE and RMSE of the EF estimates are lower in wet and/or densely vegetated sites compared to dry
and/or slightly vegetated sites. The EF estimates have the highest MAE and RMSE of 0.152 and 0.198
at Desert (dry and barren land). The lowest MAE and RMSE values of 0.039 and 0.053 are observed at
Arou (wet and dense vegetation cover).

To evaluate the performance of the VDA approach in various vegetative and climatic conditions,
the scatterplot of half-hourly H and LE estimates was compared with the observations in Figures 5 and 6.
As shown, the VDA approach performs better at wet/densely vegetated sites. The most and least
accurate turbulent heat fluxes estimates are obtained at Arou and Desert, respectively. H and LE
estimates mostly fall around the 45-degree line at Arou and Willow Creek. While at Desert, H is
overestimated for H values of higher than ~200 Wm−2 and LE retrievals are far from the 45-degree
line These outcomes show that the information content of the atmospheric state variables (e.g., air
temperature and specific humidity) for estimating the turbulent heat fluxes significantly reduces
in dry/sparsely vegetated sites (e.g., Audubon and Desert). H and LE estimates at Bondville and
Brookings are comparable, and agree fairly well with the observations. Overall, the results indicate
that the sequences of air temperature and specific humidity have a significant amount of information
for partitioning the available energy between turbulent heat fluxes at sites with high SM and/or LAI
values, but their information content significantly reduces at sites with low SM and/or LAI.
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Table 4. MAE and RMSE of EF estimates from the VDA approach at the six study sites. Mean soil
moisture (m3 m−3) and LAI (m2 m−2) over the modeling periods are also presented.

Site
EF

SM LAIMAE RMSE

Arou 0.039 0.053 0.36 3.57
Willow Creek 0.067 0.079 0.22 5.67

Brookings 0.065 0.083 0.29 1.72
Bondville 0.073 0.091 0.16 2.24
Audubon 0.146 0.178 0.12 0.54

Desert 0.152 0.198 0.03 0.00
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Figure 4. Cont.
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Figure 4. Time series of estimated (solid lines) and observed (open circles) EF values. Precipitations are
shown by blue bars.

At all the study sites, LE estimates are more sparsely scattered around the 1:1 line compared to H
estimates. This is due to the fact that errors in H estimates are due to uncertainties in CHN estimates
(see Equation (1)) but errors in LE retrievals stem from uncertainties in both H and EF estimates (see
Equation (3)). More sources of errors increase the scattering of LE estimates [44,81,83].

The discrepancy between the EF, H, and LE estimates and corresponding observations might
be due to the measurement errors and simplistic assumptions, such as the constant monthly CHN,
constant daily EF, insignificant advection, and convectively well mixed boundary layer, which results
in constant profiles of the potential temperature and specific humidity with height.

Figure 7 compares the time series of daily H estimates from the VDA and open loop approaches
with the measurements at the Arou, Willow Creek, Brookings, Bondwille, Audubon, and Desert, sites.
Similarly, Figure 8 compares the time series of daily LE retrievals with the observations. As expected,
the VDA approach generates more accurate H and LE values at the energy-limited sites (e.g., Arou,
Willow Creek, Bondville, and Brookings). At these sites, H and LE estimates can capture the day-to-day
fluctuations in the observations. At the water-limited sites (e.g., Audubon and specifically Desert),
VDA cannot capture the daily variations in LE. The VDA approach overestimates (underestimates) H
at Desert (Audubon). In the open loop approach, air temperature and specific humidity measurements
are not assimilated into the VDA approach, and thus the initial guesses for CHN and EF are not
updated. In this approach, the ABL potential temperature (θ) and specific humidity (q) are estimated
by integrating Equations (4) and (5) forward in time using the initial guesses of CHN and EF. The large
discrepancy between the turbulent heat fluxes estimates from VDA and the open loop at the wet and/or
highly vegetated sites shows that the performance of VDA significantly improves at these sites by
using the information content of atmospheric state variables.
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Figure 5. Scatterplot of half-hourly sensible heat flux (H) estimates versus observations at the six
investigated sites.
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Figure 6. Scatterplot of half-hourly latent heat flux (LE) estimates versus observations at the six
investigated sites.
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dashed lines) approaches at the six study sites. Observed H values are shown by open circles.
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dashed lines) approaches at the six study sites. Observed LE values are shown by open circles.
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The MAE and RMSE of half-hourly sensible and latent heat fluxes estimates from the VDA and
open loop approaches at the six study sites are shown in Table 5. Similarly, Table 6 indicates the MAE
and RMSE of daily H and LE retrievals. The high MAE and RMSE of turbulent heat fluxes estimates
from VDA at the Desert and Audubon sites are attributed to their dry land and/or sparse vegetation.
Compared to Desert and Audubon, Arou, Brookings, Bonville, and Willow Creek are wetter and have
denser vegetation cover. Hence, the errors of VDA H and LE retrievals at Arou, Brookings, Bonville,
and Willow Creek are lower than those of Desert and Audubon. Arou has the lowest MAE and RMSE
values because it has a dense vegetation cover and the highest soil moisture.

Table 5. MAE and RMSE of half-hourly H and LE estimates from the VDA and open loop approaches
at the six experimental sites.

Site Method
H (Wm−2) LE (Wm−2)

MAE RMSE MAE RMSE

Arou VDA (Open-loop) 27.02 (205.92) 36.18 (242.09) 63.75 (219.33) 90.04 (247.15)
Willow Creek VDA (Open-loop) 35.52 (188.52) 44.52 (223.67) 75.29 (179.98) 97.31 (239.42)

Brookings VDA (Open-loop) 40.57 (105.89) 54.48 (138.58) 83.21 (212.36) 104.03 (239.00)
Bondville VDA (Open-loop) 46.25 (118.67) 63.56 (158.02) 85.13 (156.58) 105.82 (188.92)
Audubon VDA (Open-loop) 59.54 (107.75) 74.45 (127.97) 86.96 (140.09) 112.64 (166.11)

Desert VDA (Open-loop) 60.67 (77.78) 80.19 (103.76) 72.73 (95.96) 117.31 (156.28)

Six-site average VDA (Open-loop) 44.93 (134.09) 58.89 (165.68) 77.85 (167.38) 104.53 (206.15)

Table 6. MAE and RMSE of daily H and LE estimates from the VDA and open loop approaches at the
six experimental sites.

Site Method
H (Wm−2) LE (Wm−2)

MAE RMSE MAE RMSE

Arou VDA (Open-loop) 18.07 (172.66) 25.43 (197.61) 43.99 (231.71) 55.81 (237.78)
Willow Creek VDA (Open-loop) 30.05 (157.65) 37.03 (197.65) 56.93 (179.33) 74.46 (200.28)

Brookings VDA (Open-loop) 32.05 (100.47) 45.01 (123.03) 57.79 (185.88) 82.28 (207.54)
Bondville VDA (Open-loop) 31.97 (108.15) 45.21 (134.12) 55.34 (152.44) 77.88 (172.74)
Audubon VDA (Open-loop) 46.16 (74.73) 58.13 (91.77) 71.77 (125.67) 89.57 (145.45)

Desert VDA (Open-loop) 50.08 (67.07) 60.00 (80.95) 68.74 (90.23) 102.21 (132.62)

Six-site average VDA (Open-loop) 34.73 (113.46) 45.14 (137.52) 59.09 (160.88) 80.37 (182.74)

In both Tables 5 and 6, the lower MAE and RMSE values from VDA imply that the assimilation of
reference-level air temperature and humidity improve the open loop H and LE estimates. The six-site
average MAE and RMSE of daily H estimate from VDA (open loop) are 34.73 Wm−2 (113.46 Wm−2)
and 45.14 Wm−2 (137.52 Wm−2), respectively. The corresponding MAE and RMSE values for daily LE
estimates are 59.09 Wm−2 (160.88 Wm−2) and 80.37 Wm−2 (182.74 Wm−2), respectively. By assimilating
Ta and qa, on average, the MAE and RMSE of the daily H (LE) estimates from VDA are reduced by 69.4%
(63.3%) and 67.2% (56%) compared to those of the open loop. By the assimilation of air temperature
and specific humidity, the MAE and RMSE of the daily H (LE) estimates from the open loop is reduced
by 89.5% (81%) and 87.1% (76.5%) at Arou, and 80.9% (68.3%) and 81.3% (62.8%) at Willow Creek.
The corresponding values at Desert and Audubon are 25.3% (23.8%) and 25.9% (22.9%), and 38.2%
(42.9%) and 36.7% (38.4%), respectively. These results show that the assimilation of Ta and qa leads to a
higher improvement in the H and LE estimates at wet/densely vegetated sites.

The VDA approach iteratively improves the CHN and EF estimates by minimizing the difference
between the ABL potential temperature and specific humidity estimates from Equations (4) and (5) (i.e.,
θ and q), and the corresponding values obtained from the reference-level air temperature and specific
humidity via the MOST (i.e., θSL and qSL) (Appendix B). Thus, a close agreement between the θ and
θSL, and q and qSL (e.g., Arou) shows that the VDA approach can successfully update the initial guesses
of CHN and EF and converges to their optimal values. On the other hand, a significant misfit between
the θSL and θ, and qSL and q (e.g., Desert) implies that the VDA cannot effectively improve the initial
guesses of CHN and EF and converges to the inaccurate CHN and EF values. Figure 9 shows half-hourly
θ estimates from VDA versus θSL values. Similarly, Figure 10 indicates half-hourly q estimates versus
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qSL values. As shown, at Arou and Willow Creek, the θ and q estimates from VDA agree well with
θSL and qSL, respectively. This shows that in wet and/or densely vegetated sites, the VDA approach
can take advantage of the significant amount of information in the sequences of air temperature and
humidity to optimize CHN and EF, and consequently minimize the difference between θ and θSL, and
q and qSL. At the Brookings and Bondville sites, the θ and q estimates are in fairly good agreement
with θSL and qSL, respectively, implying that the time series of the atmospheric state variable have
some information to constrain CHN and EF, and retrieve turbulent heat fluxes. At the Desert and
Audubon sites, θ and q estimates are more scattered around the 1:1 line, showing the lack of sufficient
information in the sequence of air temperature and humidity to accurately tune CHN and EF.Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 28 
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Figure 9. Scatterplot of half-hourly potential temperature (θ) estimates from VDA versus θSL at the six
experimental sites.

The RMSE of the θ (q) estimates at the Desert, Audubon, Bondville, Brookings, Willow Creek,
and Arou sites are 2.56 K (0.0021 kg kg−1), 2.52 K (0.0015 kg kg−1), 1.36 K (0.0012 kg kg−1), 1.99 K
(0.0012 kg kg−1), 1.04 K (0.0011 kg kg−1), and 0.95 K (0.0009 kg kg−1), respectively. As anticipated, the
RMSEs of the θ and q estimates decrease as LAI and/or SM increase. Arou (with the highest SM) has
the lowest RMSEs for θ and q. In contrast, Desert (with the lowest LAI and SM) has the highest RMSEs.
As mentioned earlier, in dry sites (e.g., Desert and Audubon), evaporation is mainly controlled by the
land surface state variable (i.e., LST). Hence, assimilating sequences of air temperature and specific
humidity cannot robustly constrain CHN and EF, leading to larger errors in the θ and q estimates.
Bondville and Brookings are neither as sparsely vegetated as Desert and Audubon nor as densely
vegetated as Willow Creek and Arou. The RMSEs of the θ and q estimates at these sites are smaller
than those of Desert and Audubon but larger than those of Willow Creek and Arou.

Figure 11 indicates the mean diurnal cycles of the measured and estimated H and LE over the
whole modeling period for the six study sites. As anticipated, the magnitude and phase of the diurnal
cycles of retrieved sensible and latent heat fluxes from VDA agree well with those of the observations
at the Arou and Willow Creek sites. For Audubon and especially Desert, there is a large discrepancy
between the diurnal cycles of the estimated and observed H and LE, showing that the performance of
the VDA approach significantly degrades in dry and/or sparsely vegetated sites. The results for the
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Bondville and Brookings sites show that assimilating the state variables of the atmosphere (i.e., θ and
q) can capture the diurnal cycles of H and LE relatively well.

Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 28 

 

  
Figure 9. Scatterplot of half-hourly potential temperature (θ) estimates from VDA versus  at the 
six experimental sites. 

  
Figure 10. Scatterplot of half-hourly specific humidity ( ) estimates versus  at the six 
experimental sites. 

Figure 11 indicates the mean diurnal cycles of the measured and estimated H and LE over the 
whole modeling period for the six study sites. As anticipated, the magnitude and phase of the diurnal 

245 255 265 275

S L

245

255

265

275

R M S E  = 0.95  [
o
K ]

M A E  = 0.77  [oK ]

A rou

275 285 295 305

S L

275

285

295

305

R M S E  = 1.04 [
o
K ]

M A E  = 0.78 [oK ]

W illow  C reek

275 285 295 305

S L

275

285

295

305

R M S E  = 1.99  [oK ]

M A E  = 1.47  [oK ]

B rookings

280 290 300 310

S L

280

290

300

310

R M S E  = 1.36  [
o
K ]

M A E  = 0.98  [
o
K ]

B ondville

280 290 300 310

S L

280

290

300

310

R M S E  = 2.52 [
o
K ]

M A E  = 2.02 [
o
K ]

A udubon

270 280 290 300 310

S L

270

280

290

300

310

R M S E  = 2.56  [
o
K ]

M A E  = 2.04  [oK ]

D esert

0 0.01 0.02 0.03 0.04 0.05

q
S L

0

0.01

0.02

0.03

0.04

0.05

q

R M S E  = 0.0009  [kg/kg]

M A E  = 0.0007  [kg/kg]

A rou

0 0.01 0.02 0.03 0.04 0.05

q
S L

0

0.01

0.02

0.03

0.04

0.05

R M S E  = 0.0011  [kg/kg]

M A E  = 0.0008  [kg/kg]

W illow  C reek

0.005 0.01 0.015 0.02 0.025

q
S L

0.005

0.01

0.015

0.02

0.025

R M S E  = 0.0012  [kg/kg]

M A E  = 0.0009  [kg/kg]

B rookings

0.005 0.01 0.015 0.02 0.025

q
S L

0.005

0.01

0.015

0.02

0.025

q

R M S E  = 0.0012  [kg/kg]

M A E  = 0.0009  [kg/kg]

B ondville

0.005 0.01 0.015 0.02 0.025

q
S L

0.005

0.01

0.015

0.02

0.025

R M S E  = 0.0015  [kg/kg]

M A E  = 0.0010 [kg/kg]

A udubon

0 0.005 0.01 0.015 0.02

q
S L

0

0.005

0.01

0.015

0.02

R M S E  = 0.0021  [kg/kg]

M A E  = 0.0016  [kg/kg]

D esert

Figure 10. Scatterplot of half-hourly specific humidity (q) estimates versus qSL at the six
experimental sites.
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Figure 11. Mean diurnal cycle of estimated (solid lines) and measured (symbols) turbulent heat fluxes
from the VDA approach for the six study sites.



Remote Sens. 2020, 12, 1065 19 of 29

5. Conclusions

In this study, sequences of reference-level air temperature and humidity were assimilated into a
VDA approach to partition the available energy between the sensible (H) and latent (LE) heat fluxes
at six sites (namely, Arou, Audubon, Bondville, Brookings, Desert, and Willow Creek) with different
vegetative and climatic conditions. The VDA approach takes advantage of the implicit information in
the time series of reference-level air temperature and specific humidity (as the state variables of the
atmosphere) to estimate the neutral bulk heat transfer coefficient, CHN (that scales the sum of H and
LE), and evaporative fraction, EF (that represents the partitioning between H and LE).

The sites with higher leaf area index (LAI) values showed larger CHN estimates. Additionally,
at wet and/or densely vegetated sites, the variations in CHN estimates were consistent with those of
LAI. This consistency weakened in dry and/or sparsely vegetated sites. Similarly, the EF estimates
agreed well with the observations in terms of the magnitude and day-to-day dynamics in wet and/or
densely vegetated sites (e.g., Arou and Willow Creek), but this agreement degraded in dry and/or
sparsely vegetated sites (e.g., Desert and Audubon). The RMSE of EF estimates at Desert (dry barren
land) was 0.198, which is 73.2% higher than that of 0.053 at Arou (wet grassland). These results show
that the sequences of air temperature and specific humidity have a significant amount of information
on the partitioning of available energy between H and LE in wet and/or densely vegetated sites.
This information content decreases by the reduction of soil moisture and/or LAI.

The RMSEs of daily sensible (latent) heat flux estimates at the Arou, Willow Creek, Brookings,
Bondville, Desert, and Audubon sites were 25.43 W m−2 (55.81 W m−2), 37.03 W m−2 (74.46 W m−2),
45.01 W m−2 (82.28 W m−2), 45.21 W m−2 (77.88 W m−2), 58.13 W m−2 (89.57 W m−2), and 60.00 W m−2

(102.21 W m−2), respectively. The RMSEs of the daily H and LE estimates increased as the site became
drier and/or sparser in vegetation density. This is due to the fact that in dry and/or sparsely vegetated
sites (e.g., Desert and Audubon), evapotranspiration is mainly controlled by the land surface state
variable (i.e., land surface temperature) rather than the atmospheric state variables (i.e., reference-level
air temperature and specific humidity). Hence, the coupling between EF and the atmospheric state
variables weakens and the estimation of EF from the sequences of air temperature and specific humidity
becomes uncertain. In contrast, at wet and/or densely vegetated sites (e.g., Arou and Willow Creek),
the evaporative demand is primarily controlled by atmospheric state variables and the VDA system
can extract that information to estimate H and LE.

The RMSEs of the atmospheric boundary layer (ABL) potential temperature (θ) estimates at the
Desert, Audubon, Bondville, Brookings, Willow Creek and Arou sites were 2.56, 2.52, 1.36, 1.99, 1.04,
and 0.95 K, respectively. The corresponding RMSEs for the ABL humidity (q) estimates were 0.0021,
0.0015, 0.0012, 0.0012, 0.0011, and 0.0009 kg kg−1. The low RMSEs of the θ and q estimates at wet
and/or densely vegetated sites (e.g., Arou and Willow Creek) indicated that the VDA approach can
effectively update the two key unknowns (i.e., CHN and EF) and obtain their optimal values. In contrast,
at dry and/or sparsely vegetated sites (e.g., Desert and Audubon), the VDA system cannot effectively
update CHN and EF, leading to high RMSEs for θ and q. The highest and lowest RMSEs of θ and q
estimates occurred at Desert and Arou, respectively. The RMSEs of θ and q estimates at the Bondville
and Brookings sites fell within those of dry/sparsely vegetated and wet/densely vegetated sites.

The magnitude and phase of the diurnal cycles of the retrieved sensible and latent heat fluxes
agreed well with the observations at wet/densely vegetated sites (e.g., Arou and Willow Creek).
In contrast, for the dry/lightly vegetated sites (Audubon and especially Desert), a significant difference
was found between the diurnal cycles of the retrieved and observed H and LE.

Future studies should focus on the synergistic assimilation of the LST (as the state variable of
land surface) and the reference-level air temperature and specific humidity (as the state variables of
atmosphere) to improve the turbulent heat flux estimates at the dry and/or sparsely vegetated sites.
In addition, future studies should be advanced by taking CHN as a function of LAI.
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Appendix A. List of symbols

B Stanton number [-]
B−1

EF inverse background error covariance of EF [-]
B−1

R inverse background error covariance of R [-]
CHN neutral bulk heat transfer coefficient [-]
cp specific heat capacity of dry air [J kg−1 K−1]
D1, D2 dissipation of mechanical turbulent energy [m3 s−3]
d zero-plane displacement height [m]
E evaporative rate from ground [kg m−2 s−1]
EF evaporative fraction [-]
f atmospheric stability correction function [-]
G ground heat flux [W m−2]
G∗ production of mechanical turbulent energy [m3 s−3]
g gravitational acceleration [m s−2]
H sensible heat flux [W m−2]
Htop entrainment sensible heat flux [W m−2]
Hv virtual heat flux [W m−2]
h mixed-layer height [m]
J objective functional [-]
k von Karman’s constant [-]
κ empirical constant [kg m−2]−1/7

L Monin-Obhukov length [m]
Lv latent heat of vaporization [J kg−1]
LE latent heat flux [W m−2]
LEtop entrainment latent heat flux [W m−2]
LAI leaf area index [m2 m−2]
m constant [-]
N number of days in the assimilation period
Ph pressure at height h [Pa]
Ps surface pressure [Pa]
q mixed layer specific humidity (equation 5b) [kg kg−1]
qa specific humidity at the reference-level [kg kg−1]
qh specific humidity immediately above mixed layer [kg kg−1]
qSL specific humidity at the bottom of mixed layer (equation B2) [kg kg−1]
R transformation variable [-]
RAd downwelling longwave radiation from within the mixed layer [W m−2]
RAu upwelling longwave radiation from within the mixed layer [W m−2]
Rad downwelling longwave radiation from above the mixed layer [W m−2]
Rd gas constant for dry air [J kg K−1]
Rgu upwelling longwave radiation from ground into the mixed layer [W m−2]
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Ri Richardson number [-]
Rn net radiation at the surface [W m−2]
R↓s incoming solar radiation [W m−2]
Rv gas constant for water vapor [J kg K−1]
R−1

q inverse error covariance of q [-]
R−1
θ inverse error covariance of θ [K−2]

SL surface layer [-]
T land surface temperature [K]
Ta reference-level air temperature [K]
Th air temperature immediately above the mixed layer [K]
t time [s]
U wind speed at the reference-level [m s−1]
uSL wind speed at the top of the surface layer [m s−1]
u∗ friction velocity [m s−1]
z0h roughness length scales for heat [m]
z0m roughness length scales for momentum [m]
zSL surface-layer height [m]
zre f reference-level height [m]
zveg vegetation height [m]
α surface albedo [-]
δq specific humidity inversion strength [kg kg−1]
δθ potential temperature inversion strength [K]
εa atmospheric emissivity [-]
εad effective emissivity above the mixed-layer [-]
εd effective mixed-layer downward emissivity [-]
εu effective mixed-layer upward emissivity [-]
εm mixed-layer bulk emissivity [-]
εs surface emissivity [-]
γq lapse rate of q above the mixed layer [kg kg−1 m−1]
γθ lapse rate of θ above the mixed layer [K m−1]
λ1, λ2 lagrange multipliers [-]
Ψh stability function for heat [-]
Ψm stability function for momentum [-]
Ψq stability function for water vapor [-]
ρ air density [kg m−3]
σ Stefan-Boltzmann constant [W m−2 K−4]
θ Mixed layer potential temperature (equation 5a) [K]
θa reference-level potential temperature [K]
θSL potential temperature at the bottom of mixed layer (equation B1) [K]
ϕ mechanical turbulence dissipation parameter [-]
ξ stability parameter [-]

Appendix B. Monin–Obukhov Similarity Theory (MOST)

The potential temperature, specific humidity, and wind speed at the top of the surface layer (i.e.,
θSL, qSL, and uSL) are found by expanding θa, qa, and U from the reference height

(
zre f

)
to the bottom

of the mixed layer (zSL) via the Monin–Obukhov similarity theory (MOST) [77]:

θSL = θa −
H

ku∗ρcp

[
ln

(
zSL − d
zre f − d

)
−Ψh

(
zSL − d

L

)
+ Ψh

(zre f − d

L

)]
, (A1)

qSL = qa −
LE

ku∗ρLv

[
ln

(
zSL − d
zre f − d

)
−Ψq

(
zSL − d

L

)
+ Ψq

(zre f − d

L

)]
, (A2)
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uSL = U +
u∗
k

[
ln

(
zSL − d
zre f − d

)
−Ψm

(
zSL − d

L

)
+ Ψm

(zre f − d

L

)]
, (A3)

where k is the von Karman’s constant; d is zero-plane displacement height (d is 2/3 of the vegetation
height, zveg); Lv is the latent heat of vaporization; and Ψh, Ψm, and Ψq are the stability functions for
heat, momentum, and water vapor and are given by [77,111,112]:

Ψh(ξ) = Ψq(ξ) =


2ln

[
(1+

√
1−16ξ)
2

]
ξ < 0

−5ξ 0� ξ� 1
−5− 5ln(ξ) ξ > 1

(A4)

Ψm(ξ) =


2ln

(
1+(1−16ξ)

1
4

2

)
+ ln

(
1+
√

1−16ξ
2

)
− 2tan−1(1− 16ξ)

1
4 + π

2 ξ < 0

−5ξ 0� ξ� 1
−5− 5ln(ξ) ξ > 1

(A5)

where ξ is the stability parameter, which is defined as the ratio of the measurement height to the
Monin–Obhukov length

(
zre f /L

)
[77,93]. The Monin–Obukhov length is defined as:

L =
−ρcpθa

(
1 + Rd

Rv
qa

)
u3
∗

kgH
, (A6)

where Rd is the gas constant for dry air (287 J kg−1 ◦C−1), Rv is the gas constant for water vapor (461 J
kg−1 oC−1), g is the gravitational acceleration, ρ is the air density, and cp is the specific heat capacity of
air. Sensible (H) and latent heat fluxes (LE) are obtained respectively from Equations (1) and (3). u∗ is
the friction velocity that is related to the wind speed measurements at the reference level (U) via [77]:

u∗ =
kU

ln
(

zre f−d
z0m

)
−Ψm

(
zre f−d

L

)
+ Ψm

( z0m
L

) , (A7)

where z0m is the momentum roughness height. The neutral bulk heat transfer coefficient for heat (CHN)
can be related to the roughness length scales for heat (z0h) and momentum (z0m) via [50]:

CHN =
k2

ln2
( zre f

z0h

)
− kB−1ln

( zre f
z0h

) , (A8)

where z0h is the roughness length for heat. The roughness length scales for heat and momentum are
related through [50,111,112]:

kB−1 = ln
(

z0m

z0h

)
, (A9)

where B is the Stanton number. Rigden and Salvucci [77] related kB−1 to the vegetation height (zveg)
through:

B−1 =


2 low zveg

5 intermediate zveg

8 tall zveg

. (A10)

The following steps explain how θSL and qSL are obtained from θa and qa :

1. Guess a reasonable value for u∗.
2. Substitute u∗ from step 1 in B6 to estimate L.
3. Estimate kB−1 from B10.
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4. Substitute the CHN estimate from the VDA approach and obtained kB−1 from step 3 in B8 to find
z0h.

5. Substitute z0h from step 4 in B9 to find z0m.
6. Substitute z0m from step 5 and L from step 2 in B7 to find u∗.
7. Repeat steps 2–6 until the algorithm converges (i.e., the difference between u∗ estimates from the

last two iterations becomes smaller than 0.01 m/s). This step gives us u∗, z0h, z0m, and L estimates
for a given CHN value.

8. Substitute u∗ and L from step 7 in B1 and B2 to estimate θSL and qSL.

As the potential temperature and specific humidity are invariant through the mixed layer,
θ (t = to) = θSL(t = to), and q (t = to) = qSL(t = to), which give us the initial conditions for Equations
(4) and (5). The estimated uSL is used to integrate Equation (10) forward in time and the estimated θSL
and qSL are utilized to integrate Equations (A11) and (A13) backward in time.

Appendix C. Euler–Lagrange Equations

The VDA approach uses the initial guesses for EF and R as well as the initial conditions θ (t = to)

and q (t = to) to integrate the ABL potential temperature and specific humidity (i.e., Equations (4) and
(5) forward in time. Then, Equations (A11) and (A13) are integrated backward in time using the final
conditions Equations (A12) and (A14), respectively. Finally, the model updates the parameters EF and
R using Equations (A15) and (A16), respectively. These steps are repeated until convergence is reached:

dλ1
dt = 1

h

{
2R−1

θ
(θ−θSL)

ρcp

+λ1

[
−

4θG∗e−ϕh

ghδθ
−

0.2 f (Ri)U(T−Ta)eR

δθ

(
1 + 0.07EF

1−EF

)
+

0.2θeR f (Ri)U
δθ

(
1 + 0.07EF

1−EF

)(
Ps
Ph

)Rd
cp

−
εmεadσ(4θ3+12θ2δθ+4δθ3+12θδθ2)

ρcp

(Ph
Ps

) 4Rd
cp + 4εuσθ3

ρcp
−

4εdσθ
3

ρcp

+1.32eR f (Ri)U
(

Ps
Ph

)Rd
cp

]
+λ2

[
−

2q
cp

G∗e−ϕh

ghδθ
+

0.2qeR f (Ri)U
cpδθ

(
Ps
Ph

)Rd
cp

(
1 + 0.07EF

1−EF

)
+

EFeR f (Ri)U
(1−EF)Lv

(
Ps
Ph

)Rd
cp

−
δq
cp

2G∗e−ϕh

ghδθ
+

0.2δq
cpδθ

eR f (Ri)U
(

Ps
Ph

)Rd
cp

(
1 + 0.07EF

1−EF

)]
}

(A11)

λ1(t1) = 0, (A12)

dλ2

dt
=

1
h

2R−1
q (q− qSL)

ρ
−

2λ2θG∗e−ϕh

ghδθ
−

0.2λ2eR f (Ri)U(T − Ta)

δθ

(
1 +

0.07EF
1− EF

), (A13)

λ2(t1) = 0, (A14)

EFi =
1

2B−1
EF

∫ t1
t0

[
0.07λ1θρcpeR f (Ri)U(T−Ta)

(1−EF)2

(
0.2
δθ

)
+

0.07λ2ρqeR f (Ri)U(T−Ta)

(1−EF)2

(
0.2
δθ

)
+
λ2ρcpeR f (Ri)U(T−Ta)

Lv(1−EF)2 +
0.07λ2ρδqeR f (Ri)U(T−Ta)

(1−EF)2

(
0.2
δθ

)]
dt + EF′i

(A15)

R = 1
2B−1

R

∑ ∫ t1
t0

[(
1 + 0.07EF

1−EF

) 0.2λ1θρcpeR f (Ri)U(T−Ta)

δθ
+ 1.32λ1ρcpeR f (Ri)U(T − Ta) + (1+

0.07EF
1−EF

) 0.2λ2ρqeR f (Ri)U(T−Ta)
δθ

+
EFλ2ρcpeR f (Ri)U(T−Ta)

(1−EF)Lv
+

(
1 + 0.07EF

1−EF

) 0.2λ2ρδqeR f (Ri)U(T−Ta)

δθ
dt + R′.

(A16)
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