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Abstract: This paper presents a joint spatial-spectral resolution enhancement technique to improve the
resolution of multispectral images in the spatial and spectral domain simultaneously. Reconstructed
hyperspectral images (HSIs) from an input multispectral image represent the same scene in higher
spatial resolution, with more spectral bands of narrower wavelength width than the input multispectral
image. Many existing improvement techniques focus on spatial- or spectral-resolution enhancement,
which may cause spectral distortions and spatial inconsistency. The proposed scheme introduces
virtual intermediate variables to formulate a spectral observation model and a spatial observation
model. The models alternately solve spectral dictionary and abundances to reconstruct desired
high-resolution HSIs. An initial spectral dictionary is trained from prior HSIs captured in different
landscapes. A spatial dictionary trained from a panchromatic image and its sparse coefficients
provide high spatial-resolution information. The sparse coefficients are used as constraints to
obtain high spatial-resolution abundances. Experiments performed on simulated datasets from
AVIRIS/Landsat 7 and a real Hyperion/ALI dataset demonstrate that the proposed method outperforms
the state-of-the-art spatial- and spectral-resolution enhancement methods. The proposed method also
worked well for combination of exiting spatial- and spectral-resolution enhancement methods.

Keywords: hyperspectral images; joint spatial-spectral resolution enhancement; sparse representation

1. Introduction

Hyperspectral imaging has demonstrated its usefulness in various earth observation applications,
such as landscape classification [1], object detection [2], and environmental monitoring [3].
Hyperspectral sensors collect contiguous spectral bands over the visible to the infrared wavelength
ranges. Rich spectral characteristics in hyperspectral image (HSI) are beneficial in identifying and
classifying different materials and landscapes [4]. In hyperspectral imaging, there is a trade-off between
spatial and spectral resolutions. The spatial resolution of spaceborne hyperspectral images (HSIs) is
always lower than multispectral images (MSIs) and panchromatic (PAN) images. Instantaneous field of
view (IFoV) should be enlarged to achieve acceptable signal-to-noise ratio (SNR) with narrow spectral
bandwidth [5]. For example, the maximum spatial resolution of Sentinel 2 MSI is 10 m while the spatial
resolution of Hyperion HSI is only 30 m. Low spatial resolution of HSI always results in mixed pixels
and degrades the performance of subsequent applications, while spectral understanding and analysis
are usually limited by low spectral resolution of MSIs or PAN images. Although earth observation
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remote sensing data have become increasingly available and the corresponding applications have
attracted wide interests, there are existing challenges in acquiring images with simultaneously high
spatial resolution and high spectral resolution [6]. Therefore, many research focuses on recovering high
quality synthetic image from low resolution (LR) inputs, including spatial resolution improvement
approaches [7–19] and spectral resolution enhancement techniques [20–27].

1.1. Spatial Resolution Improvement of HSI

Over past decades, several spatial improvement methods have been proposed based on the fusion
of MSI and PAN images. Hyperspectral pan-sharpening improves spatial resolution of HSI by fusing
LR HSI with a high resolution (HR) PAN image covering a spectral range from the visible to the
near infrared ranges [7]. Except for the classical hyperspectral pan-sharpening approaches such as
component substitution (CS) methods [8], multi-resolution analysis (MRA) methods [9], and model
based optimization methods [10,11], deep learning, particularly convolutional neural network (CNN),
has been widely exploited in pan-sharpening tasks. In [12], a residual CNN model is designed to
describe the mapping between LR/HR MSI pairs and PAN image. Yuan et al. [13] proposed a multi-scale
and multi-depth CNN (MSDCNN) for pan-sharpening, in which multi-scale feature extraction is used
to reconstruct the HR MSI.

HSI fusion is another popular approach to spatial resolution improvement. A HR HSI is recovered
by fusing a LR HSI with a HR MSI, where the HSI and MSI are assumed to be captured simultaneously
for the same landscapes. Typical fusion methods based on the transform domain including the 2-D
and 3-D wavelet transforms [14] can always result in heavy spectral distortions. Statistical methods
are proposed by using a stochastic mixing model [15]. Another effective fusion method based on
spectral unmixing recovers HR HSI using the endmembers/spectral dictionary from a LR HSI and the
abundances from a HR MSI [16]. For example, Yokoya et al. [17] proposed a coupled non-negative
matrix factorization (CNMF) method based on unsupervised spectral unmixing, where MS image
and HSI are alternately unmixed using non-negative matrix factorization. In [18], a non-parametric
Bayesian model is proposed using dictionary learning and sparse coding to achieve HR hyperspectral
result. Dong et al. designed a non-negative structured sparse representation (NSSR) method [19]. The
reconstructed HR HSI is formulated through estimating a non-negative spectral dictionary and its
sparse coefficients. However, these fusion methods are limited to the same spatial coverage as the
input image, therefore only HR HSI of the same spatial coverage as the input LR HSI can be obtained.

1.2. Spectral Resolution Enhancement Techniques

Despite various approaches to spatial resolution improvement techniques, only a few methods
focus on spectral super-resolution. Spectral resolution enhancement reconstructs a HSI from a
MSI or RGB image, where the recovered HSI and the input MSI/RGB image have the same spatial
resolution and coverage [20]. Existing spectral resolution enhancement algorithms are categorized
into hardware methods and reconstruction methods. The hardware methods achieve HSI from
RGB/MSI through active light [21], tunable filters [22], and variable spectral responses provide by
different RGB cameras [23]. Due to the requirement of modifying optics instruments or adding
extra hardware equipment, such methods may not be suitable for remote sensing tasks. Several
spectral reconstruction methods are proposed to improve spectral resolution. For example, a spectral
resolution enhancement method (SREM) [24] recovers a HSI with wide swath by estimating spectral
response matrix. Arad et al. [25] proposed a spectral resolution enhancement algorithm based on
sparse representation, where a spectral dictionary is learned from prior HSIs through K-means singular
value decomposition (K-SVD), and HSI is recovered from the input RGB image. The performance of
this method is further boosted in [26] by exploiting with a shallow sparse representation framework.
In [27], a convolutional neural network was introduced to learn an end-to-end spectral mapping
between RGB image and HSI, which is proved to achieve better spectral resolution improvement
results. Most spectral resolution improvement methods mentioned above only recover HSI from



Remote Sens. 2020, 12, 993 3 of 24

a RGB image, covering only the visible or part of the near-infrared spectral regions. Our previous
work [20] proposed a spectral super-resolution approach over the full spectral range from 400 nm to
2500 nm. Spectral improvement strategy and spatial preservation strategy are introduced respectively
to estimate spectral response relationship by prior MSI/HSI pairs, learn spectral dictionaries from HS
priors and ensure consistency using spatial constraints.

Despite many applications requiring high-resolution HSIs with relatively short time intervals,
existing spaceborne HSIs are only available in low spatial- and temporal-resolution as well as low
revisit frequency. PAN images have high spatial resolution and MSIs come in high temporal resolution
and revisit frequency [20]. Therefore, we can easily acquire high spatial resolution PAN images or
high temporal resolution MSIs at different time or over different landscapes, which is challenging for
spaceborne HS sensors. Most scenes captured using multispectral or panchromatic sensors do not
have their corresponding HSIs. This paper proposes a joint spatial-spectral resolution enhancement
method using PAN images and prior HSIs. The reconstructed HSI has the same spatial resolution
as PAN image and the same spectral resolution as the prior HSIs. The proposed method not only
improves the spatial- and spectral-resolution of the input image, but also creates a new HSI at different
time or over different scenes, which provides new opportunities for earth observation.

Existing techniques aim at improving either spatial resolution or spectral resolution, not HR HSI
by improving spatial- and spectral-resolution simultaneously. If resolution enhancement is performed
step-by-step in the spatial- or the spectral domain, any defects and distortions transferred from the
previous step will pose difficulties in eliminating the artifacts in the current step. So, the performance of
their subsequent processing tasks will be degraded. Additionally, it will be challenging to unify spatial
and spectral enhancement techniques into one framework to improve spatial- and spectral-resolution
simultaneously. A low spatial resolution MSI with a few spectral bands are required to recover a HSI
of high spatial resolution and of more than 200 bands, which is obviously a highly ill-posed converse
problem. The proposed method reduces artifacts and distortions using spatial features from PAN
image and spectral signatures from prior HSIs. Combined spectral unmixing for unified spatial and
spectral improvements ensures accurate spectral characteristics for subsequent applications.

The proposed scheme recovers a high spatial resolution HSI from an input low spatial resolution
MSI based on high spatial-spectral correlation in an input low resolution MSI and the desired high
quality HSI. Each pixel in the desired HSI can be represented by a linear combination of a few pure
spectral signatures extracted from a spectral dictionary [28]. The pixels in the input LR MSI are
assumed to be highly correlated with the HR ones in the desired high quality HSI [29]. Figure 1 shows
a joint spatial-spectral resolution enhancement algorithm proposed in this paper to simultaneously
improve spatial- and spectral resolution. Spectral and spatial improvement are combined into a
unified framework based on formulating spectral observation model and spatial observation model.
In this work, an input LR MSI and the desired HR HSI are denoted as LSpaLSpe and HSpaHSpe,
respectively. Two virtual intermediate variables are designed for a more comprehensive description
of the spatial and the spectral observation models. These two virtual intermediate variables are
denoted as HSpaLSpe and LSpaHSpe, respectively. HSpaLSpe represents high spatial resolution
but low spectral resolution MSI, and LSpaHSpe indicates low spatial resolution but high spectral
resolution HSI. HSpaLSpe has the same spatial resolution as the desired HR HSI, considered as the
spatial improvement result of the input LR MSI. While LSpaHSpe has the same spectral resolution
as the desired HSI, considered as the spectral enhancement result of the input MSI. Desired HSI is
decomposed by a linear combination of spectral signatures from spectral dictionary, where abundances
describe the fractions of each spectral signature [28]. We assume that high spectral resolution dictionary
is extracted from the LSpaHSpe HSI while the high spatial resolution abundances are extracted from
HSpaLSpe MSI. So the spectral observation model, which describes spectral relationship scheme
between the input MSI and the desired HSI, can be formulated via the virtual intermediate variable
LSpaHSpe. The spatial observation model to describe the relationship between input MSI and desired
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HSI is built using HSpaLSpe. LSpaHSpe and HSpaLSpe are just virtual intermediate variables in this
work, not necessary to be solved.
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Figure 1. The framework of the proposed method.

In the spectral observation model, spectral characteristics in the desired HSI can be extracted
from LSpaHSpe. An initial spectral dictionary is acquired by adapting prior HSIs, captured using the
same sensor as the desired HSI and cover different landscapes from the input image. The spectral
dictionary is acquired from LSpaHSpe HSI. In the spatial observation model, a spatial dictionary is
learned from a HR PAN image having the same spatial resolution as the desired HSI. The trained spatial
dictionary is shared by the desired HSI and the HSpaLSpe MSI, while the relationship between their
sparse coefficients is then exploited as spatial constraint to obtain high spatial resolution abundances.
The sparse coefficients and abundances are solved using the feedback scheme in [11] to achieve
more accurate results. In this paper, spectral- and spatial observation model are unified into a joint
framework to alternately solve spectral dictionary and abundances. Spectral dictionary is updated
using abundances while abundances are solved by the spectral dictionary in the previous iteration.
These two steps can be used as constraints for each other to finally achieve joint spatial-spectral
enhancement without solving for the virtual intermediate variables.

The contributions of the proposed algorithm are summarized as follows:

1. Improves spatial and spectral resolution simultaneously, which unifies the spatial- and spectral
enhancement steps in one framework taking high resolution spectral features and spatial
information as the constraints for each other in an alternate solving process. To our best
knowledge, this is the first attempt.

2. Designed spectral and spatial observation models for the joint spatial and spectral enhancement
problem. Virtual intermediate variables LSpaHSpe and HSpaLSpe are introduced in spectral
and spatial observation models to find spectral/spatial relationships between input LR MSI and
the desired HR HSI. The high spectral resolution dictionary and the corresponding high spatial
resolution abundances are alternately solved to recover a high spatial and spectral resolution
HSIs. LSpaHSpe and HSpaLSpe are only virtual intermediate variables without having to solve
them in the proposed method.

3. The proposed joint spatial-spectral enhancement algorithm is applied to real remote sensing data,
such as ALI/Hyperion (30 m, 9 bands/ 30 m, 242 bands), for a target scene, the PAN image of ALI
(10 m) is used to provide high spatial resolution features, while prior Hyperion HSIs (30 m, 242
bands) over different scenes are used to train spectral dictionary with high spectral resolution
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characteristics. So high spatial- and spectral resolution Hyperion data (10 m, 242 bands) of the
target scene is achieved from the input LR ALI data (30 m, 9 bands).

The remainder of the paper is organized as follows. In Section 2, spatial observation and
spectral observation models are introduced, respectively. The proposed joint spatial-spectral resolution
enhancement method is presented in Section 3. In Section 4, we give the experimental results on both
simulated and real datasets. Analyses and discussion are shown in Section 4 and finally conclusions
are drawn in Section 5.

2. Spatial Observation Model and Spectral Observation Model

This section introduces spatial- and spectral observation models and two virtual intermediate
variables LSpaHSpe HSI and HSpaLSpe MSI to alternately solve high resolution spectral dictionary
and high spatial resolution abundances to recover desired HR HSIs.

2.1. Spatial Observation Model

In this paper, the virtual variable HSpaLSpe is assumed to have the same spatial resolution as
the desired HSI and the same spectral resolution as the input MSI. HSpaLSpe is just an intermediate
variable and is not necessary to be solved. PAN image contains abundant high-resolution spatial
details and structures [30], used to train an over-completed spatial dictionary via sparse representation
framework [31]. In Figure 2, virtual variable HSpaLSpe has the same spatial resolution as the desired
HSI. HSpaLSpe and the desired HSI are assumed to share the same spatial dictionary. A spectral
degradation mapping between HSpaLSpe and the desired HSI exists. The relationship between sparse
coefficients of HSpaLSpe and the desired HSI obeys the spectral degradation mapping [5]. An interactive
feedback framework [11] is also utilized in the spatial observation model to simultaneously deal with
spatial processing and spectral unmixing.
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2.2. Spectral Observation Model

Desired HSI consists of a few spectral signatures in a spectral dictionary [32]. In Figure 3, the
virtual variable LSpaHSpe has the same spectral resolution as the desired HSI and the same spatial
resolution as the input MSI. Like HSpaLSpe, LSpaHSpe is also considered as an intermediate variable
and therefore not be solved in the proposed process. When the high spectral resolution image covering
the same scene as the input image is not available, prior HSIs with different landscapes are used to
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estimate an initial spectral dictionary. The utilized prior HSIs have the same spatial resolution as
LSpaHSpe and they are captured by the same sensor as the desired HSI. Due to the same spectral
resolution, LSpaHSpe and the desired HSI share the same high-resolution spectral dictionary, and
there is a spatial mapping scheme between them. Figure 3 shows that the mapping scheme of their
abundances should be in accordance with the mapping scheme between two images.
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3. Proposed Joint Spatial-spectral Enhancement Algorithm

The proposed joint spatial-spectral enhancement method combines spatial and spectral observation
models into a unified framework to alternately solve spectral dictionary and abundances, from which
the high spatial resolution and high spectral resolution image is achieved. HSIs and MSIs are denoted
as 2-D matrices where each column represents an image of one spectral band. Input low spatial and
spectral resolution MSI is denoted as Y ∈ Rm×l, while Z ∈ RM×L denotes the desired HSI. X̃ ∈ Rm×L

and X ∈ RM×l denote LSpaHSpe and HSpaLSpe, respectively. M and m are respectively the number
of pixels of high and low spatial images. L and l represent the number of spectral bands with l < L.
The LSpaHSpe HSI is denoted as X̃, treated as the spatially degraded version of the desired HR HSI Z.
Input MSI Y is treated as spectrally degraded version of LSpaHSpe. X̃ and Y can be formulated as:

X̃ = TZ + µ1, (1)

Y = X̃M + µ2 (2)

where T ∈ Rm×M denotes the spatial degradation matrix, which includes blurring and spatial
down-sampling factor between the desired HSI Z and LSpaHSpe HSI X̃. M ∈ RL×l is the spectral
response transform matrix between input MSI Y and LSpaHSpe HSI X̃. In general, T and M are used
as prior knowledge according to the sensors parameters. For real data, T can be estimated using
Gaussian point spread function and M can be acquired using cross calibration [33]. µ1 and µ2 represent
modeling errors and the noise. Another virtual intermediate variable HSpaLSpe image X and input
MSI Y can be considered as spectrally degraded version of the desired HSI Z and spatially degraded
version of HSpaLSpe, respectively:

X = ZM + ν1 (3)

Y = TX + ν2 (4)
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where ν1 and ν2 are modeling errors.

3.1. Formulation of Spectral Observation Model to Solve Spectral Dictionary

The spectral observation model is to obtain high spectral resolution dictionary. The spectrum
of each pixel in the desired HSI Z can be represented by a linear combination of spectral signatures,
which is formulated as [32]:

zi = aiDspe + ni, (5)

where zi is the spectrum of pixel i in Z. Dspe ∈ RK×L is the spectral dictionary containing K pure spectral
signatures, ai represents fraction abundance which is assumed sparse, ni is modeling error. Since all
images are used in 2-D forms [34], Equation (5) can be rewritten as a compact matrix form:

Z = ADspe + n, (6)

where A denotes high spatial resolution fraction abundances, and n is modeling error.
Due to the fact that Z has the same spectral resolution as the LSpaHSpe image X̃, their underlying

spectral signatures should be the same. Substituting (6) to (1), the spectral observation model can be
expressed by

X̃ ≈ TADspe = ÃDspe, (7)

As a result, spectral dictionary training can be solved by the following sparse non-negative matrix
decomposition problem [19]:{

Dspe, Ã
}
= argmin

{
1
2 ||X̃− ÃDspe||

2
F + λ||Ã||1

}
s.t. ãi ≥ 0, dk ≥ 0

, (8)

where Ã = [̃a1, ã2, . . . , ãM]T is the coefficient matrix described abundance of X̃, which is sparse in l1
norm. Frobenius norm ||•||F describes data fidelity and λ is a positive parameter balancing the trade-off

between sparseness and data fidelity terms. Both ãi and the atoms in dictionary Dspe are regularized to
be non-negative, and the non-negative dictionary learning algorithm mentioned in [19] is employed to
achieve the high resolution spectral dictionary Dspe of the desired image Z.

3.2. Formulation of Spatial Observation Model to Solve abundances

Spatial observation model aims at estimating high spatial resolution abundances. The virtual
intermediate variable HSpaLSpe image X is used in this step. Assume that z =

{
z1, z2, . . . , zL

}
is a 2-D

patch matrix of Z, where z j(1 ≤ j ≤ L) represent the HS patch of each band. z j can be represented as a
linear combination of atoms via an over-completed spatial dictionary, which is expressed as follows
based on sparse representation [35]:

z j = argmin
{
||z j
−Dspaα

j
||

2
F + λ1||α

j
||1

}
, (9)

where Dspa is the spatial dictionary trained by high spatial resolution PAN image using K-means SVD
(K-SVD) algorithm [36]. α j is a sparse coefficient vector. When the sparse formulation of one patch can
be generalized to the patch matrix,

z = argmin
{
||z−Dspaαz||

2
F + λ1||αz||1

}
, (10)

where αz =
{
α1,α2, . . . ,αL

}
is the sparse coefficient matrix. λ1 is the parameter of the sparse term.

The HSpaLSpe image X has the same spatial resolution as Z, so the patch matrix x =
{
x1, x2, . . . , xl

}
can be represented:

x = argmin
{
||x−Dspaαx||

2
F + λ2||αx||1

}
, (11)
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where αx =
{
α1,α2, . . . ,αl

}
is the sparse coefficient matrix of x. λ2 has the same function as λ1.

Substituting (3) into (10) and (11), the relationship between αz and αx can be obtained:

αx ≈ αzM, (12)

Input image Y is the spatial degradation version of X, the patch matrix y =
{
y1, y2, . . . , yl

}
, which

covers the same scene as the patch matrix x, formulated in (13) by involving the spatial degradation
relationship presented in (4):

y = argmin
{
||y−TDspaαx||

2
F + λ2||αx||1

}
, (13)

Although HSpaLSpe image X is not available in this work, the corresponding sparse coefficient
matrix αx can be acquired by the input image Y using the spatial degradation scheme between Y and
X. The sparse coefficient matrix αz can be obtained by (12). In Section 3.1, the desired image Z can also
be represented in spectral domain by a few spectral signatures weighted by corresponding fraction
abundances. Spatial expression of Z should be approximated to its spectral expression [11]:

R−1Dspaαz ≈ ADspe, (14)

where R represents the extraction operator used to extract overlapping patch matrix from Z. The
sparse coefficient matrix is used as spatial constraint to achieve high spatial resolution abundance
A of the desired HSI Z, where αx and A are iteratively solved to obtain more accurate results with
less distortions.

3.3. Joint Spatial-spectral Enhancement Algorithm

The proposed method recovers high resolution HSI Z from the low spatial resolution and low
spectral resolution input MSI Y, through which the spatial and spectral resolution are jointly improved.
LSpaHSpe image X̃ and HSpaLSpe image X are introduced as virtual variables which describes low
spatial resolution but high spectral resolution image (HSI) and high spatial resolution but low spectral
resolution image (MSI), respectively. X̃ is used to build the spectral observation model and X is
exploited to describe the spatial observation model, from which high resolution spectral dictionary
Dspe and high spatial resolution abundance A are estimated alternately to achieve the desired HSI Z
with both high spatial and spectral resolution and less distortions.

As described in Section 3.1, the high spectral resolution dictionary Dspe can be solved using X̃ via
the non-negative dictionary learning algorithm, where X̃ is assumed to cover the same landscapes as
the input MSI and the desired HSI. However, X̃ is a virtual variable that is unavailable in real cases. To
obtain the high spectral resolution dictionary, prior HSIs, covering different landscapes, are used to
train an initial spectral dictionary Dspe,0 in the first iteration. These prior HSIs are assumed to have the
same spatial resolution as the input MSI and the same spectral resolution as the desired HSI. So, the
initial spectral dictionary can be trained:{

Dspe,0, B
}
= argmin

{
1
2 ||H−BDspe,0||

2
F + λ||B||1

}
s.t. bi ≥ 0, dk ≥ 0

(15)

where H represents the prior HSI, B = [b1, b2, . . . , bM]T is the sparse abundance, and λ is a
positive parameter.

In Section 3.2, HSpaLSpe image X is used to establish the spatial observation model to estimate
high spatial resolution abundance A, where spatial sparse information of Z is used as constraints to
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achieve more accurate result with less distortions. The sparse coefficient matrix αz of Z is obtained by
combing (12) and (13).

{αx,αz} = argmin
{
||y− TDspaαx||

2
F + λ2||αx||1 + β||αx −αzM||2F

}
, (16)

where y is the patch matrix in the input MSI Y,Dspa is spatial dictionary trained by high spatial resolution
PAN image (Z should have the same spatial resolution as the PAN image). αx and αz are sparse
coefficient matrices of the X and Z, respectively. Parameter λ2 balances sparsity and representation
error and β controls the spectral degradation of αx and αz. The patch matrix y is directly extracted
from Y, and it is assumed to be accurate. So it helps to achieve more accurate spatial sparse information
of the desired image.

The spectral expression and spatial representation of Z should be approximated. The solved
sparse coefficient matrix αz is exploited as spatial constraint to obtain high resolution abundance A
and simultaneously improve the accuracy of αz and A, the idea of which has already been proposed in
our previous work [11]. The objective function of A is written by using (14):

{αz, A} = argmin
{
||ADspe −R−1Dspaαz||

2
F + η||A||1 + ε||αz||1

}
, (17)

where R−1 represents the patch matrix extraction factor. η is the weight of abundance sparsity and ε is
the parameter of spatial sparsity.

In this paper, spectral dictionary Dspe and abundance A are alternately solved. Using (14)-(15),
the objective function of Dspe is defined as (except the first iteration):{

Dspe, A
}
= argmin

{
||ADspe −R−1Dspaαz||

2
F + µ||A||1

}
, (18)

where µ is the weight of abundance sparsity.

3.4. Solver

There are four objective functions that need to be solved, including the solution of initial spectral
dictionary Dspe,0 in (15), the solution of spatial sparse information αz in (16), the solution of high spatial
resolution abundance A in (17) and the solution of high resolution spectral dictionary Dspe in (18).
These multiple variable objective functions are convex and unique solutions can be solved by variable
splitting and alternate optimization [37].

3.4.1. Solution of Initial Spectral Dictionary Dspe,0

The objective function of initial spectral dictionary Dspe,0 in (15) can be solved using the
non-negative dictionary learning algorithm proposed in [19], where each dictionary atom is updated
via a closed-form solution. So, the optimization problem in (15) is divided into two sub-problems:

(1) Solve B with respect to a fixed Dspe,0

B = argmin
{1

2
||H−BDspe,0||

2
F + λ||B||1

}
s.t. bi ≥ 0, (19)

Equation (19) is solved by ADMM [38] for a fast convergence rate [39].

(2) Update Dspe,0 with respect to a fixed B

Dspe,0 = argmin
1
2
||H−BDspe,0||

2
Fs.t. dk ≥ 0, (20)

Equation (20) is solved via block coordinate descent which updates one atom in each iteration
using the non-negative constraint [40].
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3.4.2. Solution of Spatial Sparse Information αz

The objective function of spatial sparse information αz in (16) can be divided into following
two sub-problems:

(1) Solve spatial sparse coefficient matrix αx

αx = argmin
{
||y− TDspaαx||

2
F + λ2||αx||1

}
, (21)

It is a sparse coding problem that can be solved by alternately learning Dspa from the high spatial
resolution PAN image using K-SVD [36] and estimating αx using OMP [41].

(2) Solve spatial sparse coefficient matrix αz with respect to a fixed αx

αz = argmin||αx −αzM||2F, (22)

The optimization function in (22) can be directly solved via least square method [42].

3.4.3. Solution of High Spatial Resolution Abundance A

The objective function of high spatial resolution abundance A in (17) is divided into following
two sub-problems.

(1) Solve A with respect to a fixed αz

A = argmin
{
||ADspe −R−1Dspaαz||

2
F + η||A||1

}
, (23)

(2) Solve αz with respect to a fixed A

αz = argmin
{
||ADspe −R−1Dspaαz||

2
F + ε||αz||1

}
, (24)

Both of them are sparse coding optimization problems. Equation (23) is solved via ADMM and
Equation (24) is solved by OMP.

3.4.4. Solution of High Resolution Spectral Dictionary Dspe

The objective function of high resolution spectral dictionary Dspe in (18) is divided into following
two sub-problems.

(1) Update Dspe with respect to a fixed A

Dspe = argmin||ADspe −R−1Dspaαz||
2
F, (25)

Equation (25) can be solved by block coordinate descent [40], which is similar to the solution of
(20).

(2) Solve A with respect to a fixed Dspe

A = argmin
{
||ADspe −R−1Dspaαz||

2
F + µ||A||1

}
, (26)

Being similar to the solution of (19), the solution in this problem is obtained using ADMM [38].
The proposed joint spatial-spectral resolution enhancement algorithm is implemented by

alternately obtaining spectral dictionary Dspe and abundance A, which are formulated in (19) and (20),
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respectively. Algorithm 1 stops iterations when the mean-square error (MSE) between Z(i+1) and Z(i)
is below the threshold δ = 0.0001.

Algorithm 1: Joint spatial-spectral resolution enhancement algorithm(J-SpeSpaRE)

Input: LR MSI Y, prior HSIs H, spatial dictionary Dspa pre-trained by HR PAN image.

Initialization: Iteration time i=1.

Step 1: Train the initial spectral dictionary Dspe,0 with Equation (15).{
Dspe,0, B

}
= argmin{ 12 ||H−BDspe,0||

2
F + λ||B||1}

s.t. bi ≥ 0, dk ≥ 0
Step 2: Solve the sparse coefficient matrix αz with Equation (16).
{αx,αz} = argmin{||y− TDspaαx||

2
F + λ2||αx||1 + β||αx −αzM||2F}

Begin
Step 3: Solve the high spatial resolution abundance A(i) with Equation (17).{

αz, A(i)} = argmin{||A(i)Dspe,i −R−1Dspaαz||
2
F + η||A(i) ||1 + ε||αz||1}

Step 4: Solve the high resolution spectral dictionary Dspe,i with Equation (18).{
Dspe,i, A(i)} = argmin{||A(i)Dspe,i −R−1Dspaαz||

2
F + µ||A(i) ||1}

Step 5: Recover the HR HSI Z(i) = A)i)Dspe,i.
Step 6: i=i+1.

End
Return Z = Z(i+1) when MSE(Z(i+1) −Z(i)) < 0.0001

Output: HR HSI Z.

4. Experiment Results

Experiments on both simulated and real datasets are presented to verify the effectiveness of
the proposed joint spatial-spectral resolution enhancement algorithm (denoted as J-SpeSpaRE). No
algorithms exist that simultaneously improve spatial and spectral resolution. The proposed method
is compared to the state-of-art spatial resolution enhancement methods and spectral resolution
enhancement methods, respectively. The input of our proposed method is a MSI with low spatial
and spectral resolution, and the inputs of all compared methods should be the same to make fair
comparison. Several PAN-sharpening methods are exploited to compare the performance of spatial
resolution enhancement. The result of our proposed method J-SpeSpaRE is a HSI with high spatial and
spectral resolution, which should be spectrally degraded in the comparison of spatial enhancement.
Spectral resolution enhancement methods are used to compare spectral performance. The result of our
proposed method should be spatially degraded when comparing with spectral enhancement methods.
In this paper, spatial resolution enhancement algorithms for comparison (PAN-sharpening algorithms)
include GSA method [43], Indusion method [44], and SparseFI method [35]. Arad’s method [25] and
SREM method [24] are used to compare the performance of spectral resolution enhancement.

The input of our method is LR MSI, HR PAN image, and LR prior HSIs, the output HR HSI
has the same spatial resolution as the input PAN image and the same spectral resolution as the HSI
priors. Since the reconstructed HSI covers the same scene as the input MSI, there is no pixel shift and
unmatched pixels. PAN image provides high spatial resolution information. In fact, PAN images
do not need to cover the same scene nor be well registered with the input MSI. There are plenty of
structural primitives (such as object edges, line segments, and other elementary features) contained
in PAN image and these primitives are qualitatively similar in similar type of scenes [11]. The HSI
prior images are utilized for training initial spectral dictionary. Therefore, the proposed method is
independent with image registration between low resolution images and high resolution images.

The assessments used to evaluate the performance of compared methods are Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity (SSIM), Feature Similarity (FSIM), Correlation Coefficient (CC),
Root-Mean-Square Error (RMSE), Spectral Angle Mapper (SAM), and Per-pixel Deviation (PD). PSNR,
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the ratio between the maximum power of a signal and the power of residual errors, evaluates the
spatial quality of each band [16]. Higher PSNR values indicate better reconstruction results. SSIM
measures the similarity of spatial structures in each band by using various windows. It is combined by
the comparison of luminance, contrast and structure [45,46]. The value of SSIM ranges between 0 and 1.
FSIM shows the spatial similarity in each band with a full reference image. It works by jointly utilizing
phase congruency and gradient magnitude [46]. The value of FSIM also varies between 0 and 1. CC
shows the spectral similarity between the recovered HR HSI and the ground truth [35]. The value of
CC ranges from -1 to 1. RMSE is applied for the evaluation of reconstruction accuracy by measuring
the root mean square error between the recovered HR HSI and the ground truth [47]. The smaller the
RMSE value, the better reconstruction performance. SAM is used to assess spectral distortions by
calculating the absolute value of the angle between the ground truth and the recovered spectra [16].
It ranges from 0 to 1, and the lower value close to 0 indicates less spectral distortions. With PD, the
recovered image is first spatial degraded to the resolution of the original image and is then subtracted
from the original image on a per-pixel basis. Then, the average deviation per pixel was calculated
using the number of pixels [48]. The minimum if PD is 0 and lower value shows less differences.

4.1. Experiments on Simulated Datasets

Two datasets are used in simulated experiments to compare the performance of our proposed
method with spatial resolution enhancement methods and spectral resolution enhancement methods,
respectively. Both of simulated datasets Indian pines and Cuprite are acquired by AVIRIS sensor. The
spatial resolution is 20 m and there are 224 spectral bands covering from 400 nm to 2500 nm. Indian
pines dataset is captured over Northwest of Indiana, USA. Cuprite dataset is obtained over the Cuprite
mine district in Nevada. Sub-scenes with the size of 256 × 256 are extracted in both Indian pines and
Cuprite datasets. The spectral bands with serious noises and water vapor absorption are discarded, so
162 bands remained.

The above data is considered as ground truth HR HSI with high spectral- and spatial- resolution.
Input LR MSI is generated by spatial down-sampling and spectral down-sampling, respectively. A
Gaussian filter and a spatial down-sampling factor are applied for spatial down-sampling [49]. For
Indian pines dataset and Cuprite dataset, spectral down-sampling is implemented using the given
spectral response function between Landsat TM and AVIRIS. The simulated MSI is generated with
uniform spectral response functions corresponding to Landsat TM bands 1-5 and 7, which cover the
wavelength of 450-520, 520-600, 630-690, 760-900, 1550-1750, and 2080-2350 nm, respectively [17].
Spatial dictionary is trained by HR PAN image simulated by the bands of ground truth over the visible
wavelength. The spatial resolutions of PAN image and ground truth HSI are the same. Spectral
dictionary is learned from LR prior HSIs which are generated by spatially down-sampling different
AVIRIS HSIs with the same spectral configuration as ground truth HSI. In the experiment on Indian
pines, the prior HSIs are Moffett Field HSI and Cuprite HSI. While Indian pines and Moffett Field are
treated as prior HSIs in the experiment on Cuprite dataset.

The input of our proposed method is a MSI with low spatial and spectral resolution, which
should be the same as all of compared methods to make fair comparison. Several PAN-sharpening
methods are exploited to compare the performance of spatial resolution enhancement. The result of
our proposed method J-SpeSpaRE is the HSI with high spatial and spectral resolution, which should
be spectrally degraded in the comparison of spatial enhancement.

Spatial assessment comparison on Indian pines dataset and Cuprite dataset are respectively
presented in Tables 1 and 2. The best evaluations are listed in bold letters. The pan-sharpening methods
GSA, Indusion and SparseFI are used to compare the performance of spatial resolution enhancement.
From Table 1 to Table 2, MPSNR, MFSIM, and MSSIM represent the average values of all spectral
bands while SAM denotes the average results of all pixels. It can be found from Tables 1 and 2 that our
proposed J-SpeSpaRE method achieves better spatial performance than other compared methods. GSA
is a component substitution method and Indusion is a multi-resolution analysis method, both of which
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are conventional pan-sharpening techniques. SparseFI proves superior spatial enhancement results
than GSA and Indusion due to the high spatial resolution dictionary trained by PAN image. However,
spectral correlation and constraints are ignored in SparseFI, which leads to more spectral distortions
than our proposed method. The proposed J-SpeSpaRE method can simultaneously improve spatial
resolution and spectral resolution. PAN images are trained to generate spatial dictionary with high
spatial resolution textures and structures via sparse representation, which is assumed to be benefited
for acquiring high spatial resolution abundances. On the other hand, abundances are updated in
each iteration by using the spectral dictionary trained in the previous iteration. Spectral dictionary
and abundances are alternately solved to ensure more accurate spatial information and less spectral
distortions. Except from the assessment evaluation, visual comparisons of each method on Indian pines
dataset and Cuprite dataset are also represented in Figures 4 and 5, where the reconstructed results
are shown as red, green and blue bands. We found that all of the compared methods can recover
high spatial resolution MSIs. However, spatial distortions exist in Indusion method and SparseFI
method, while GSA method leads to serious spectral distortions and blurring. As indicated from
Figures 4e and 5e, our proposed method proves better visual performance and less distortions than
other compared methods.

Table 1. Spatial assessment of our proposed method and pan-sharpening methods on Indian pines dataset.

GSA Indusion SparseFI J-SpeSpaRE (After Spectral Degradation)

MPSNR 37.030 38.234 38.735 39.097
MSSIM 0.693 0.729 0.738 0.756
MFSIM 0.797 0.823 0.844 0.899

SAM 0.160 0.151 0.147 0.120
PD 7.874 6.350 5.192 4.318

Table 2. Spatial assessment of our proposed method and pan-sharpening methods on Cuprite dataset.

GSA Indusion SparseFI SpeSpaRE (After Spectral Degradation)

MPSNR 41.065 42.371 43.012 43.855
MSSIM 0.699 0.728 0.740 0.759
MFSIM 0.754 0.797 0.831 0.884

SAM 0.160 0.142 0.139 0.114
PD 8.347 6.468 5.703 4.911
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Spectral super-resolution methods are used to evaluate the effectiveness of spectral resolution
enhancement. For fair comparison, the result of our proposed method J-SpeSpaRE should be spatially
degraded. The spectral assessments on both Indian pines dataset and Cuprite dataset are listed in Tables 3
and 4, respectively. The best evaluation results are written in bold letters. The compared spectral
resolution enhancement methods include Arad and SREM. In Tables 3 and 4, our proposed method
achieves better or more competitive results than the compared methods. Figures 6 and 7 show visual
comparison of Indian pines dataset and Cuprite dataset, where the spectral enhancement results of band
550 nm, 750 nm, and 1500 nm are presented. Arad’s method is designed based on sparse representation
framework where a high-resolution spectral dictionary is trained using hyperspectral priors. Spatial
constraints are ignored in Arad’s method, so it suffers from serious spatial and spectral distortions.
A transformation matrix between input MSI and the desired HSI is estimated in SREM method, where
spatial correlation is not used because of the pixel by pixel processing. The proposed J-SpeSpaRE
method shows superior comparison results than Arad’ method and SREM. Spatial observation model
and spectral observation model are designed to acquire high spectral resolution dictionary and high
spatial resolution abundances in an alternative approach. These two steps are used as constraint for
each other, so spectral distortions are reduced, and spatial features are maintained.

Table 3. Spectral assessment of our proposed method and spectral resolution enhancement methods
on Indian pines dataset.

Arad SREM J-SpeSpaRE (After Spatial Degradation)

RMSE 4.872 4.548 4.230
SAM 0.230 0.211 0.209

MPSNR 33.682 34.177 34.802
CC 0.930 0.967 0.970

Table 4. Spectral assessment of our proposed method and spectral resolution enhancement methods
on Cuprite dataset.

Arad SREM J-SpeSpaRE (After Spatial Degradation)

RMSE 4.5372 4.1020 3.5989
SAM 0.245 0.216 0.191

MPSNR 35.936 37.294 37.997
CC 0.955 0.971 0.932
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4.2. Effectiveness of Joint Spatial and Spectral Enhancement Framework

In this paper, spectral- and spatial enhancement are implemented in a unified framework where
spectral dictionary and abundances are iteratively solved to achieve a high resolution HSI from the
input MSI with low spatial and low spectral resolutions.

To validate the effectiveness of the proposed joint spatial and spectral enhancement framework,
the spatial evaluation values of PSNR and RMSE, as well as the spectral evaluation values of SAM in
each iteration are given in Figure 8, where assessments on Indian pines dataset and Cuprite dataset are
presented by blue solid curves and black dashed curves, respectively. From Figure 8, the reconstruction
performance increases dramatically at the first and second iterations, and then improves very slowly
when iterating. In this paper, 4 and 5 are the best iteration times for Indian pines dataset and Cuprite
dataset, respectively. So, the increasing performance in each iteration indicates the superiority of the
proposed joint spatial and spectral enhancement framework.
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4.3. Experiment on Real Dataset 

ALI/Hyperion real datasets captured by EO-1 satellite are applied to evaluate the performance 
of the proposed method. EO-1 satellite simultaneously carries hyperspectral Hyperion sensor and 
multispectral ALI sensor, where Hyperion sensor captures 242 hyperspectral bands and ALI sensor 
captures one PAN band and nine multispectral bands [50]. The spectral resolution of Hyperion image 
is 10 nm. The spatial resolutions of ALI image and Hyperion image are both 30 m. The spatial 
resolution of PAN image is 10 m. PAN image (10 m) and MSI (30 m) can be directly acquired to 
recover the corresponding HSI (10 m) using spatial dictionary trained from PAN image and spectral 
dictionary trained from prior HSIs (30 m) over various scenes. The selected Hyperion/ALI images are 
obtained in June of 2002 over the city of Paris, France. Figure 9 (a) shows the PAN image, and RGB 
compositions of ALI and Hyperion images are presented in Figure 9 (b) and (c). The prior 
hyperspectral data used for training initial spectral dictionary are Hyperion hyperspectral data 
captured over the cities of Berlin, Germany, and Xi’an, China. Atmospheric correction and 
registration are firstly performed. Fast Line-of-sight Atmospheric Analysis in ENVI 5.3 is used for 
atmospheric correction [24]. The polynomial algorithm is exploited to register Hyperion image to ALI 
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4.3. Experiment on Real Dataset

ALI/Hyperion real datasets captured by EO-1 satellite are applied to evaluate the performance
of the proposed method. EO-1 satellite simultaneously carries hyperspectral Hyperion sensor and
multispectral ALI sensor, where Hyperion sensor captures 242 hyperspectral bands and ALI sensor
captures one PAN band and nine multispectral bands [50]. The spectral resolution of Hyperion image is
10 nm. The spatial resolutions of ALI image and Hyperion image are both 30 m. The spatial resolution
of PAN image is 10 m. PAN image (10 m) and MSI (30 m) can be directly acquired to recover the
corresponding HSI (10 m) using spatial dictionary trained from PAN image and spectral dictionary
trained from prior HSIs (30 m) over various scenes. The selected Hyperion/ALI images are obtained in
June of 2002 over the city of Paris, France. Figure 9a shows the PAN image, and RGB compositions of
ALI and Hyperion images are presented in Figure 9b,c. The prior hyperspectral data used for training
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initial spectral dictionary are Hyperion hyperspectral data captured over the cities of Berlin, Germany,
and Xi’an, China. Atmospheric correction and registration are firstly performed. Fast Line-of-sight
Atmospheric Analysis in ENVI 5.3 is used for atmospheric correction [24]. The polynomial algorithm
is exploited to register Hyperion image to ALI image by selecting more than 50 pairs of tie points.Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 28 
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Combinations of state-of-the-art spatial resolution enhancement methods and spectral resolution
enhancement methods are used in this section to compare with our proposed J-SpeSpaRE method.
Figure 10 shows the RGB compositions of the proposed method and all of combined methods. The
input is ALI MSI with spatial resolution of 30 m, spatial resolution enhancement method (Indusion
or SparseFI) and spectral resolution enhancement method (Arad’s method or SREM method) are
sequentially performed to achieve the recovered Hyperion HSI with spatial resolution of 10 m, which
is used to compare with the reconstruction result of our proposed J-SpeSpaRE method. There are
four combinations of spatial resolution enhancement methods and spectral resolution enhancement
methods, which are denoted as Indusion+Arad, Indusion+SREM, SparseFI+Arad and SparseFI+SREM.
The high-resolution hyperspectral ground truth is not available in real case, so only the overlapped
regions of ALI and Hyperion images could be used to evaluate the reconstruction performance of all
compared methods. Comparisons of sub-scenes at band 550 nm, band 900 nm, and band 1600 nm are
presented in Figure 11.

Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 28 

 

   

(a) (b) (c) 

Figure 9. ALI PAN image (a), RGB compositions of ALI MSI (b) and Hyperion HSI over Paris (c). 

Combinations of state-of-the-art spatial resolution enhancement methods and spectral 
resolution enhancement methods are used in this section to compare with our proposed J-SpeSpaRE 
method. Figure 10 shows the RGB compositions of the proposed method and all of combined 
methods. The input is ALI MSI with spatial resolution of 30 m, spatial resolution enhancement 
method (Indusion or SparseFI) and spectral resolution enhancement method (Arad’s method or 
SREM method) are sequentially performed to achieve the recovered Hyperion HSI with spatial 
resolution of 10 m, which is used to compare with the reconstruction result of our proposed J-
SpeSpaRE method. There are four combinations of spatial resolution enhancement methods and 
spectral resolution enhancement methods, which are denoted as Indusion+Arad, Indusion+SREM, 
SparseFI+Arad and SparseFI+SREM. The high-resolution hyperspectral ground truth is not available 
in real case, so only the overlapped regions of ALI and Hyperion images could be used to evaluate 
the reconstruction performance of all compared methods. Comparisons of sub-scenes at band 550 nm, 
band 900 nm, and band 1,600 nm are presented in Figure 11. 

     

(a) (b) (c) (d) (e) 

Figure 10. RGB compositions of (a) Indusion+Arad method, (b) Indusion+SREM method, (c) 
SparseFI+Arad method, (d) SparseFI+SREM method, (e) Proposed J-SpeSpaRE method.  

Figure 10. RGB compositions of (a) Indusion+Arad method, (b) Indusion+SREM method,
(c) SparseFI+Arad method, (d) SparseFI+SREM method, (e) Proposed J-SpeSpaRE method.



Remote Sens. 2020, 12, 993 18 of 24

Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 28 

 

   
(a) 

   
(b) 

   
(c) 

   
(d) 

   
(e) 

Figure 11. Comparison of sub-scenes in real dataset at band 550nm, band 900 nm, and band 1600 nm
(from left to right) (a) Indusion+Arad method, (b) Indusion+SREM method, (c) SparseFI+Arad method,
(d) SparseFI+SREM method, (e) our proposed J-SpeSpaRE method.

From visual comparison, our proposed joint spatial and spectral enhancement method achieves
better results than other combined methods. Clearer boundaries and less color distortions exist in
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our method, which proves the effectiveness of simultaneous improvement in the spatial and spectral
domain. In the compared combination methods, the artifacts and errors are transformed from spatial
enhancement to spectral enhancement through the sequential approach. The Indusion+Arad method
and Indusion+SREM method suffer from spatial blurring and distortions due to the drawback of
Indusion method. SREM method takes advantage of underlying spectral materials so less spectral
distortions are presented in the combination SparseFI+SREM method. Our proposed method obtains
overall better results than other compared methods, exploits spectral observation model and spatial
observation model, and also unifies them into a joint framework to iteratively solve spectral dictionary
and abundances. Spectral and spectral resolutions are simultaneously improved with less errors
and distortions.

4.4. Spectral Unmixing on Real Dataset

Spectral unmixing is applied to the recovered HR HSIs of the real dataset to evaluate the
performance of the proposed method. Endmembers indicate spectral reflectance of each landscape
and abundances prove proportion of each endmember. VCA [51] is utilized as endmember extraction
algorithm and SUnSAL [28] is exploited for abundances estimation. The sub-scenes in Figure 11 are
used in spectral unmixing of the proposed and the methods for comparison. The false color composite
is given in Figure 12 where five landscapes (Woods, Lawn, Residence, Sand land, and Crop land)
are selected to evaluate accuracy of spectral signatures. Spectral unmixing result of the original LR
Hyperion Paris HSI is also given to verify effectiveness of the proposed joint spatial and spectral
resolution enhancement method.
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Figure 13 shows that the reflectance of the five selected endmembers of all compared methods
(Indusion+Arad, Indusion+SREM, SparseFI+Arad, and SparseFI+SREM) and the proposed method.
The abundances maps of each endmember are also listed in Figure 14. In Figure 13, our proposed
method achieves better performance of endmember extraction than other combined methods. Spectral
reflectance of our proposed method has the lowest difference from the original HSI. More accurate
spectral endmembers can be extracted after improving spatial- and spectral- resolution simultaneously
than applying spatial enhancement and spectral enhancement step by step. Figure 14 shows the
superiority of spatial information achieved by our method, where high spatial resolution abundance
maps have more clear structures, sharp edges and spatial details than other combined methods.
Reliable spectral signatures and high-resolution spatial features can be acquired through joint spatial-
and spectral- resolution enhancement to verify the accuracy and effectiveness of the proposed method.
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5. Conclusions

This paper proposes a joint spatial-spectral resolution enhancement algorithm based on spectral
factorization and spatial sparsity to achieve an HR HSI from an input LR MSI. Spectral and spatial
observation models are formulated to describe spectral and spatial relationship schemes between
the input MSI and the desired HSI. Virtual intermediate variables, LSpaHSpe and HSpaLSpe, are
introduced to make more comprehensive descriptions in spectral and spatial observation models
which are used to respectively solve high spectral resolution dictionary and high spatial resolution
abundances. Spectral dictionary can be trained by adapting prior LSpaHSpe HSIs, and abundances are
obtained by using sparse coefficients as spatial constraint. A spatial observation model and a spectral
observation model are unified into a joint framework to alternately solve spectral dictionary and
abundances. These two steps can be used as constraints for each other and finally achieve the result of
joint spatial-spectral enhancement without solving the virtual intermediate variables. The proposed
joint spatial-spectral enhancement framework overcomes the drawback of a sequential implementation
of spatial improvement and spectral enhancement steps to achieve more accurate reconstruction results
and low distortions.
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