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Abstract: Despite the large amounts of resources destined to developing filtering algorithms of
LiDAR point clouds in order to obtain a Digital Terrain Model (DTM)), the task remains a challenge.
As a society advancing towards the democratization of information and collaborative processes,
the researchers should not only focus on improving the efficacy of filters, but should also consider
the users’ needs with a view toward improving the usability and accessibility of the filters in order
to develop tools that will provide solutions to the challenges facing this field of study. In this
work, we describe the Hybrid Overlap Filter (HyOF), a new filtering algorithm implemented in
the free R software environment. The flow diagram of HyOF differs in the following ways from
that of other filters developed to date: (1) the algorithm is formed by a combination of sequentially
operating functions (i.e., the output of the first function provides the input of the second), which are
capable of functioning independently and thus enabling integration of these functions with other
filtering algorithms; (2) the variable penetrability is defined and used, along with slope and elevation,
to identify ground points; (3) prior to selection of the seed points, the original point cloud is processed
with the aim of removing points corresponding to buildings; and (4) a new method based on a moving
window, with longitudinal overlap between windows and transverse overlap between passes, is used
to select the seed points. Our hybrid filtering method is tested using 15 reference samples acquired
by the International Society of Photogrammetry and Remote Sensing (ISPRS) and is evaluated in
comparison with 33 existing filtering algorithms. The results show that our hybrid filtering method
produces an average total error of 3.34% and an average Kappa coefficient of 92.62%. The proposed
algorithm is one of the most accurate filters that has been tested with the ISPRS reference samples.

Keywords: DTM; point cloud processing; ground filtering algorithm; hybrid filter; free software

1. Introduction

In the last few decades, the static views of the environment, provided by conventional cartographic
methods [1], have been substituted by digital mapping tools that enable construction of 3D models
based on data with geographical content [2]. Although the development of these models was originally
limited to a few users, the arrival of the Internet and the advances made in the field of informatics and
computing have enabled the same data to be used to create maps that are available to millions of people.
Thus, map users have progressed to being designers capable of sharing their view of the environment
with the world. The way in which terrain is now represented is a good example of the advances made.
At present, the great diversity of methods used to obtain georeferenced data, the volume of these data,
and the wide spectrum of possible ways of obtaining information have shaken the foundations of
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terrain mapping. Although many techniques can be used to acquire topographical data (e.g., classic
topographical methods, photogrammetry, interferometric InNSAR), LIDAR technology is considered
one of the standard methods for acquiring such data [3,4].

More than a decade ago, the work in [5] identified the limited efficiency of the post-processing
LiDAR data as one of the challenges to be addressed by the commercial sector. This author reported
that between 60% and 80% of the relevant resources are destined to the manual classification of data
and the quality control. However, new and complex filtering algorithms have since been developed,
supported by technological advances, free software, and the massive availability of data. Although
private companies (and public bodies) are generally not transparent about the efficiency of these
processes, refined manual processes of models and quality control continue to represent an important
part of the workflow of commercial projects [6]. Despite the efforts made in this field, the scientific
community considers that the problem has not been totally resolved, and the search for the perfect
algorithm continues [7-9]. This is amply demonstrated by the continued production of filters over the
years (Figure 1).

2016+ [ N |

205~ [

2014~ [ ]

2013~ [ ]
2012 [

2011- [N

2010~ [

c 2000~ [
= 2005 [
S 2007- [ |
S 2006- [
« 2005~ [

= 200+~ (DI
2 2003 .

2002" -

2001 ]
2000~ ]

1999~

1998 -

1997 =

1906~ [N

0 1 2 7 8

3 4 5
Number of filters

. Cluster . Morphology Densification . Hybrid

Figure 1. The type of filtering methods developed between 1996 and 2016.

With the aim of responding to the new challenges regarding terrain mapping and to address the
limitations of classic filtering strategies (Table 1), the current tendency is to integrate various filtering
methods/processes to take advantage of the strengths of each, thus giving rise to so-called hybrid
methods [10]. Most of these filters are developed from existing algorithms, which are modified to
mitigate some of their limitations. The main type of modification is (a) to combine various methods or
(b) to add a complementary process.

Regarding the first option (to combine various methods), some authors have combined
morphological filters and different types of filters such as surface or interpolation [11-13], while others
have combined segmentation and densification processes [14,15]. As an example of the latter, the
work in [16] improved the hybrid method of [17] by combining the Progressive TINDensification
(PTD) method of [18] with the segmentation method proposed by [19]. Thus, once the point cloud is
segmented, the segments with a proportion of multiple returns greater than 50% are disregarded as
being considered representative of vegetation. The ground segments are then gradually densified,
and the unit of analysis changes from being a simple point to being a segment. This combination
enables the number of seed points to be increased, particularly in urban zones, where the PTD method
is strengthened by using a larger window size to avoid introducing commission errors due to the
presence of large buildings. Although the method reduces the omission errors relative to the classic
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PTD method, the number of commission errors is greater, which the classic method had attempted
to prevent.

Table 1. Main limitations of classic filters (source: [20]).

Main Classic Categories of Suitable for?’ Limitations Computational
Filtering Methods Efficiency ¢
Morphology. These Terrains with e The size and shape of the High

methods, based on small objects.  structuring element.

mathematical morphology, o Forest areas.

retain terrain details by e Low-density point cloud.

comparing the elevation of e Rough and steep terrains.

neighboring points. e Commission errors due to

buildings of different heights and
complex- shapes.

Cluster. These methods Urban areas e Segmentation errors due to the -
employ segmentation and . oy vegetation and complex buildings.
. . terrains with N

clustering techniques to various o The filtering accuracy depends on

separate terrain points using obiects the segmentation quality.

the point attributes (position, Jects. e Overlapping surfaces (e.g.,

elevation, intensity, etc.). bridges).
e Low-density point clouds make it
difficult to find the segment borders.
e High-density point cloud — too
many small segments.

Densification. These e Dense vegetation or buildings on  Middle
methods compare the Forest areas hillside areas.

elevation of points with the ~ and steep e Succession of flat and steep areas.

estimated values through terrains. e Ramps.

various interpolation e Difficulty in identifying the

methods (TIN, spline, etc.). ground points on breaklines.

In these cases, it is necessary o Small objects.

to apply an iterative e Discontinuous terrains.

processing strategy.

% in [21].

Other authors have opted for the second method and included complementary processes in
existing algorithms. The work in [22] introduced a decimation process for non-ground points posterior
to the selection of seed points in the Sequential Iterative Dual-Filter (SIDF). This algorithm has only
been tested in rural areas, and although it yielded better results than most algorithms considered in
the study of [23], the high commission errors led to the total error in these zones being higher than that
produced by other algorithms developed in the same period (e.g., [12] or [24]).

The methods developed by [24] represent another two examples of the versatility of hybrid
methods. In the first of these, Segmentation Modeling and Surface Modeling (SMSM), segmentation is
combined with a densification process. The second process is known as the Slope-based Statistical
Algorithm (SSA). Both algorithms are preceded by decimation of the raw point cloud, with the aim of
removing points representing vegetation, prior to selection of seed points. The decimation method
assumes that vegetated zones produce multiple returns, in contrast to impermeable zones, which only
produce a single return. This decimation method has proven to be highly effective for removing
vegetation points, thus reducing the probability of introducing commission errors in the seed point
cloud. This particularly applies to forest areas, where the size of the window could be reduced during
the selection of the local lowest points by the use of this method to complement a classic densification
algorithm. However, this advantage is not observed in urban areas. Although commission errors have
a negative influence on the quality of the final model, the magnitude of the errors is much greater
when they are produced in urban zones, as it is more likely that the incorrect classification of the
points will occur in built-up areas than in vegetated areas [25]. Therefore, in urban zones, it will not be
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possible to reduce the selection window size of the local lowest points without greatly increasing the
number of commission errors. These types of methods provide novel, versatile, and effective solutions
to the problem of identifying ground points. However, methods that use complementary processes
basically focus on improving the results in vegetated zones, without effectively resolving the problem
of the large numbers of commission errors in urban zones.

Finally, identifying the filter that best adapts to the specific needs of the user is not a simple task,
as it assumes a good level of knowledge about the different filters. In many cases, such knowledge is
difficult to acquire due to the lack of usability (ease of use - according to [26], usability is the degree
of efficacy, efficiency, and satisfaction with which the user can achieve the specific objectives desired,
within the context of the particular use. In the present case, we refer to usability only in the sense of the
subjective attribute: satisfaction [27]) and accessibility (possibility of access-in computer science, the
term “accessibility” refers to the design of products to be usable by people with disabilities. However,
in this paper, this term refers only to the “free access” and intends to represent the opposite of what
the commercial software depicts). These obstacles are exacerbated by the fact that many of the filtering
details are jealously guarded by their creators [17] and are not published, while those included in
commercial software act like black boxes that operate on data. In response to this situation, in this
work, we present the Hybrid Overlap Filter (HyOF), a new filtering algorithm implemented in the
free R software environment [28]. In addition to being aimed at reducing the number of commission
errors associated with the selection of the seed points in urban areas, the algorithm also aims to
respond to some of the actual needs of the users. The algorithm follows the overall scheme of most
densification filters developed to date, but HyOF also incorporates a decimation process [20], making
it a hybrid method.

2. Methodology

The HyOF filter is a hybrid algorithm that uses the flow diagram of densification filters as a
reference point. However, it differs in four ways relative to these filters. The first difference is that
the HyOF filter is formed by a combination of sequentially operating functions (i.e., the output of
the first function is the input of the second), which are capable of functioning independently and
can therefore be included in other filters, as demonstrated in [20]. Moreover, in addition to using
the variables’ slope and elevation to identify the Local Lowest Points (LLP), HyOF defines and uses
the variable penetrability. The third difference is that as a first step prior to selecting the LLP, in a
similar approach to that used by [24], the original point cloud is subjected to a decimation process
aimed at detecting and removing (under some circumstances) the non-ground points corresponding to
buildings and vegetation. This step makes it possible to reduce the window size for selecting the seed
points, thus increasing the number of points selected without increasing the commission errors. This
enables a better definition of the ramps and inner courtyards of buildings and prevents the erroneous
selection of points corresponding to buildings as LLP. Finally, the remaining difference is based on the
assumption that the locally selected points with minimal elevation are sufficient to define the main
terrain characteristics and to generate a first reference surface. Thus, we place particular emphasis
on attempting to improve the process of selecting the LLP, and a method of selecting LLP that uses a
moving window with longitudinal and transverse displacement is developed. HyOF is implemented
in the free R software environment [28] in an attempt to address the challenge of the usability and
accessibility of the LiDAR data processing methods. The filtering parameters, the functions, and the
flowchart of our hybrid filter are described below.

2.1. The Filtering Parameters

The parameters of our hybrid filter can be grouped into three categories: fixed (remaining constant
in all study areas); variable (set by the user); and automatic (automatically set during the filtering
process). Table 2 includes a brief description of all parameters used in our hybrid filter.
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Table 2. Description of the Hybrid Overlap Filter (HyOF) parameters. OWM, Overlap Window Method.

Fixed Optimal number of points. np is the mean number of points per cell considered necessary to
calculate the penetrability. Default value = 10.
Longitudinal and transverse overlap. FO (Forward Overlap) and LO (Lateral Overlap)
represent the percentage longitudinal and transverse overlap (expressed as a decimal) between
the windows used for selecting the seed points. Default value = 0.8.
Resolution of intermediate raster models. Cg is the pixel size of the intermediate raster
models generated in the densification phase from the points identified as ground points.
Default value = 1 m.
Maximum number of iterations. I is the maximum number of repetitions of the densification
process. The process will end at the moment at which no new points are classified as ground
points or I iterations have been carried out. Default value = 6.

Variable Maximum size of the area without ground points. C is set on the basis of the length of the
shortest side of the largest building in the study area. In forest areas with dense vegetation,
where the laser beam does not reach the soil, it is considered to be the maximum distance
between any ground point and its nearest neighboring ground point.

Size of the window used for selecting the seed points. Cg is the size of the moving window
used to select the ground seed points.

Residual. J, is the maximum distance permitted between a point and the reference surface to
be considered the ground point.

Automatic  Optimal cell size. Cg is the size of the square cell that contains a mean number of np points.
It is obtained from the square root of the ratio between np and the weighted mean of point
density (D).
Minimum and maximum slope threshold. Sl;, and Sl;;;y. Some authors [17] use specific
percentiles to assign a value automatically to specific parameters during the filtering process,
which enables the parameter to be adjusted to the specific characteristics of each study area.
In this case, the 65% percentile of the values of the cells of a slope raster (@siope) is used to set
the value of the parameter Sl,,;, and the 90% percentile to set the parameter Slyax. @sjope s
calculated from an initial surface (¢nc) obtained after interpolating a combination of local
lowest points. These points are selected with a window size of C by using the OWM function.

2.2. Description of Functions Included in HyOF

2.2.1. Selection of Seed Points: OWM Function

The Local Minimum Method (LMM) is one of the most popular methods for selecting seed points
due to its simplicity and efficiency. The main limitation of this method is the selection of the window
size, which should be large enough to minimize the influence of the non-ground points and small
enough to conserve the characteristics of the relief [29]. In areas where buildings coexist with complex
orography, particular attention should be given to the value of this parameter. In this case, the window
size used to minimize the influence of the non-ground points will be too large to preserve the details
of the relief. In complex forest zones (e.g., surfaces with different densities of vegetation on hillsides),
the window size does not need to be as large as in the previous case; however, it will also not be small
enough to produce a detailed estimate of the terrain surface, as densely vegetated zones have negative
effects similar to those of the buildings in the previous case. The Overlap Window Method (OWM) is
developed with the aim of minimizing these limitations. This method is defined by five parameters:
input LiDAR data (P), window size for selecting the local lowest points (w), the size of the mesh for
identification of zones without local lowest points (W), longitudinal overlap (Of), and transverse
overlap (Or) between windows (expressed as a decimal). The flow diagram for this function are
outlined in Figure 2.
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Figure 2. Selection of the local lowest points using the OWM function. LLP, Local Lowest Point.

First, the geographical scope of extraction of the local lowest points is defined using the maximum
and minimum values of the x-coordinate and y-coordinate of the point cloud (Xpax, Ximin, Yimax, Yimin)-
The area is extended by applying an exterior buffer of magnitude w - Or on the x-axis and w - O,
on the y-axis, to analyze the edge points as many times as the rest of points. A moving window of
size w is displaced from the Bottom Left Corner (BLC) following the direction of the x-axis with an
overlap between consecutive windows of magnitude w - Of. At the end of the first pass, the window
w returns to the extreme left and begins a new pass, whose origin is displaced w - Oy, in the y-axis
relative to the first pass. The process is repeated until the window w reaches the Top Right Corner
(TRC) (Figure 2a). In each position of the window, the lowest point is selected, giving rise to a set
of local lowest points. As a result of the overlap between windows, the same point may be selected
more than once. Logically, those points selected various times are more likely to be ground points than
those points selected once. Thus, the points selected more than once are finally those considered seed
points (Figure 2b). In high-slope zones, it is unlikely that the same point will be identified as a local
lowest point more than once, and the resulting seed-point cloud will have some zones without points.
In order to minimize the lack of detail in these zones, a grid of square cells of size W is fitted to the
geographical scope (Figure 2c). For those cells without points, the lowest point is selected from the
original point cloud (Figure 2d) and is added to the final seed-point cloud (Figure 2e).

2.2.2. Calculation of Penetrability: PNT Function

The penetrability (PNT) is defined as the ratio between the number of ground points and the
number of total points in each cell. The PNT function is developed in order to calculate this variable.
Figure 3 shows the pseudo-code of the PNT function. This function is defined by four parameters:
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input LiDAR data (P); reference terrain surface (¢); cell size (W); and the value of the residual from
which a point is considered a non-ground point (J;). The difference in elevation between LiDAR
points and the reference terrain surface is first calculated (J;). A point is considered a ground point
and encoded as G, if 4; < &;,. A grid of square cells of size W, whose extension coincides with the zone
for which data are available, is created. For each cell, the value resulting from dividing the number
of points coded as G by the total number of points is calculated. Empty cells are represented as Not
Available (NA). The result of the PNT function is ¢pnTt (raster format).

PNT. Calculate penetrability

Inputs: Point Cloud ={P}, reference surface ¢, cell size IV, residual 9,
Calculate point residuals from {P} and ¢ — p;=(x;, y;, Z;, 0;)
Encode {P} from ¢, and 9, —
if 0; < 0, then p;=(x;, y;, 2z; class=G)
else p;=(x;, y;, z;, class=NA) end if
Set geographical scope from {P} — TRC=(x1g¢, Y1rc) and BLC=(xp; ¢ Yp10)
Create a empty raster for geographical scope (resolution=IV) — @pyr
¢ for each ij cell do
: Available points in ij — NP;
Available points in ij which class=G — NG;
if NP;; > 0 then @pyr(i) < NG;/ NPy
else @pyr(ij) < NA end if
¢ end for
Return ¢pyr

Figure 3. PNTpseudo-code.

2.2.3. Decimation of the Point Cloud: DecHPoints Function

The filters that include a selection process of local lowest points must adapt the size of the selection
window according to the characteristics of the study area, with the aim of preventing commission
errors due to the presence of objects. Smaller windows lead to the selection of more local lowest points
and, in urban zones with large buildings, to a greater risk of erroneous selection of non-ground points
as ground points. Logically, the selection process of the local lowest points will be more effective when
the number of building points in the original point cloud is minimal. Thus, in urban areas, it would
be possible to use a window of a similar size to that used in forest zones and thus reduce the risk of
erroneously including non-ground points in the cloud of local lowest points.

Following the studies of [22,24], we developed and used the Decimation of Highest Points
function (DecHPoints) to produce a decimated point cloud (Pp) by detecting and deleting (under
some circumstances) the highest points in a local environment from the point cloud. The underlying
principle that this function applies to detect and remove non-ground points from the point cloud is that
the elevations of these points are maximal in local environments. The DecHPoints function is defined
by six parameters: input LIDAR data (P); the maximum size of the area without ground points (usually
identified from the shortest side of the largest building in the study area (c); surface penetrability
(¢pNT); minimum and maximum slope thresholds (S, and Syx); and allowed maximum residual
(61,). The pseudo-code of DecHPoints is shown in Figure 4.

First, the mean weighted density is calculated from LiDAR data (D). Then, the point cloud is
decimated at two Levels (L), and the same operations are used at both levels to produce the decimated
point cloud (Pp). On the other hand, the size of the search window (Ws), used to identify the highest
points, and the window of analysis (W 4), used to analyze and to decide whether or not those points
are ground points, are defined on the basis of parameter c. At the first level (L = 1), the size of W4 (H)
is c. However, as the window used to search for the highest points (Ws) should include ground points
and non-ground points, a coefficient of 1.5 is applied to the size of W4 in order to establish the size of
Ws (1.5 - H). The coefficient is established by trial and error and by checking the quality of results. In
addition, the theoretical number of points that should be included in a window Wj is calculated as
NP5 by multiplying D and (1.5 - H)?.
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DecHPoints. Decimating the highest points in a local environment.
Inputs: Point cloud={P}, window size c, penetrability ppyr, minimum and maximum
slope thresholds Sy, and Spax, allowed maximum residual Jy,

Calculate mean weighted density from {P} — D
SetL=1andsetO=0.5
?while L<2 do
if L=1thenH =celse H=0.75-c end if
Define a square window, size = H — W, Define a square window, size = 1.5-H — W5
Set NP ¢= D-(1.5-H)?
Set geographical scope from {P} and Ws— TRC = (Xtre, YTre) @and BLC = (XgLc, YaLc)
Displacement of W from BLC to TRC, overlap =0 —  Region list {R}
¢ for all {R} do
Available points in each region {Ps}

P include
¢ if NPs < 0.1:-NP; then {Ps} —— {Pp}, {Ps} — @ else
ewhile {Ps} is not empty do
Highest point in {Ps} — Prmax=Xmax» Ymax> Zmax)
Available points in a W4 region centered in ppax {Pa},
Lowest point in {Pa} — Prmin=Xmins Ymins Zmin)
Slope between ppin and ppax — Sl

includ

i Znex=2pin OF SI < Syin then {Ps} —— {Po}, {Ps} « O

remove

else if SI > Syuc then {Pnad —— {Ps}

else

Lowest points in {P} N cells whose gpnr> 0 — {Pr}, Rasterize {Pr} — ¢reference

CaICUIate rESIduaI from {re,mnigv}e and (preference - pmax:(xmaX| Ymax- Zmax: 5max)
if Omax > O then {praxt —— {Ps} else

include

{Ps} —— {Po}, {Ps} <~ O
end if
bend if
eend while
é end if
eend for
Set L=(L + 1), Set Point cloud={Pp}
eend while
Remove duplicated points in{Pp}
Return {Pp}

Figure 4. Decimation of Highest Points function (DecHPoints) pseudo-code.

Secondly, the geographical scope is defined by the data zone plus an exterior buffer of 0.5 times
the size of Ws. This exterior buffer is used to analyze the edge points as many times as the rest of
points (prevent the edge effect). Then, Wg is moved from the BLC to the TRC, and a longitudinal and
transverse overlap between windows equal to 50% is applied (O = 0.5). In each position, all points
that are included within the window Wg are selected (Pg). If the number of Pg (NPs) is lower than
10% of NPg, the decimation process is not required. Ps points are then selected and became part of the
decimated point cloud (Pp). New points are selected by moving the window W from left to right by
O times the size of Ws. Conversely, if NPs > 0.1 - NPg, the highest point (pmax) in Ps is selected. In
order to decide whether or not py.y is a ground point, a local area defined by W4 and centered in pyax
is considered. In this area, points neighboring pu.y are selected (P4), and the lowest point is identified
(Pmin)- Finally, the slope between p,,i,, and ppay is calculated (SI).

Three situations are then considered: (1) If the elevations of p,,;, and p;;qx are the same or the slope
between p,,i, and pyay is less than S, Ps points (including ppuqx) are considered ground points and
therefore added to Pp. The window W is then moved one position; the new points are selected; and
the number of Pg is re-evaluated. (2) If the slope between p,,;,, and puax is greater than S,4y, then piax
is removed from Pg; a new highest point (in Ps) is selected; and the previous steps are repeated to check
whether or not puy is a ground point. (3) Finally, if S,,i, < SI < Syax, no decision could be reached on
the basis of the slope and the difference in elevation relative to pjax, and therefore, a reference surface
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(@reference) (This surface is created by interpolating a set of lowest points selected from P4 in the cells of
@pNnT Whose penetrability is more than zero. The thin plate spline method, recognized as an effective
method for interpolating spatial data [29,30], is used to generate the ¢y, ference-) is taken into account
to calculate the residual from pyax (Pmax = Ximax,Ymax,Zmax,Omax))- Then, if 6,4y is greater than oy, pmax
is removed from Pg, and a new highest point is selected. Otherwise, Pg points (including pyax) are
considered ground points and added to Pp. The window Wjs is then moved one position, the new
points are selected (Pg) and the number of Pg re-evaluated.

At the second level, the above process is repeated considering the refined point cloud (Pp),
obtained in the first level, as input data. Once the most points of buildings are removed (first level),
the value of W, is reduced by 25% in order to eliminate points corresponding to small objects. Finally,
a point can be selected several times due to overlapping between windows. In this case, the duplicated
points in Pp are deleted. More details on the functioning of the DecHPoints function can be found
in [20].

2.3. Integration of Functions in HyOF

The pseudo-code of HyOF is shown in Figure 5. Three blocks of operations are differentiated and
preceded by the selection of input data (P) and the assignation of values to the variable parameters (C,
Cs, 0y). The functions used and the operations carried out in each block are described below.

Hybrid Overlap Filter - HyOF
Inputs: Point cloud={P}, area without points C, seed point window Cs and allowed maximum residual o,

Block 1. Automatic calculation of variables
Set fixed-parameters: np =10; FO=1.0=0.8; Cr=1;1=6
Set It=0

Calculate weighted average density from {P} —D
Create empty raster raster::raster(extent(P), resolution = ¢(Cy,Cr)) — eR
Generate initial surface:
OWM(Point Cloud = P, w=C, W= C, Or= FO, O, = LO)—Pyg;
High_outlier < mean(Ps$z) + 2-sd(Ps;$z)
Pg[-which(Ps$z > High outlier), ] —Ps;
raster::interpolate(eR, fields::Tps(Ps;/[,c(x,y)], Psil.z]))—®mic
raster::terrain(Qc, opt = slope, unit = tangent, neighborns = 4) — Qg1 opg
Calculate slope threshold:
stats: :quantile(values (s opg), na.rm = TRUE, prob = 0.65) — S,
stats: :quantile(values (s opr), na.rm = TRUE, prob = 0.90) — Sl,,..
Set C,,:m
Generate penetrability surface:
PNT(Point Cloud = P, surface = @uic, cell size = C,, residual = 6,)— @pnr

Block 2. Selection of seed points
Refined of P:
DecHPoints(Point Cloud = P, W = C, penetrability = @pnt,Smin = Sluin Smax = Slpax, 0 = 0,)—Pp
Selection of seed points:
OWM(Point Cloud = Pp, w = Cs, W= C, Or= FO, O, = LO)—Ps
Generate initial surface:
raster: :interpolate(eR, fields::Tps(Ps[,c(x,y)], Ps[,z]))—® 1

Block 3. Densification
ewhile 7t <1 do

Calculate residual from {P} and ¢ — p=(x;, vi, zi» 0,); {Ps}—{Ps}
ofor all {~} do

include

if ;< 0, then {p;} —— {P,} end if
eend for
oif (NP >NP;) then

Set It=(It + 1)

base::rbind(Pg, P,) — {P}; Remove duplicated points in{F}

raster::interpolate(eR, fields::Tps(Pg[,c(x,y)], Po[.z]) =01t 1rcend
eelse /t=1+1 end if Data/Variable
eend while Parameters: Fixed Automatic Variable
Return {P;} Function

Figure 5. HyOF pseudo-code.
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e Block 1. Automatic calculation of variables. The aim of this block of operations is to extract
additional information from the LiDAR data (point density and penetrability) in order to assign
values to the automatic parameters (Co, Slyin, and Slyu,y). First, the mean weighted density (D)
of the LiDAR point cloud is calculated. Then, the minimum and maximum slope thresholds are
calculated from the 65% and 90% quantiles of the cell values of slope surface (¢sop.) and are
assigned to the parameters Sl,,;;, and Slyx, respectively. To obtain the slope surface, a set of local
lowest points (Pg;) is first identified by using the OWM function (description in Section 2.2.1),
where the values of the parameters are as follows: point cloud = point LiDAR cloud, w = W =C,
OF =FO = 0.8, and OL = LO = 0.8 (description in Section 2.2.1). A statistical filtering technique is
then applied to this point cloud to detect and remove points with abnormally high elevations that
could lead to overestimation of the values of the parameters Sl,,;;, and Sl,,,x. After this process,
the selected points (Pg;) are interpolated using the functions Tps (the field package in R software
v.8.2-1) and interpolate (the raster package v.2.4-20), thus producing ¢njc. This surface and the
ground function (raster package v.2.4-20) are then used to calculate ¢gjop.. Then, the automatic
parameter C is obtained as \/np/D. Finally, the penetrability raster (¢pnr) is calculated using
the PNT function (description in Section 2.2.2). The values of the parameters of the PNT function
are as follows: point cloud = point LiDAR cloud, ¢ = ¢;n1c, W = Cp, and J = 4j,.

e  Block 2. Selection of ground seed points. The aim of this block is to identify the ground seed points
(Ps) from a decimated cloud of non-ground points (Pp). Before selecting the ground seed points,
the greatest possible number of non-ground points in the LiDAR point cloud are first identified
and removed using the DecHPoints function (description in Section 2.2.3). The values of the
parameters of this function are as follows: point cloud = point LiDAR cloud; W = C; ¢pnT = @PNT;
Smin = Shuin; Smax = Slmax; and 6 = ;. The result of this function is a decimated point cloud
(Pp). The OWM function is then applied to Pp to select the ground seed points. This method
of selecting the local lowest points is one of the main differences between our hybrid filter and
other algorithms that include seed point selection in the filtering process. As a novel feature, the
OWM function includes the use of a moving window to select the points, by displacement with a
longitudinal overlap between consecutive windows and transverse overlap between passes. In
this case, the values of the parameters of the OWM function are as follows: point cloud = Pp,
w=Cs, W=C,OF =FO =0.8, OL = LO = 0.8. This process yields the ground seed points (Ps).
Finally, the first reference surface (¢; — o) is created from the ground seed points. The choice of the
interpolation method is one of the factors to be considered in the filtering process. On the basis of
the findings reported by [31] and the experience of other authors in similar studies [4,29], we used
the Tps function to interpolate the points classified as ground points in each iteration. The default
values of the parameters are used so that the smoothing parameter lambda is automatically
calculated by the Tps function. Finally, the interpolate function is used to transform the model
generated with the Tps function to raster format with a resolution of Cg (Cr =1 m).

e  Block 3. Densification. The densification is carried out with the aim of identifying new ground
points amongst unclassified points in order to reduce the number of omission errors. For this
purpose, the difference in elevation between each point of original point cloud and a reference
surface (¢; — o in the first iteration, iteratively up-dating with the inclusion of new points: ¢; — )
is calculated. Although in other studies, the residuals have been calculated by considering the
central cell and the eight neighboring cells [29], in this study, only the value of the central cell is
taken into account (using the extract function, method option = “simple”, field package v.8.2-1) to
prevent overestimation of the value of the residuals in heterogeneous or steep slope areas. All
points with residuals lower than or equal to ;, are considered ground points and are added to
the ground point cloud (P¢). Finally, the ground point cloud is interpolated to calculate a new
reference surface (¢: — ;). Many studies have used the residuals for classifying new points as
ground points. On the basis of the findings of [23], the work in [8] demonstrated the need to
assign different values to the parameter controlling the densification process according to the
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ground characteristics. Although this approach could have been used in the present study, it was
found that it increased the number commission errors originating from the selection of the ground
seed points, as well as the omission errors in a steep slope such as banks and gullies. Taking the
above into account and the high level of detail of ¢; — o, we opted to assign a single threshold to
the entire area (Jy). The residuals obtained and the posterior densification of the point cloud are
repeated either until no new ground points are added or until the maximum number of iterations
defined by I is reached.

3. Experiments, Results, and Discussion

3.1. LiDAR Data

The LiDAR data used in this study were acquired with an Optech ALTM laser scanner
(in the second phase of the EuroSDR project). The data were published on the website
(http:/ /www.itc.nl/isprswglll-3 /filtertest/) of Working Group III/3 of the International Society
for Photogrammetry and Remote Sensing (ISPRS). The scanned area included 15 reference areas: 9
urban areas (Samples 11, 12, 21, 22, 23, 24, 31, 41, and 42) and 6 rural areas (Samples 51, 52, 53, 54, 61,
and 71). Each point was classified into either of two classes by combining semi-automatic and manual
filtering techniques: ground (Pg, coded as 0) and non-ground (Py,¢, coded as 1) [32]. The characteristics
of the reference samples are summarized in Table 3. In addition to the number of ground points and
non-ground points, the table also includes the proportion of ground points relative to non-ground
points, the point density, and the terrain slope (mean and the quantile of 90%).

Table 3. Characteristics of the International Society for Photogrammetry and Remote Sensing (ISPRS)
reference samples (Urb.-Urban and Rur.-Rural).

Samples Points Density Slope (%)
. . P, 4 2

Pg(outllers) Png(outhers) Ping pts/m Mean Q90
S11-Urb.Vegetation and buildings on hillside. 21,786(9) 16,224 (13) 1.3 0.93 53.8 1000
S12-Urb. Buildings and cars. 26,691 (37) 25428 (35) 1.0 0.95 11.9 26.8
521-Urb. Narrow bridge. 10,085 (0) 2875(0) 35 0.89 7.5 17.2
522-Urb. Bridge and gangway. 22,504 (6) 10,202(17) 2.2 0.96 16.4 439
S23-Urb. Large buildings and data gaps. 13,223 (0) 11,872 (1) 1.1 0.82 242 60.4
S24-Urb. Ramp. 5434 (30) 2059 (1) 26 0.83 241 57.0
S31-Urb. Large buildings. 15,556 (2) 13,306 (14) 1.2 1.01 4.6 9.2
S41-Urb. Outliers (multi-path error). 5602 (0) 5629 (116) 1.0 0.63 12.8 28.2
S42-Urb. Railway station. 12,443 (0) 30,027 (2) 04 0.91 6.8 15.5
S51-Rur.Vegetation on moderate slopes. 13,950 (0) 3895(0) 3.6 0.18 18.9 56.2
S52-Rur. Vegetation on river bank. 20,112 (0) 2362 (0) 85 0.17 33.3 78.2
S53-Rur. Terrain discontinuities. 32,989 (0) 1389 (0) 23.8 0.17 39.2 78.3
S54-Rur. Low resolution buildings. 3983 (0) 4625 (5) 09 0.17 11.7 23.8
S61-Rur. Sharp ridge and embankments. 33,854 (0) 1206 (0) 28.1 0.17 16.3 40.2
S71-Rur. Ramp, bridge, and underpass. 13,875 (0) 1770 (0) 7.8 0.18 15.0 454

In order to prevent errors in the filtering process, the low outliers (caused by the multi-path
effect or by registration errors) were identified and removed from the point clouds by a process that
combined the threshold method and a radial elimination method [8,33]. The cells in columns P and
Py¢ of Table 3 show the original number of ground and non-ground points before removal of the
outliers. The number of outliers is shown in brackets.

3.2. Accuracy Assessment

Quantitative analysis of HyOF algorithm was based on the accuracy metrics proposed by [23]:
Type I errors (Tle, omission errors or the percentage of ground points not identified as such), Type II
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errors (T1le, commission errors or the percentage of non-ground points erroneously identified as
ground points), and the total errors (Te). In addition, Cohen’s Kappa coefficient (K) was calculated [34].

In order to analyze the filtering results, first the HyOF variable parameters were tuned. The results
for the 15 reference samples for each of the combinations of parameters enabled both evaluation of our
hybrid method performance and the assessment of the filtering accuracy. In the first case, three aspects
were taken into account: (1) the effectivity of the decimation process; (2) the validity of the seed-point
selection method (OWM); and (3) the influence of variable parameters on the final results. In order to
assess the filtering accuracy, our results were compared with those obtained in 33 previous studies
using ISPRS data.

3.3. Parameter Tuning Results

Selection of the filtering parameters is an important task determining the effectivity and efficiency
of the filtering process [35] and is also one of the most important challenges facing the designers and,
subsequently, the users of the filters. In most cases, selection of the optimal parameters is based on a
process of trial and error, supported by the prior knowledge that the user has regarding the functioning
of the filter and the characteristics of the study area. In the present study, the fixed parameter values
were established on the basis of the practical experience of the authors: np =10, LO=FO=0.8;Cr =1;
and I = 6. Furthermore, the values of the parameters Cp, Sl;;;i;, and Sy, were calculated automatically
during the filtering process. In the case of the variable parameters, a different strategy was used
with the aim of minimizing filtering errors and optimizing the processing time in future studies.
Thus, the parameters C, Cg, and J;, were tuned in two stages. The reference samples were filtered
by maintaining parameter J;, constant and varying the parameters C and Cg, where 6, = 0.5 m. The
ranges for each parameter were as follows: for urban samples, C € [12,32] at intervals of 2 m and for
rural samples C € [6,26] at intervals of 2 m; for all samples, Cg € [3,6] at intervals of 1 m. Each sample
was thus filtered 44 times. For each parameter, the range was determined on the basis of the practical
experience of the authors. The errors Tle, Tlle, and Te and the Kappa coefficient were calculated for
each combination of parameters. Thus, the combination of parameters that yielded the lowest value of
Te for each sample was considered optimal at this stage. In the second stage, the parameters C and
Cs took the optimal values obtained in the previous stage, and the value of parameter J;, was varied,
where é;, € [0.4,0.8] at intervals of 0.1 m. In this case, each sample was filtered 4 times. Finally, the set
of parameters that yielded the lowest itTe was considered optimal. This approach produced 48 results
per sample, compared with the 220 that would have been produced if all possible combinations of the
parameters C (11 levels), Cs (4 levels), and &, (5 levels) had been considered. The optimal values of the
parameters are shown in Figure 6.

- AUTOMATIC PARAMETERS

N
33 |82 | 34 | 32
—_—— 35% | 10% | 10% | 10% VARIABLE PARAMETERS
75% | 21% | 20% | 20% T
* 11]12]21]22 35 | 35 | 31 | 40 26| 4]/ 3] 3
| 17% 21% 10% 10%
23(24131|41 N I e et
%' 3|24]3 . 39% | 37% | 20% | 22% 28|13 (135
< |42[51]52|53 33 | 75 | 77| 1.7 12465
w 10% 11% 32% 27% e
546171 bl it el | L1728
20% | 54% | 69% | 75% C|l4]3]5
Each square 77 77 75 Co —
represents a data Prrel oLl vl | 2=
sample from the 12% | 12% 10% _S_Irniu
\__!SPRSdataset J (L 24% | 37% | 25% | S, J)

Figure 6. Values of the automatic and variable HyOF parameters.
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3.4. Evaluation of HyOF Performance

3.4.1. Efficacy of the Penetrability during the Decimation Process

The quantitative results of the parameters fitting described in Section 3.3 were used to test the
efficacy of the penetrability during the decimation process. Figure 7 was created from the difference
between the Kappa coefficients derived from the decimated-point clouds using the penetrability and
without using this variable (urban samples: magenta-purple boxes; rural samples: orange boxes;
all samples: blue box). Positive differences indicated that the use of the penetrability increased the
effectiveness of the point decimation method. As shown in Figure 7, most urban samples showed
positive differences (magenta-purple boxes), while most rural samples showed zero or negative
differences (orange boxes). These results may be due to the use of penetrability, which reduced the
commission errors in the decimated-point clouds obtained from the decimation method. However, this
reduction came at the cost of increasing the omission errors. In this way, the use of the penetrability
would have a positive impact on the filtering results in areas where the reduction of the Type II errors
exercised more influence than the increase of Type I errors in the final precision. Usually, this happened
in areas with large buildings, where the proportion of ground-points relative to non-ground points
was not high (ratio P /P in Table 3). Finally, if the urban and rural samples were taken into account
(the blue box in Figure 7), the use of the penetrability provided better results (most differences were
positive). In view of this analysis, in a future version of HyOF, the user will have the option to decide
if he/she wants to use the penetrability.

15~ 15~
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Difference between Kappa coefficients (%)
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et @t
S —
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Sample 12
Sample 21
Sample 22 -
Sample 23
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Sample 52 -
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Sample 61
Sample 71
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All

Figure 7. Efficacy of the penetrability during the decimation process (urban samples: magenta-purple
boxes; rural samples: orange boxes; all samples: blue box).

3.4.2. Efficacy of the Decimation Process

In order to test the efficacy of the decimation process using the DecHPoints function, a bar diagram
(Figure 8) was constructed showing the original number of points (in green), the points remaining after
the decimation process (in orange), and those selected as seed points (in pink), depending on whether
they were ground points (P¢) or non-ground points (Py¢). The values of Te and K were also included
for each sample. The Figure 9 shows the qualitative results of our point decimation method using the
ISPRS reference samples. In this figure, the spatial distribution of the original, decimated, and seed
points is shown for Samples 11 (Figures 9a—c) and 41 (Figures 9d—f), which included buildings and/or
vegetation. The results included in Figures 8 and 9 were obtained from the optimal combination of
parameters for each sample (Figure 6).
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Sample 11 | Sample 12 | Sample 21 | Sample 22 | Sample 23 | Sample 24 | Sample 31 | Sample 41 | Sample 42

Te=22.28% | Te=5.22% | Te=2.92% || Te=7.52% || Te=10.25% |Te=11.93%| Te=4.62% || Te=1.85% | Te=2.07%
K=51.54% || K=89.53% || K=91.32% | K=82.49% || K=79.39% || K=66.31% | K=90.63% || K=96.29% | K=95.11%
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Sample 51 | Sample 52 | Sample 53 | Sample 54 | Sample 61 | Sample 71

Te=11.09%|| Te=8.84% || Te=5.62% | Te=3.5% | Te=5.36% | Te=6.3%
K=60.49% || K=49.58% | K=45.87% | K=92.98% | K=51.85% | K=71.45%
|
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Point type: ground points (Pg); non—ground points (Png)

0

Figure 8. Effectiveness of DecHPoints function (original points are represented in green,
decimated-point cloud in orange, and seed points in pink).

In general, the decimation process was more effective for urban samples than for rural samples
(in 6 of the 9 urban samples, K was higher than 80%; this level of precision was only obtained for
15% of the rural samples). These results were expected as the aim of the decimation process was to
eliminate non-ground points corresponding to buildings, which occurred in a higher proportion in
urban samples than in rural samples (in urban zones, there were 1.1 ground points for each non-ground
point, whereas in rural zones, the corresponding mean value was 7.8; Table 3).

In urban areas, the decimation process was most effective in areas of low relief, with the presence
of large buildings (Kg1p = 89.53% and Kgap = 95.11%), bridges (Ksp1 = 91.32%), or discontinuities in the
data (Kgy1 = 96.29%; Figure 9e). However, our decimation method did not cope particularly well with
areas of complex relief and including large buildings, terraces, and/or low vegetation (Kg11 = 51.54%
(Figure 9b) and Kgp4 = 66.31%). In the case of Sample 11, the low precision may be due to the presence
of large buildings on different levels of terrain, so that the local maxima analyzed may correspond to
ground and not to objects, thus simultaneously increasing both the omission and commission errors.
However, this limitation did not apply to Sample 41, which included large buildings located in a flat
area (Kgq1 = 96.29%, Figure 9e). In the rural zones, the existence of a higher percentage of non-ground
points in low vegetation led to the decimation process being less effective, giving rise to a low level of
precision on hillside areas with vegetation (Kg51 = 60.49% and Kgs, = 49.58%). Furthermore, the lack
of efficacy of the decimation process was also due to omission errors, mainly at the edges of gullies
(Kgs3 = 45.87% and Kgg1 = 51.85%) or embankments beside roads (Kg7, = 71.45%).
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Figure 9. Qualitative results of the DecHPoints function (ground points in green and non-ground
points in yellow). Examples: (a—c) are the results of Sample 11 and (d—f) the results of Sample 41.

3.4.3. Influence of the OWM Method on the Selection of Ground Seed Points

As already mentioned, the OWM function uses a moving window with longitudinal and
transverse overlap to select local lowest points. Thus, for an overlap of 80%, each point was analyzed
25 times, but only those points selected as local lowest points more than once during the process were
considered seed points (Pg). Thus, it was expected that without increasing the number of commission
errors, the number of seed points would be greater than with the LMM method, and the first estimate
would be a better representation of the actual terrain relief. In addition, the results of using the OWM
function may benefit from prior decimation of the point cloud as reducing the window size to a similar
size as in rural zones would enable selection of a greater number of local lowest points.

In order to explore the above ideas further, the OWM function was applied, by way of example, to
Samples 12 and 52, with a longitudinal and transverse overlap between samples of 0% (LO = FO = 0),
thus simulating the LMM function. In addition, the function was also executed with an overlap of
80% (LO = FO = 0.8). Both the original point cloud (P) and the decimated point cloud (Pp) were
considered. The qualitative results of this experiment are included in Figure 10. In general, at road
edges and inner courtyards of buildings (Figure 10b compared with Figure 10c) and at the edges of
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water bodies (Figure 10h compared with Figure 10i), the surface was better defined by OWM than
by LMM. Irrespective of whether the input data were decimated or not, the OWM function selected
almost four times more points than the LMM method. Although the number of erroneously selected
non-ground points was also higher, most of these points corresponded to low vegetation, and none
of them corresponded to buildings. In addition, the mean percentage error (mean proportion of
non-ground points as a function of the total number of seed points) was very similar for both methods
(LMMy, error = 1.1% vs. OWMy, ¢rror = 0.9% using original point clouds and LMM,, ¢rror—p = 0.65% vs.
OWMy, ¢rror—p = 0.75% using decimated point clouds). In both cases, the results were better than those
obtained with other seed point selection methods (e.g., [36] and [37] reported that ~4% and ~2% of
the automatically selected seed points were non-ground points, respectively). The use of OWM may
lead to the investment of fewer resources in the posterior densification of the model.

The decimation process also had a positive influence on the input data, increasing the seed points
by a factor 15 in Sample 12 and by a factor 20 in sample 52 relative to the results obtained from
original point clouds. These results were possible as the size of window for selecting seed-points
could be reduced from 18 m to 3 m in Sample 12 and from 26 m to 5 m in Sample 52. Although
in the first case, the size of the window (3 m) was almost half of that in the second case (5 m) and
the number of ground points was greater in Sample 12 (P¢ 512 = 26,654 in the original point cloud
and P¢ 512 p = 26,269 in decimated point clouds) than in Sample 52 (P, g5, = 20,112 in the original
point cloud and P 55 p = 19, 300 in decimated point clouds), paradoxically, the number of seed
points selected was greater in the latter than in the former case (using original point clouds: Seed
pointsgip = 761, OP (Overall Precision (OP) is the rate of correctly classified ground points in all
extracted ground seed points [37].) = 98.7%, and Seed pointsgs, = 746, OP = 99.6%; using decimated
point clouds: Seed pointsgi; = 10038, OP = 99.1%, and Seed pointsgsy = 15320, OP = 99.4%). This may
be due to the fact that Sample 12 was more complex than Sample 52. In addition, the presence in the
latter of two relatively flat zones with few non-ground points (upper and lower parts of the scene)
may have favored the selection of seed points.

3.4.4. Influence of the Variable Parameters on the Filtering Accuracy

The quantitative results of the parameter fitting described in Section 3.3 were used to study
the influence of the variable parameters on the identification of ground points. Figure 11 includes
representations of the variations in the values of the errors Te (Figure 11a), Tle (Figure 11b), and Tlle
(Figure 11c) (vertical axis) with the values of the parameters Cg, C and Jj, (horizontal axis) for all
samples (in grey), the urban samples (in purple), and the rural samples (in green). The value of the
68.3% percentile for each error is shown as a horizontal line. For simplified interpretation of the graphs,
the influence of the variations on the value of each of the factors (variable parameters) would increase
as the length of the vertical lines including the factor levels decrease.

Considering all samples (results shown in grey in Figure 11), fluctuations in parameter Cs had less
effect than fluctuations in parameter C on Tlle and Te. As expected, the values of parameter Cg and Tle
were directly related, i.e., the value of Tle decreased with the value of Cg, as the probability of selecting
ground points increased as the value of Cg decreased. However, as a direct consequence of this
relationship, the probability of erroneously selecting points that were not ground points also increased,
thus increasing the Tlle, as reflected in Figure 11c, in which the values of parameters Cs decreased
as those of Tlle increased. The inverse relationship between parameter C and Tlle also observed in
this graph may be explained by the influence of the parameter during the decimation process, during
which high values must be used in order to remove points corresponding to large buildings.
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Figure 10. Comparison of the results of the Local Minimum Method (LMM) and OWM of selecting
seed points from original point clouds and decimated point clouds for Samples 12 (a—f)) and 52 (g-1)).
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Figure 11. Influence of the variable parameters on the quality of the filtering process, considering
all samples (in grey), the urban samples (Sample 11 to sample 42, in purple), and the rural samples
(Sample 51 to sample 71, in green) using (a) total error; (b) Type I error, and (c) Type II error.

Analysis of the influence of parameter J;, on the different types of error was carried out carefully,
as 660 results were obtained by varying parameters C and Cg while J;, = 0.5, compared with the
64 results obtained when the latter parameter was varied while maintaining each of the first two
parameters constant. This may explain why the levels of parameter J;, were not arranged in an orderly
fashion along the vertical line on which they were represented. However, if we disregarded the 0.5
level, we see that as the value of J;, increased, the values of Tle and Te decreased and that of TIle
increased. The explanation for this is the same as for the influence of parameter Cg on the different
types of error.

Finally, the same analysis was carried out by considering the urban samples (Sample 11 to Sample
42 shown in purple) and the rural samples (Sample 51 to Sample 71 shown in green) to evaluate
whether the type of environment generates different relationships between the variable parameters
and the three types of error. The same pattern was observed for the urban samples as for all of the
samples, although the influence of the variations in parameter C on the size of Te was more evident in
the urban samples (Figure 11a). However, the same pattern was not observed for the rural samples,
as the influence of parameter Cg on the values of Te was not very different from that of parameter C.
Although analysis of all samples did not reveal a clear relationship between C and Te, separate analysis
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of the urban and rural samples revealed an inverse relationship, where the value of Te decreased as the
value of C increased (Figure 11a).

In urban zones, the variations in C had much greater effect on Tlle than caused by variations in Cg,
whereas in rural zones, the opposite was true (Figure 11c). One possible explanation for this finding
was that in urban zones, most of the non-ground points corresponded to large buildings, whereas
in rural zones, the non-ground points generally represented vegetation or small buildings. Thus, in
urban zones, if the value of C was less than the size of the largest building in the zone, this would
have various effects: first, the decimation process would fail for points corresponding to the roofs of
buildings larger than the C value; some of these non-decimated non-ground points would be selected
as seed points, and finally, many points corresponding to the roofs would be classified as ground
points. Thus, a greater volume of points would be classified as ground points than when the error was
associated with a smaller building or a vegetated zone (characteristic of rural zones), and TIle would
reach very high values, irrespective of the value of Cg. This phenomenon ceased to occur when the
value of C was greater than the size of the buildings present in the zone, thus considerably decreasing
the influence on Tlle.

3.5. Assessment of Filtering Accuracy

3.5.1. Quantitative and Qualitative Results of HyOF

The quantitative results regarding the precision of the HyOF evaluated using the 15 ISPRS
reference samples and the metrics proposed by [23] are shown in Table 4. The table includes the
values of the errors Tle, Tlle, and Te and the Kappa coefficient, obtained using the optimal parameters
for each sample, as well as a single combination of parameters. The final row includes the errors
obtained taking into account the points in all samples together. In previous studies, calculation of
the global filtering precision was obtained from the arithmetic mean value of the errors for the 15
samples [8,38]. Although this was the simplest method, it did not take into account the proportion
of points of each type relative to the total number of points. To overcome this deficiency, we used
the total number of points in all study areas classified correctly and incorrectly as ground points and
non-ground points. In addition, the Figure 12 shows the spatial distribution of the errors for Samples
11,12, 41, 52, and 53 represented by the True Positives (TP), False Positives (FP), False Negatives (FN),
and True Negatives (TN).

Table 4. Quantitative results of HyOF obtained by using the ISPRS reference data. The values of the
variable parameters in a single combination are Cg = 4, 6, = 0.5, and C = 30 for urban samples and
C =20 for rural samples.

Sample ? Optimal Results Unique Combination Results
TIe (%) TIHe (%) Te(%) K (%) TIe(%) TIe(%) Te(%) K (%)
S11. Vegetation and buildings on hillside. 9.59 12.06 10.64  78.27 11.76 16.90 1395 71.44
S12. Buildings and cars. 233 2.65 249 95.02 3.06 3.16 3.11 93.78
S21. Narrow bridge. 0.22 3.76 1.00 97.06 0.21 3.90 1.03 96.99
522. Bridge and gangway. 3.80 7.84 5.06 88.23 5.86 6.90 6.19 85.82
§23. Large buildings and data gaps. 5.49 5.86 5.67 88.64 11.16 4.30 791 84.19
S24. Ramp. 2.74 9.18 4.51 88.61 543 7.82 6.09 85.03
S31. Large buildings. 0.80 1.72 122 9754 0.53 241 140 9719
S41. Outliers (multi-path error). 212 1.23 167  96.65 271 1.05 188  96.24
S42. Railway station. 1.10 0.69 0.81 98.05 1.10 0.69 0.81 98.05
S51. Vegetation on moderate slope. 0.47 6.42 177 94.72 0.18 18.95 4.28 86.59
S52. Vegetation on river bank. 1.89 16.26 3.40 81.91 2.01 21.30 4.04 78.14
S53. Terrain discontinuities. 2.89 20.59 3.60 6221 4.17 17.64 4.72 56.25
S54. Low resolution buildings. 1.93 2.79 2.39 95.19 173 4.58 3.26 93.45
S61. Sharp ridge and embankments. 0.62 11.77 1.00 85.29 3.03 2.90 3.03 67.37
S71. Ramp, bridge, and underpass. 0.59 7.18 1.34 93.27 1.23 6.84 1.87 90.81
All samples 2.62 4.70 3.34 92.62 3.94 5.63 4.52 90.04

 Links to the 3D qualitative results for each sample using optimal parameters. If the graphs cannot be
visualized, WebGL should be enabled: instructions for Google Chrome here and for Firefox here.
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Figure 12. Qualitative results of the proposed hybrid method.

Regarding the optimal results, in 80% of the cases, Te was less than 5%, whereas K was higher than
88%. For all of the samples, Te and K were respectively 3.34% and 92.62%. For a single combination
of parameters, the values of the same statistics were slightly lower, respectively 4.52% and 90.04%.
Depending on the type of sample, our hybrid filter produced better results in urban zones (K = 92.18%)
than in rural zones (K = 88.73%) (Table 5). In the first, most of the results were very satisfactory, mainly
in environments with large buildings and small objects (Ks12 = 95.02%, Figure 12b (3DGraph), and
K31 = 97.54% (3DGraph)), discontinuous data (Kgs1 = 96.65%, Figure 12¢ (3DGraph) and Kgsp = 98.05%
(3DGraph)), or the presence of bridges (Kgp1 = 97.06% (3DGraph)). These good results were due to the
high efficacy of the decimation process (Figure 8) as the removal of non-ground points corresponding
to buildings enabled reduction of the size of the window (Cs) used to select the ground seed points,
which enabled precise estimation of the terrain surface. As discussed earlier, in rural zones without
large buildings, the decimation process was not as important as in urban zones.

By contrast, the poorest results were obtained for Samples 11 and 53 (using the optimal parameters
Tesy1 = 10.64% and Kgs3 = 62.21%). The errors in Sample 11 (Figure 12a (3DGraph)) were mainly due to
the high number of false positives caused by the shallow sloping surface (southern part of the sample)
and the erroneous identification of points corresponding to small objects and/or low vegetation
(northern part of the sample). The errors were due to the low efficacy of the decimation process in
terms of removing non-ground points (Figure 8 and Figure 9b). Sample 53 (Figure 12e (3DGraph))
corresponded to a rural zone where 95% of the points were ground points distributed on steep terrain
with no buildings. The high percentage of ground points (23.8 ground points for each non-ground
point; Table 3) caused the omission error (Tlegs3 = 2.89%) to have a much greater influence on the
magnitude of Te and K than the commission error, even when TIle > 20%. The main omission errors
occurred at the breaklines, probably due to the accumulation of errors during the filtering process.
First, errors would occur during the selection of ground seed points, as in these zones, the points
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would be selected in the lower part of the gully and not at the upper edge. Errors would then also
occur during the densification process, as the thin plate spline interpolation tended to smooth these
transition zones, leading to underestimation of the model elevation. Thus, the points at the upper
edge would have much larger residual values than permitted, and therefore, these points would not
be selected. The errors would be reduced, thus increasing the value of parameter J;,; however, this led
to an increase in commission errors due to the presence of low vegetation. Most of the filters did not
deal well with the characteristics of these areas, where the vegetation and buildings occurred on steep
slopes and in precipitous areas [9,37,39].

3.5.2. Comparison with Other Filtering Algorithms

For comparison of the results obtained in the present study and those obtained with other filters,
we considered 33 studies carried out between 1998 and 2019. The errors Tle and TIle were represented
in the scatter plots in Figure 13. In each case, the errors were obtained for each reference sample (in the
studies of [8,12,24], as in the present study, the results were obtained using the optimal combination
of parameters), whereas Table 5 includes the Kappa coefficient for each case; the last three columns
include the results for all samples and for the urban and rural samples in each study. For the 33 studies,
the K values were recalculated using the Tle, Tlle, and Te errors included in the different studies and
the number of original ground points and non-ground points in each sample (Table 3).

Table 5. Comparison of K values obtained in the present study and in 33 previous studies at the sample

level.

Author ST S12 521 S22 S23 524 S31 S41 542 S51 S5 S53  S54  S61  S71 | Koy Kuw  Komr
Dleifer (1998) [20] 663 911 928 852 837 792 964 786 938 896 412 311 901 471 668 | 832 866 624
Axelsson (1999) [41] 786 936 862 914 92.0° 888 905 724 962 917 837 394 707 745 915 | 893 901 783
Elmqvist (2001) [42] 589 842 549 693 766 521 887 848 936 301 33 06 889 07 69 | 409 778 48

Roggero (2001) [43] 509 869 757 547 549 545 957 758 897 912 608 258 501 218 783 | 737 753 545
Sithole (2001) [44] 555 799 802 594 558 507 937 513 908 807 311 106 845 192 408 | 657 729 375
Brovelli (2002) [45] 322 679 766 566 461 358 746 672 842 504 159 60 872 192 255 | 532 621 258
Sohn (2002) [46] 505 832 761 823 802 686 871 776 957 755 550 203 935 675 891 | 798 816 633
Wack (2002) [47] 541 869 87.6 835 783 743 956 819 916 714 364 168 885 297 483 | 750 824 458
Lu (2008) [25] 432 805 691 729 787 646 898 739 883 828 572 179 869 462 629 | 755 754 589
Shao (2008) [12] 760 920 872 886 904 877 976 901 948 889 856 550 945 807 847 | 905 901 847
Shao (2008) [12] * 759 920 872 859 904 877 975 901 948 884 856 550 938 807 826 | 903 899 842
Chang (2010) svew [24] 722 930 964 93.9* 919 843 975 859 968 905 796 60.8 944 829 893 | 916 911 87.0
Chang (2010) svsw [24] © 689 912 953 909 919 839 934 850 950 882 775 522 935 724 877 | 892 891 821
Chang (2010) s [24] 781 943 950 922 906 867 979 939 966 893 849 69.5* 914 810 882 | 92.6 922 878
Mongus (2012) [4] 773 897 941 847 883 800 933 926 870 922 684 421 866 651 850 | 871 878 767
TerraScan ? 684 770 714 768 840 710 826 742 919 989* 784 628 831 784 909 | 836 798 857
Yan (2012) [48] 628 867 80 754 688 557 923 719 878 816 57.5 244 841 339 527 | 769 796 566
Chen (2013) [29] 741 932 961 890 895 845 978 888 958 952 789 467 938 774 932 | 905 905 834
Li (2013) [49] 743 925 928 906 877 861 950 866 928 885 471 331 921 500 792 | 862 894 666
Pingel (2013) [38] 831 941 968 922 907 911 982 882 965 958 810 682 954* 873° 918 | 933 929 90.1*
Zhang (2013) [17] 634 882 849 701 760 556 953 591 903 839 506 448 872 250 595 | 789 805  60.0
Hu (2014) [8] 830 948 97.2* 924 912 904 982" 882 983" 939 862 664 953 868 926 | 93.6° 933" 8974
Hu (2014) [8] 7 828 940 943 918 905 895 934 875 971 915 837 531 946 711 905 | 9L7° 92.1* 841
Li (2014) [50] 718 935 927 897 853 866 949 785 936 886 436 337 907 556 813 | 858 887 666
Lin (2014) [16] 614 901 809 784 714 868 970 359 848 879 656 367 787 480 734 | 810 806 684
Mongus (2014) [51] 790 934 960 901 876 888 929 919 932 801 756 556 908 601 825 | 900 906 788
Hui (2016) [13] 729 930 934 876 897 819 973 788 954 851 695 418 916 678 799 | 887 895 767
Yang (2016) [9] 787 946 917 892 910 913 968 950 970 889 841 666 937 816 709 | 921 921 854
Zhang (2016) [52] 752 940 905 777 904 927 968 897 962 911 771 469 93.6 781 680 | 898 899 819
Chen (2017) [39] 806 943 967 910 910 908 974 924 980 945 831 620 944 853 900 | 930 928 886
Li (2017) [53] 742 929 947 910 893 852 915 751 854 867 678 388 892 731 865 | 872 878 759
Nie (2017) [54] 578 869 841 655 616 427 956 477 931 918 508 240 918 428 799 | 763 766 618
Wang (2017) [55] 605 920 940 883 881 932* 968 957 974 746 702 484 888 632 722 | 884 886 769
Ni (2018) [56] 631 823 791 695 796 586 857 885 872 930 543 311 894 619 735 | 796 792 692
Cai (2019) [37] 660 823 652 900 828 553 855 741 884 891 719 558 948 869 893 | 845 817 852
Hui (2019) [57] 656 857 926 713 821 648 861 771 897 834 561 137 888 144 728 | 745 818 462
HyOF 783 950° 971 882 886 886 975 967° 981 947 819 622 952 853 933* | 926 922 887
HyOF * 714 938 970 858 842 850 972 962 981 866 781 563 935 674 908 | 901 900 824

? Results obtained using a unique combination of parameters. For HyOF: Cs =4, ;, = 0.5, C = 30 for urban
samples, and C = 20 for rural samples. b in [4]. * The best results for each sample.
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Figure 13. Comparison of the Tle and Tlle obtained in the present study (magenta squares in (d)) and

those obtained with other filters from all samples.

Our hybrid filter was one of the four most precise filters (Table 5). The results produced were only
surpassed by those obtained with the adaptive surface algorithm of [8] (Te = 2.87% and K = 93.63%),
those of the morphological algorithm of [38] (Te = 3.01% and K = 93.33%), and those of the interpolation
filter of [39] (Te = 3.15% and K = 93.00%). The precision of the algorithms increased greatly since the
study carried out by [23] more than a decade ago. This was demonstrated by the fact that in the last
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few years, the results have improved for 75% of the samples (purple cells in Table 5). Our hybrid filter
produced better results for three of the 15 samples than in the 33 previous studies. All algorithms
produced better results in urban than in rural areas, with the exception of the filter implemented in
TerraScan (Kyjp = 79.8% and Ky, = 85.7%) and the hybrid filter of [37] (K, = 81.7% and K, = 85.2%).
Although [4] attributed the better functioning of the TerraScan algorithm in these zones to the good
quality of the input data, specifically the point density, it was possible that the selection of the filtering
parameters was more important than the density of points. The algorithm implemented in TerraScan
was an adapted version of the algorithm proposed by [41], who obtained a much higher K value in
urban zones than that obtained by TerraScan (K gxejsson—trs = 90.1% and Krerrascan—urp = 79-8%).

The work in [23] reflected on which error should be reduced in order to improve the quality of
the filter and increase the efficacy of the posterior correction tasks. They concluded that they should
minimize the Tle based on the cost of committing this error in relation to the application of the final
model and of the model manually decimated of these errors. This condition was fundamentally met in
areas where the number of ground points was significantly higher than the number of non-ground
points (Pg/Ppg»>1). In these cases, Tle had a much greater influence than TIle on the overall precision
of the filtering process than if the number of ground points and non-ground points were more balanced
(Pg/Pyga1). In the first case, in Samples 53 and 61 (23.8 and 28.1 ground points for each non-ground
points, respectively; Table 3), more than 95% of the points corresponded to ground points. Regarding
Sample 53, the algorithms developed up to 2004 yielded a much higher Tle and a lower TIle than in the
other cases, whereas the latter was much higher in the algorithms developed in the last decade. As a
result, for this sample and others with similar characteristics, the value of Te increased with that of Tle.

The aforementioned reflection may be due to the fact that the algorithms included in the study
of [23] aimed to minimize TIle rather than Tle (Figure 13a). However, the filters developed in the last
decade minimized Tle at the cost of increasing the commission errors (Figure 13b—d). Considering the
results of the first eight algorithms together produced mean values of the omission and commission
errors of respectively 17.5% and 2.4%, compared with values of 5.0% and 5.6% produced by the filters
developed since 2004. This could be observed in Figures 13a—d. There were some exceptions within
the latter group of algorithms, such as that used by [25], in which many of the values of Tlle were
lower than those of Tle (considering all samples: Tle = 15.34% and Tlle = 4.86%). These authors
minimized the commission errors as they considered that they produced more negative effects in the
final model than the omission errors, which simply reduced the level of detail with which the terrain
was represented [38].

Although these findings contrasted with the trends observed in recent years, these authors made
a very interesting observation that reinforced their position. They considered that a point that was
wrongly classified as ground would have a greater impact on the final model if it corresponded to
a roof than if it corresponded to low vegetation. This impact would be much greater if the point
were added at the seed selection stage than during the densification process. Therefore, the reflection
of [23] could be qualified by considering that Tle should be minimized in order to increase the general
precision of the filtering process, although at the risk of increasing TIle, as long as the commission
errors were not due to the incorrect selection of points corresponding to the roofs of buildings. Our
hybrid filter complied with this requisite thanks to the efficacy of the decimation process in built-up
areas (magenta squares in Figure 13d). Finally, the considerations of [23] were aimed at improving
the filtering precision, whereas those of [25] were focused on improving the model precision. In most
cases, an increase in the filtering precision was generally accompanied by an increase in the precision
of the final model; however, although apparently contradictory, this was not always the case.

Other authors also mentioned that the aforementioned tendency was fundamentally due to the
process of densification included in some filters [8]. On the one hand, they attributed the increase in TIle
to the fact that the number of non-ground points was much lower than the number of ground points
in some samples (e.g., Samples 53 and 61) and that the erroneous classification of few non-ground
points as ground points led to a high TIle. However, it was possible that the main reason was not the
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number of points, but the type of surface they represented (in most cases, low vegetation), along with
the location on rough terrain. These authors also associated the errors with the densification strategy
used in the filters, which was closely related to the previously mentioned point. For steep terrain,
these filters tended to assign high values to the parameter controlling the densification process, with
the aim of decreasing the number of omission errors. For example, in the present study, for Sample
53, parameter J;, reached its maximum value (0.8m) as did TIle (20.59%). For the same sample, in the
study of [24], the parameter TH (height threshold) also reached its maximum value (2.6 m), and Tlle
reached the maximum value of 33.5%; in a similar way, the adaptive surface filter of [8] produced a
commission error of 38.75% when the max-bend-gain parameter took a maximum value of 1 m.

Finally, as reported by [8,12,24], the precision of our hybrid filter was calculated using a single
combination of parameters (Cg = 4, J;, = 0.5 and C = 30 for urban samples and C = 20 for rural samples).
The use of this combination of parameters confirmed the robustness of our hybrid filter regarding
different terrain characteristics (K = 90.04%). However, some differences were observed in relation to
the type of sample, with the urban samples producing fewer fluctuations than in the optimal results
obtained for the rural samples (mean difference of Ki;,;, = 2.2% and mean difference of K, = 6.7%:
data obtained from the results in Table 5). This trend was evident in the studies of [24] and [8], but not
in that of [12], in which the minimal differences indicated the robustness in response to variations in
the parameters.

4. Conclusions

The identification of ground points in LiDAR point clouds is an extremely complex process.
Despite the great effort that has been made to solve this problem, simplifying the process remains a
challenge, in terms of both effectivity and usability /accessibility. This article presented a new filtering
algorithm, HyOF, which was comprised of various functions implemented in the free R software
environment. The algorithm was a hybrid filter that combined a decimation process (DecHPoints
function), which aimed to remove points corresponding to buildings, along with a new method for
selecting seed points (OWM) and an iterative densification process. The main conclusions of the
study were grouped into six blocks coinciding with the different points analyzed in the Results and
Discussion Section.

Parameter tuning: Although the identification of optimal parameters was a tedious and
time-consuming task, the input of effort was compensated by an increase in the filtering effectivity.
In this study, the use of the optimal combination of parameters for each sample increased the overall
filtering precision by more than 2.5 percentage points (considering all samples: Ko,; = 92.62% and
Kunig = 90.04%). The analysis conducted may serve as a reference point and simplifying parameter
optimization in other regions.

Effectiveness of the decimation process: Due to its characteristics, our point decimation method
was more effective in urban zones (in 70% of cases, the value of K was greater than 80%) than in rural
zones, where the same level of precision was only obtained in 15% of the instances. Although the
function had some limitations regarding the presence of small objects or buildings on the hillside, the
decimation process was generally effective, and its use in combination with other filters may improve
the results of these.

Influence of the OWM function on the selection of seed points: Our method for selecting ground
seed points proved versatile in relation to its ability to be executed like the Local Minimum Method
(LMM) and also its effectivity in identifying seed points, selecting up to four times more points than
the LMM. In addition, use of the OWM together with our point decimation method enabled selection
of up to 20 times more seed points than when the original point cloud was used. Use of this method
contributed to overcoming some of the structures with which the filters did not perform well, such as
inner courtyards or zones close to fault lines or gullies. As in the previous case, we believe that the
result of many filters could be improved by using the OWM method to select the seed points. Filters
that could be improved include those that require the seed points to generate the original reference



Remote Sens. 2020, 12, 1051 25 of 28

surface and also those that use the seed points as a basis for classifying new ground points from
differences in elevation.

Influence of the variable parameters on the filtering precision: In all cases, Cs was directly related
to Tle and inversely related to Tlle. Finding a value of parameter Cg that yielded an equilibrium
between Tle and TIle was therefore challenging. Potential users should note that the main conclusion
of the analysis carried out to determine the influence of the type of environment on the variable
parameters and the errors was that for urban zones, particular attention should be given to the value of
parameter C, which significantly affected Te, whereas parameter Cg was more important in rural zones.

Filtering results: Taking into account the 15 reference samples provided by the ISPRS and the
optimal combinations of parameters, our hybrid filtering method, HyOF, yielded Tep,; = 3.34% and
Kopt = 92.62%, whereas use of a single combination yielded Tey;,i; = 4.52% and Ky = 90.04%.
Regarding the different types of environments, better results were obtained in urban zones
(Kurp—opt =92.18%) than in rural zones (Kryr—opt = 88.73%), and the performance of the algorithm was
more robust in response to fluctuations in the variable parameters in the former (Ky;4—1nig = 90.02%)
than in the latter (Kryr—unig = 82.39%). Regarding the origin and spatial location of the errors,
irrespective of the environment, most filtering errors were produced in fault lines in areas such
as gullies, ditches, and/or embankments. Some of the omission errors may have originated from the
definition of the ground and from the study objectives. Previous studies showed that the definition
may not be entirely adequate as, e.g., some applications may wish to consider ramps as objects or
bridges as ground or vice versa. These elements would therefore have to be specifically detected and
the user allowed to establish whether they should be considered ground.

Comparison with other filtering algorithms: In the last few years, the results have been improved
for almost 75% of the reference samples, and 30% of the improved results were obtained using
our hybrid filtering method and the optimal combination of parameters. The algorithm generally
proved very effective as it was among the four most precise in a total of 33 studies. The current
trend in developing filtering algorithm is to minimize the Tle. This was clearly demonstrated by
the results produced by the algorithms developed in the last decade, where Tle f1¢2004 = 5.0% and
Tlle, f1e2004 = 5.6%, compared with Tlep, rore2004 = 17.5% and Tlley, fore2004 = 2.4% for the results produced
by the algorithms used up to 2004. Considering the results for all samples and using the optimal
combinations of parameters, our hybrid filtering method continued this trend, yielding Tle = 2.62%
and Tlle = 4.70%.

As a final reflection, we believe that in a society advancing towards the democratization of
information and collaborative processes, researchers should not only focus on improving the efficacy
of the processing tools, but should also consider the users’ needs with a view toward improving the
usability and accessibility of these tools in order to develop a process that will provide solutions to the
actual challenges.
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Abbreviations

The following abbreviations are used in this manuscript:

DecHPoints  Decimation of Highest Points

FO Forward Overlap

HyOF Hybrid Overlap Filter

LLP Local Lowest Point

LMM Local Minimum Method

LO Lateral Overlap

OoOwM Overlap Window Method
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