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Abstract: We present the sensor concept and first performance and accuracy assessment results of
a novel lightweight topo-bathymetric laser scanner designed for integration on Unmanned Aerial
Vehicles (UAVs), light aircraft, and helicopters. The instrument is particularly well suited for capturing
river bathymetry in high spatial resolution as a consequence of (i) the low nominal flying altitude
of 50–150 m above ground level resulting in a laser footprint diameter on the ground of typically
10–30 cm and (ii) the high pulse repetition rate of up to 200 kHz yielding a point density on the
ground of approximately 20–50 points/m2. The instrument features online waveform processing
and additionally stores the full waveform within the entire range gate for waveform analysis in
post-processing. The sensor was tested in a real-world environment by acquiring data from two
freshwater ponds and a 500 m section of the pre-Alpine Pielach River (Lower Austria). The captured
underwater points featured a maximum penetration of two times the Secchi depth. On dry land,
the 3D point clouds exhibited (i) a measurement noise in the range of 1–3 mm; (ii) a fitting precision
of redundantly captured flight strips of 1 cm; and (iii) an absolute accuracy of 2–3 cm compared
to terrestrially surveyed checkerboard targets. A comparison of the refraction corrected LiDAR
point cloud with independent underwater checkpoints exhibited a maximum deviation of 7.8 cm
and revealed a systematic depth-dependent error when using a refraction coefficient of n = 1.36 for
time-of-flight correction. The bias is attributed to multi-path effects in the turbid water column (Secchi
depth: 1.1 m) caused by forward scattering of the laser signal at suspended particles. Due to the
high spatial resolution, good depth performance, and accuracy, the sensor shows a high potential for
applications in hydrology, fluvial morphology, and hydraulic engineering, including flood simulation,
sediment transport modeling, and habitat mapping.

Keywords: UAV LiDAR; airborne laser bathymetry; full waveform processing; performance
assessment; high resolution hydro-mapping

1. Introduction

The introduction of Unmanned Aerial Vehicles (UAV), also referred to as Unmanned Aerial
Systems (UAS), as platforms for the acquisition of high-resolution 3D data has fundamentally changed
the mapping sector in recent years. UAVs flying at low altitudes combine the advantages of small
sensor-to-object distances (i.e., close range) and agility. The latter is achieved via remotely controlling
the unmanned sensor platform either manually by a pilot within the Visual Line-Of-Sight (VLOS) or
by autonomously flying predefined routes based on waypoints, allowing both within and beyond
VLOS operation.
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UAV-based 3D data acquisition was first accomplished using light-weight camera systems, where
advancements in digital photogrammetry and computer vision-enabled automatic data processing
workflows for the derivation of dense 3D point clouds based on Structure-from-Motion (SfM) and
Dense Image Matching (DIM). Due to advancements in UAV-platform technology and ongoing sensor
miniaturization, today compact LiDAR sensors are increasingly integrated on both multi-copter
and fixed-wing UAVs, enabling 3D mapping with unprecedented spatial resolution and accuracy.
The tackled applications include topographic mapping, geomorphology, infrastructure inspection,
environmental monitoring, forestry, and precision farming. While UAV-borne laser scanning (ULS) can
already be considered state-of-the-art for mapping tasks above the water table, UAV-based bathymetric
LiDAR still lacks behind, mainly due to payload restrictions.

The established techniques for mapping bathymetry are single- or multi-beam echo sounding
(SBES/MBES), including Acoustic Doppler Current Profiling (ADCP). This holds for both coastal and
inland water mapping. MBES is the prime acquisition method for area-based charting of water bodies
deeper than approximately two times the Secchi depth (SD), and the productivity of this technology is
best in deeper water because the width of the scanned swath increases with water depth. For mapping
shallow water bathymetry including shallow running waters, boat-based echo sounding is less
productive and furthermore, safety issues arise. For relatively clear and shallow water bodies, airborne
laser bathymetry (ALB) constitutes a well-proven alternative. This active, optical, polar measurement
technique features the following advantages: (i) areal coverage only depending on the flying height but
not on the water depth; (ii) homogeneous point density; (iii) simultaneous mapping of water bottom,
water surface, and dry land area in a single campaign, referred to as topo-bathymetric LiDAR; and (iv)
non-contact remote sensing approach with clear benefits for mapping nature conservation areas.

ALB performed from manned platforms [1] has a long history in under-water object detection
and charting of coastal areas including characterization of benthic habitats [2]. In the recent past,
the technology is increasingly used for inland waters [3–5]. In order to ensure eye safety, the employed
laser beam divergence is typically in the range of 1–10 mrad. For a typical flying altitude of 500 m
or higher the resulting laser footprint diameter on the ground measures at least 50–500 cm. Thus,
the spatial resolution of ALB from manned aerial platforms is limited. Due to the shorter measurement
ranges, ULS promises a better resolution and allows users to capture and reconstruct smaller structures
like boulders, submerged driftwood, and the like, with potential applications for the characterization
of flow resistance in hydrodynamic numerical (HN) models.

To date, only a few UAV-borne LiDAR sensors are available. The RIEGL BathyDepthFinder is
a bathymetric laser range finder with a fixed laser beam axis (i.e., no scanning). Like most of the
bathymetric laser sensors, the system utilizes a green laser (λ = 532 nm) and allows for the capture of
river cross-sections constituting an appropriate input for 1D-HN models. The ASTRALiTe sensor is
a scanning polarizing LiDAR [6]. The employed 30 mW laser only allows low flying altitudes and
therefore provides limited areal measurement performance and the depth performance is moderate
(1.2 -fold SD). The RAMMS (Rapid Airborne Multibeam Mapping System) was recently developed
by Fugro Inc. and Areté Associates [7]. It is a relatively lightweight, 14 kg push-broom ALB sensor
featuring a measurement rate of 25 kHz and promising a penetration performance of 3 SD according to
the company’s web site [8]. The sensor is operated by Fugro for delivering high-resolution bathymetric
services, but independent performance and accuracy assessments are not available.

In 2018, RIEGL introduced the VQ-840-G, a lightweight topo-bathymetric full-waveform scanner [9]
with a maximum pulse repetition rate (PRR) of 200 kHz. The scanner is designed for installation
on various platforms including UAVs and carries out laser range measurements for high resolution,
survey-grade mapping of underwater topography with a narrow, visible green laser beam. The system
is optionally offered with an integrated and factory-calibrated IMU/GNSS system, and with an optional
camera or IR rangefinder. As such, it constitutes a compact, comprehensive, and full-featured ALB
system for mapping coastal and inland waters from low flying altitudes.
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The inherent advantage of such a design is twofold: (i) the short measurement ranges and high scan
rates enable surface description in high spatial resolution as a consequence of high point density and
relatively small laser footprint; and (ii) integration on UAV platforms or lightweight manned aircraft
reduces mobilization costs and enables agile data acquisition. In the context of ALB, the prior holds
out the prospect of reconstructing submerged surface details below the size of boulder (i.e., dm-level)
which is not feasible from flying altitudes of 500 m or higher due to the large laser footprint diameter,
and the latter is especially beneficial for capturing medium-sized, meandering running waters with
moderate widths (<50 m) and depth (<5 m) which would require a complex flight plan with many
potentially short flight strips and a multitude of turning maneuvers for a conventional manned ALB
survey. Thus, UAV-borne bathymetric LiDAR is considered a major leap forward for river mapping
with an expected positive stimulus on a variety of hydrologic and hydraulic applications like flood
risk simulations, sediment transport modeling, monitoring of fluvial geomorphology, eco-hydraulics,
and the like.

In this article, we present the first rigorous accuracy and performance assessment of a UAV-borne
ALB system by evaluating the 3D point clouds acquired at the pre-Alpine Pielach River and an adjacent
freshwater pond. We compare the LiDAR measurements with ground truth data obtained from
terrestrial survey with a total station in cm-accuracy and provide objective measures describing
the precision, accuracy, and depth performance of the system. Furthermore, we discuss the fields
of application, limits, and challenges of UAV-borne LiDAR bathymetry including potential fusion
with complementary sensors (RGBI cameras, thermal IR cameras), widening the scope beyond pure
bathymetric mapping towards discharge estimation, flow resistance characterization, etc.

Our main contribution is providing an in-depth evaluation of topo-bathymetric UAV-LiDAR
including a discussion of limitations on the one side and benefits compared to manned ALB on the other
side. Next to accuracy and performance assessment, our focus is on an objective evaluation of achievable
spatial resolution, especially addressing the question to which extent the shorter measurement ranges
and smaller nominal laser footprints directly induce higher resolution. Furthermore, we put the
presented full-waveform scanner in context with existing line scanning technologies.

The remainder of the manuscript is structured as follows. In Section 2, we review the state-of-the-art
in UAV-based bathymetry followed by a description of the senor concept in Section 3. Section 4
introduces the study area and existing datasets, and details the employed data processing and
assessment methods. The evaluation results are presented in Section 5 along with critical discussion in
Section 6. The paper concludes with a summary of the main findings in Section 7.

2. Related Work

In this Section, we provide a summary of related work in the context of UAV-based optical
remote sensing of coastal and inland water areas, focusing on the derivation of bathymetry. For the
sake of completeness, we first briefly discuss passive image-based techniques, both via multimedia
photogrammetry [10] and spectrally based depth estimation [11], but mainly concentrate on bathymetric
LiDAR [1] in general and small-footprint topo-bathymetric LiDAR for inland water applications in
particular [12,13]. Furthermore, we present recent validation and comparison studies on subject
matters as our contribution also focuses on sensor evaluation.

2.1. UAV-Borne Multimedia Photogrammetry

The advent of UAVs as carrier platforms of active and passive mapping sensors had a huge impact
in the field of photogrammetry and remote sensing [14]. The introduction of Structure-from-Motion
(SfM) and Dense Image Matching (DIM) techniques providing automatic orientation of entire image
blocks and height estimates for every image pixel [15,16] has democratized image-based 3D mapping
of topography and dramatically increased the achievable point densities [17,18]. The applicability
of UAV-photogrammetry is further facilitated due to the existence of easy-to-use software solutions
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providing an automated processing chain from captured images to digital surface models, 3D meshes,
and orthophoto maps, respectively [19–21].

While the application of SfM is directly applicable for the dry part of alluvial and coastal
areas [22,23], mapping of underwater topography requires consideration of beam bending at the
air-water medium boundary. Ref. [24] describes the basic principles of multimedia photogrammetry
and the authors of [25] provide an early evaluation of the technique for mapping a clear and shallow
gravel-bed river. More recently, Ref. [26,27] focused on fluvial and aquatic applications of SfM based
on UAV imagery emphasising the unprecedented spatio-temporal coverage [27] and the necessity
of automated procedures for refraction correction [26]. The latter is crucial for obtaining accurate
depth measurements but is difficult to achieve because image-based reconstruction of natural water
surfaces poses problems due to the general prerequisite of transparent water conditions. In this context,
Refs. [28–30] propose a deep-learning-based framework to automatically correct refraction effects in
SfM and multi-view stereo processing pipelines.

As for every optical method aiming at mapping bathymetry, clear water is a precondition for
the successful application of multimedia photogrammetry. In addition, Ref. [31] discusses further
prerequisites for exploiting the potentially high spatial resolution of mapping shallow water bathymetry
via through-water dense image matching. It is concluded that sufficient bottom texture and favorable
calm water surfaces are prerequisites for achieving accurate results, as image matching is heavily
distorted in wavy surface conditions and spatial aggregation (i.e., low pass filtering) is necessary to
suppress high-frequency noise. This, however, limits the spatial resolution to the 1m-level, even for
UAV-imagery featuring a ground sampling distance (GSD) in the cm-range.

2.2. UAV-Borne Spectrally Based Depth Estimation

The foundations of mapping bathymetry from multi-spectral images are described in [11,32–35].
The main application of this technique, which uses either physical models or regression techniques
to relate the spectral information of one or more color channels to water depth, is Satellite-Derived
Bathymetry (SDB) based on multispectral remote sensing sensors like Landsat 8, WorldView-2,
etc. [36,37]. While the resolution of SDB bathymetry is inherently limited by the GSD of satellite images,
high-resolution applications of this technique based on hyperspectral UAV imagery was recently
reported by [38]. The authors demonstrate the potential for bathymetric mapping at cm-resolution
and approximately dm-accuracy. However, transient water surfaces negatively affect the achievable
accuracy as discussed in Section 2.1.

2.3. UAV-Borne Bathymetric LiDAR

Scanning bathymetric LiDAR from manned airborne platforms, commonly referred to as Airborne
Laser Bathymetry (ALB), suffers from low spatial resolution. In order to ensure eye-safe operation,
the employed visible green laser beams are generally broader compared to lasers using infrared
laser radiation for mapping topography. This applies to both so-called deep bathy sensors [1] with
a typical beam divergence of 5 mrad as well as for relatively small-footprint topo-bathymetric laser
scanners [3,12,39] employing a beam divergence of around 1 mrad. For the latter, the footprint diameter
at a typical flying altitude of 600 m still features a size of 60 cm, thus limiting the achievable planimetric
resolution to the m-level. One of the main advantages of UAV-borne LiDAR bathymetry is, therefore,
the potentially higher planimetric resolution. In the following, we review available sensors that are
lightweight enough to be carried by multi-copter and even fixed-wing UAV platforms. Most of the
instruments were just recently introduced, thus only a few scientific articles are published yet. This
is the reason why our review is mainly based on company websites, sensor spec sheets, and recent
publications in technical journals reporting about emerging trends [40].
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• ASTRALite edge™: This sensor features a weight of 5 kg and a PRR of 20 kH [41]. The manufacturer
states a precision/accuracy of 5/10 mm and a depth penetration of >1.5 SD at a typical flying
altitude for mapping bathymetry of 20 m. To overcome the known problem of separating signals
from the surface and the bottom beneath, signal processing is based on a technique known as
INtrapulse Phase Modification Induced by Scattering (INPHAMIS) considering the polarization
of the returned laser pulses [6,42]. Show-cases of this sensor, which can be mounted on standard
multi-copter UAV platforms like the DJI Matrice 600, are reported in [43–45]. The authors of [46]
use the instrument for UAV-based discharge estimation requiring flow velocity but also precise
river bed geometry data. A current drawback of the sensor is its relatively low flying altitude
resulting in a poor areal coverage performance.

• Fugro RAMMS: Fugro’s topo-bathymetric UAV laser scanner avoids moving parts by employing
a pushbroom scanning technique [47]. RAMMS (Rapid Airborne Multibeam Mapping System) is
a successor of PILLS (Pushbroom Imaging LIDAR for Littoral Surveillance) developed by Areté
Associates [48], which was first introduced in 2012. Instead of single laser pulses deflected by
a rotating or oscillating mirror, a laser line is emitted and the backscattered signal is captured by
a camera receiver. The compact sensor (weight: 14 kg) is designed for integration in small aircraft
or larger UAVs, delivers 25K range observations per second, and achieves 3 SD penetration [8,49].
Successful completion of large-area bathymetric mapping projects (area: 10K km2) carried out in
very clear coastal waters are reported in [7]. The survey was conducted from a flying altitude
of 325 m resulting in an across-track point spacing of 33 cm. The mission parameters are
optimized for large area coverage, but similar point densities can also be achieved with standard
topo-bathymetric sensors [4]. Higher spatial resolution is generally feasible by integrating the
sensor on UAV platforms [47], but to the best of our knowledge, respective reports have not been
published so far.

• TDOT GREEN: The Japanese company Amuse Oneself Inc. developed a drone-mounted compact
green laser scanner. The general concept and the sensor specifications are presented at the product’s
website together with exemplary uses cases for mapping coastal and river environments [50].
The scanner operates with a PRR of 60 kHz, a scan speed of 30 scans/s, and provides up to 4 echoes
per laser pulse. The large total Field of Fov (FoV) of 90◦ is rather uncommon for bathymetric
scanners as nominal laser incidence angles of 15–20◦ are optimal for mapping bathymetry [1].
The laser output is automatically controlled depending on the flying altitude to ensure eye-safe
operation (<40 m: Class 1; >40 m: Class 3R). The laser beam divergence of 0.3 mrad results in
a very small footprint diameter on the ground (e.g., 3 cm at a flying altitude of 100 m above
ground level). However, no specific information is available on (i) the exact definition of the
reported beam divergence and (ii) the actual laser power. [50] also reports data for validating
sensor performance. Within these internal tests, the system achieved a maximum penetration of
9 m in clear seawater conditions and around 2 m in a more turbid river environment. However,
no information on the actual turbidity is available and independent performance and accuracy
evaluations are missing.

2.4. Comparison and Accuracy Evaluation Studies

As our contribution focuses on accuracy evaluation and performance assessment, we briefly list
existing comparison studies related to optical remote sensing for mapping bathymetry in general,
and ALB in particular. However, a comprehensive review is beyond the scope of this paper.

The authors of [51] provide a comparison of remote sensing methods for mapping bathymetry of
shallow, clear water rivers. Their work mainly focuses on echo sounding and SfM-based techniques.
Through-water photogrammetry and spectral depth approaches for water depth extraction based
on UAV imagery are addressed in [52]. The authors state that a 1.5 cm DEM is achievable via the
photogrammetric approach yielding an unbiased depth estimation with a standard deviation of 17 cm
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compared to RTK GNSS reference measurements, outperforming the spectral approach w.r.t. accuracy
in their experiment at a shallow gravel-bed river.

In the area of bathymetric LiDAR, [53] introduces a comprehensive approach for the derivation of
Total Vertical Uncertainty depending on flight mission and environmental parameters. In contrast, [54]
summarize empirical quality control measures for the evaluation of ALB data and emphasize the
necessity of collecting independent reference measurements for both bottom geometry (GNSS and/or
Sonar) and water transparency. Actual geometric accuracy assessments of bathymetric LiDAR data
captured from manned airborne platforms compared to independent reference data are reported
in [4,55–60]. These studies discuss systematic biases as well as random errors. Depending on the used
sensors (deep bathy, topo-bathy) and study areas (water depth, turbidity) the reported errors are in
the cm- to dm-range compared to reference data obtained from sonar or GNSS. The systematic depth
biases reported in [55,56,59,60] are of special interest as they indicate insufficient compensation of
refraction-induced effects. This topic will further be discussed in Section 6.

In the context of UAV-borne LiDAR hydro-mapping, [61] evaluated a bathymetric laser range
finder. The instrument features a constant laser beam axis and provides section data with an along-track
point spacing of around 1 cm. The authors report a bias of 4 cm and a standard deviation of 3 cm
comprising all involved error sources (sensor position and attitude, ranging, lever arms, boresight
angles, etc.) compared to GNSS reference measurements of the gravel-bed river bottom. To the best
of our knowledge, no accuracy assessments have been published for UAV-borne bathymetric laser
scanners, which is the main focus of our contribution.

3. Sensor Concept

The RIEGL VQ-840-G is a fully integrated compact airborne laser scanner for combined topographic
and bathymetric surveying. The instrument can be equipped with an integrated and factory-calibrated
IMU/GNSS system and with an integrated industrial camera, thereby implementing a full airborne
laser scanning system. The VQ-840-G LiDAR has a compact volume of 20.52 L with a weight of 12 kg
and, thus, can be installed on various platforms including UAVs.

The laser scanner comprises a frequency-doubled IR laser, emitting pulses with about 1.5 ns pulse
duration at a wavelength of 532 nm and at a PRR of 50–200 kHz. At the receiver side, the incoming optical
echo signals are converted into an electrical signal, they are amplified and digitized at a digitization
rate of close to 2G samples/s. The laser beam divergence can be selected between 1 mrad and 6 mrad
in order to be able to maintain a constant energy density on the ground for different flying altitudes
and therefore balancing eye-safe operation with spatial resolution. The receiver’s iFOV (instantaneous
Field of View) can be chosen between 3 mrad and 18 mrad. For topographic measurements and very
clear or shallow water, a smaller setting is suitable while for turbid water it is better to increase the
receiver’s iFOV in order to collect a larger amount of light scattered by the water body.

The VQ-840-G employs a Palmer scanner generating an elliptical scan pattern on the ground.
The scan range is ±20◦ across and ±14◦ along the intended flight direction and consequently, the laser
beam hits the water surface at an incidence angle with low variation. The scan speed can be set between
10–100 lines/s to generate an even point distribution in the center of the swath. Towards the edge of the
swath, where the consecutive lines overlap, an extremely high point density with strongly overlapping
footprints is produced.

The onboard distance measurement is based on time-of-flight measurement through online
waveform processing of the digitized echo signal [62]. A real-time detection algorithm identifies
potential targets within the stream of the digitized waveform and feeds the corresponding sampling
values to the signal processing unit, which is capable of performing system response fitting (SRF) in
real-time at a rate of up to 2.5M targets per second. These targets are represented by the basic attributes
of range, amplitude, reflectance, and pulse shape deviation and are saved to the storage device, which
can be the internal SSD a removable CFast© card, or an external data recorder via an optical data
transmission cable.
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Besides being fed to target detection and online waveform processing, the digitized echo waveforms
can also be stored on disc for subsequent off-line full waveform analysis. For every laser shot, sample
blocks with a length of up to 75 m are stored unconditionally, i.e., without employing any target
detection. This opens up a range of possibilities including pre-detection averaging (waveform stacking),
variation of the target detection parameters or algorithm, and employing different sorts of full-waveform
analysis. For the work presented here, offline SRF with modified target detection parameters was
employed for optimized results. The depth performance of the instrument has been demonstrated to
be in the range of 2 Secchi depths for single measurements, i.e., without waveform stacking.

Instead of or in addition to the internal camera, a high-resolution camera can be externally attached
and triggered by the instrument. This option was chosen for the experiments in this study using a nadir
looking Sony Alpha 7RM3. Figures 1 and 2 show conceptual drawings of the sensor and the general
data acquisition concept, respectively. respectively. Table 1 summarizes the main sensor parameters.
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Table 1. Sensor key specifications.

PRR 50–200 kHz
Scan rate 10–100 lines/s
Scan swath ±20 deg across flight path, ±14 deg along flight path
Beam divergence 1–6 mrad
Receiver’s iFOV 3–18 mrad
Size 360 mm×285 mm×200 mm
Weight 12 kg
Power consumption 160 W

Figure 1. Computer Aided Design rendering of the VQ-840-G laser scanning system in basic
configuration. The electrical and data interfaces are shown on the left hand side while the apertures for
the green laser scanner and the camera at the bottom of the unit are shown on the right hand side.

Table 1. Sensor key specifications.

PRR 50–200 kHz

Scan rate 10–100 lines/s

Scan swath ±20 deg across flight path, ±14 deg along flight path

Beam divergence 1–6 mrad

Receiver’s iFOV 3–18 mrad

Size 360 mm × 285 mm × 200 mm

Weight 12 kg

Power consumption 160 W
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Figure 2. Visualisation of the VQ-840-G mounted on a drone in operation. The scan pattern on the
ground is indicated by the green ellipse. The inserts show typical pulse shapes of the outgoing laser
pulse and the echo return when measuring into the water.

4. Materials And Methods

In this Section, the study area is introduced in Section 4.1, the existing datasets are presented in
Section 4.2, and the employed data processing methods are detailed in Section 4.3.

4.1. Study Area

The study area Neubacher Au (N 48◦12’50”, E 15◦22’30”; WGS 84) is located in the eastern
part of Austria at the tail-water of the pre-Alpine Pielach River, a right-side tributary of the Danube
(cf. Figure 3). The study area is part of the conservation area Niederösterreichische Alpenvorlandflüsse
(Area code: AT1219000) of the European Union’s Natura2000 program. The river is classified
as riffle-pool type [63] with a maximum depth of approximately 3 m and exhibits a pluvio-nival
regime with expected discharge peaks during snowmelt in winter/spring and torrential rain in
summer. Within the investigated reach, the mean annual discharge is about 7 m3/s, the bed-load
sediment is dominated by coarse gravel (2–6.3 cm), and the average gradient is about 0.4% [64].
The entire catchment area measures 590 km2 and the mean channel width is approximately 20 m.
Although the longitudinal continuum of the Pielach River is disrupted by weirs built for hydropower
use and engineering measures, the river has retained some of its natural self-forming morphological
characteristics like periodically inundated sidearms, dynamic gravel bars, large woody debris, small
oxbows, etc., within the study area [65].

Figure 2. Visualisation of the VQ-840-G mounted on a drone in operation. The scan pattern on the
ground is indicated by the green ellipse. The inserts show typical pulse shapes of the outgoing laser
pulse and the echo return when measuring into the water.

4. Materials And Methods

In this Section, the study area is introduced in Section 4.1, the existing datasets are presented in
Section 4.2, and the employed data processing methods are detailed in Section 4.3.

4.1. Study Area

The study area Neubacher Au (N 48◦12’50”, E 15◦22’30”; WGS 84) is located in the eastern
part of Austria at the tail-water of the pre-Alpine Pielach River, a right-side tributary of the Danube
(cf. Figure 3). The study area is part of the conservation area Niederösterreichische Alpenvorlandflüsse
(Area code: AT1219000) of the European Union’s Natura2000 program. The river is classified as
riffle-pool type [63] with a maximum depth of approximately 3 m and exhibits a pluvio-nival regime
with expected discharge peaks during snowmelt in winter/spring and torrential rain in summer. Within
the investigated reach, the mean annual discharge is about 7 m3/s, the bed-load sediment is dominated
by coarse gravel (2–6.3 cm), and the average gradient is about 0.4% [64]. The entire catchment area
measures 590 km2 and the mean channel width is approximately 20 m. Although the longitudinal
continuum of the Pielach River is disrupted by weirs built for hydropower use and engineering
measures, the river has retained some of its natural self-forming morphological characteristics like
periodically inundated sidearms, dynamic gravel bars, large woody debris, small oxbows, etc., within
the study area [65].
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Figure 3. Study area Neubacher Au; (a) overview map of Austria with study area marked as a red
circle; (b) orthophoto of the study area overlaid with flight trajectories (circles) and detailed analysis
units (rectangles).

The floodplain to the north of the river features around a dozen groundwater supplied ponds
(cf. right side of Figure 3). The bottom of the ponds is covered with a layer of mud, which is constantly
stirred up by the fish population (e.g., Cyprinidae). This causes turbidity resulting in a Secchi depth of
generally less than 2 m. With an overall depth of around 5–6 m, the ponds are ideal water bodies for
testing the depth performance of bathymetric LiDAR sensors with a nominal depth performance of
1.5–2 SD.

Since 2013, the study area has been repeatedly captured with various topo-bathymetric laser
scanners mounted on manned aircraft for monitoring river morphodynamics and instream habitats [4]
as well as with UAV-borne topographic sensors for detailed analysis of the riparian area [66,67]. At the
same site, first performance evaluations of a UAV-borne bathymetric laser range finder were carried
out [61]. All these articles, as well as the cited literature therein, provide further details about the
study area.

4.2. Datasets

In order to assess the accuracy potential and depth performance of the novel topo-bathymetric
full-waveform laser scanner, two field campaigns were conducted on 28 August 2019, and 4
September 2019. The two dates are referred to as day 1 and day 2 in the following. On both
days, the topo-bathymetric UAV-scanner was operated on a RiCOPTER-M octocopter platform and
collected data of the ponds (flight lines marked with red dots in Figure 3) and of an approximately
650 m section of the Pielach River (orange dots).

For comparison and evaluation purposes, two additional LiDAR datasets were captured with the
topographic UAV laser scanner VUX1-UAV mounted on a RiCOPTER UAV platform on day 2 and
with the VQ-880-G sensor installed on a Diamond DA42 aircraft on 3 September 2019. The respective
flight lines are plotted in Figure 3 (VUX1-UAV=blue dots, VQ-880-G=black dots). Both datasets served
for cross-validation of the topo-bathymetric UAV-LiDAR data.
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Both UAV-based sensor systems operate RGB cameras along with the laser scanners. While the
VQ-840-G carries a Sony α7R III (ILCE-7RM3) full-frame mirror-less interchangeable lens camera for
capturing 42 MPix RGB nadir images, the VUX1-UAV is equipped with two oblique looking 24 MPix
Sony α6000 (ILCE-6000) APS-C format cameras matching the 230◦-FoV of the VUX1 sensor. The RGB
images of the latter served as basis for the orthophoto shown in Figure 3. The α7R images, in turn,
were used for evaluating the visual depth of the different water bodies during LiDAR data acquisition.
Due to technical problems, α7R images were only available for the pond flight lines on day 1 but not
for the river flight lines.

The turbidity of the Pielach river depends on the flow velocity and discharge within the entire
590 km2 catchment area. Figure 4a shows the annual mean daily discharge together with the lines for
mean discharge (MQ = 7.09 m3s−1) and the one-year flood peak (HQ1 = 106.5 m3s−1), respectively.
Discharges beyond the MQ-level only occurred during winter and spring, while summer 2019 was
extremely dry with discharges around 2.5 m3s−1 throughout the entire summer. In the days before
the data acquisitions, typical summer thunderstorms entailed contamination with suspended debris
(cf. Figure 4b) and, thus, a high turbidity level of the river water. While this is generally sub-optimal
for laser bathymetry, these conditions also provided a chance to study the depth performance of
the scanner and the accuracy implications within the available small range of water depths (Pielach
river: ≈3 m, ponds: ≈5–6 m).
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Table 2 summarizes the in-situ SD and turbidimeter measurements. Secchi depths were measured
with a 30 cm black-and-white disk and for measurement of the concentration of suspended particles,
a Hach 2100Q portable turbidimeter was employed. From both the SD- and turbidimeter values
documented in Table 2, it can be stated that (i) pond FP2 tends to be more turbid than FP1; and (ii)
turbidity was generally higher for day 2 compared to day 1. This also relates to the higher discharge
peak of 15.7 m3s−1 caused by the thunderstorm event on 29 August before the second data acquisition
day compared to the lower peak of 10.5 m3s−1 resulting from the rain event on 24 August before day 1
(cf. Figure 4b).

Figure 4. Discharge curves for study area Neubacher AU; (a) mean daily discharge for 2019 (blue)
together with nominal mean discharge (MQ, red) and one-year flood peak (HQ1, green); (b) minimum,
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Table 2 summarizes the in-situ SD and turbidimeter measurements. Secchi depths were measured
with a 30 cm black-and-white disk and for measurement of the concentration of suspended particles,
a Hach 2100Q portable turbidimeter was employed. From both the SD- and turbidimeter values
documented in Table 2, it can be stated that (i) pond FP2 tends to be more turbid than FP1; and (ii)
turbidity was generally higher for day 2 compared to day 1. This also relates to the higher discharge
peak of 15.7 m3s−1 caused by the thunderstorm event on 29 August before the second data acquisition
day compared to the lower peak of 10.5 m3s−1 resulting from the rain event on 24 August before day 1
(cf. Figure 4b).

Table 2. Secchi depth and turbidity measurements.

Measuring Site Day Secchi Depth [m] Turbidimeter [NTU]

FP1 1 1.40 4.35
FP2 1 1.00 4.52
R1 1 1.10 7.90
FP1 2 0.90 9.74
R1 2 0.90 13.4
R2 2 0.70 -
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During data acquisition, different scanner settings were tested w.r.t. their implications on depth
performance, accuracy potential, and spatial resolution. As stated in Section 3, the bathymetric
UAV-laser scanner features both a user-definable laser beam divergence and receiver iFoV. The prior is
responsible for eye-safe operation and was set to 2 mrad for all tests, while the PRR, flying altitude,
and receiver iFoV were varied. Table 3 summarizes all parameter combinations. In total, the entire test
procedure entailed six flights on day 1 and three flights on day 2. The overall duration of each flight
amounted to 13 minutes including data acquisition, take-off, initialization of the GNSS/IMU navigation
system, and landing. The highest possible PRR of 200 kHz could not be used due to the high power
consumption of this scan mode.

Table 3. Flight mission parameters.

Sensor Area Day Altitude [m] PRR [kHz] Beam div. [mrad] Rec. iFoV [mrad] Camera

VQ-840-G Pond 1 50 50 2.0 6.0 α7R
–| |– Pond 1 65 50 2.0 6.0 α7R
–| |– Pond 1 75 50 2.0 6.0 α7R
–| |– Pond 1 55 100 2.0 6.0 α7R
–| |– Pond 1 75 100 2.0 6.0 α7R
–| |– Pond 1 50 50 2.0 18.0 α7R
–| |– Pond 1 75 50 2.0 18.0 α7R

VQ-840-G River 1 50 50 2.0 6.0 —
–| |– River 1 75 50 2.0 6.0 —

VQ-840-G River 2 55 50 2.0 18.0 α7R
–| |– River 2 75 50 2.0 18.0 α7R

VUX1-UAV River 2 75 550 0.5 4.5 α600

VQ-840-G River 2 650 550 1.3 7.0 —

For validation of the scan data, several reference targets were positioned in the pond and river.
To evaluate the effective penetration depth of the bathymetric UAV-scanner, four white-colored metal
plates of 1 × 1 m2 size were lowered into pond FP1 on day 1. Each plate was floating in an individual
constant water depth, with depths varying from 1.1 m to 3.1 m, corresponding to 0.8–2.2 SD. The floating
of the plates was realized by attaching ropes to the four corners of each plate and mounting styrofoam
buoyancy bodies to the other end of the ropes. Figure 5 shows the four plates in one of the α7R images
during data acquisition on day 1.
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To assess the bathymetric accuracy, an array of three parallel profiles with 6–7 checkerboard
targets (i.e., black-and-white disks of 20 cm or 30 cm diameter, respectively) were anchored in the
gravel riverbed and measured with a Leica TS16 total station on day 1. The approximate position of
the reference target field is marked as R1 in Figure 3. The 19 reference targets exhibited a minimum,
mean, and maximum depth of 0.33 m, 1.44 m, and 2.15 m, respectively. Snorkeling was employed for
fixing the checkerboard targets in the riverbed as well as positioning the measurement pole in the
target’s center hole. This was especially necessary for all targets featuring a depth of more than 1 m.
As a guide for both installation and measurement, a rope was fixed on both sides of the riverbank. The
photographs in Figure 6c–e illustrate the setup of the reference target field.

Figure 6. Photo documentation of data acquisition on 27 August (day 1); (a) Pielach river with quadratic
black-and-white checkerboard ground control point target in the foreground; (b) topo-bathymetric
UAV laser scanner RIEGL VQ-840-G during data capture; (c) UAV-image of field of submerged circular
black-and-white checkerboard targets aligned with rope fixed between both riverbanks; (d) terrestrial
photo of reference target field, most of the targets are not visible with the naked eye due to the
limited Secchi depth of 1.1 m, yellow wooden plates in fore- and background: saddle roof control
patches for absolute orientation of laser scans; (e) total station Leica TS16 in front of reference field and
control patches

Furthermore, Figure 6a shows one of the black-and-white checkerboard targets used as ground
control points (GCP) for absolute orientation of the image block as well as the laser scans. In total,
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α7R; acquisition: day 1; depth of plate from left to right: 1.1 m, 1.9 m, 2.6 m, 3.1 m.
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To assess the bathymetric accuracy, an array of three parallel profiles with 6–7 checkerboard
targets (i.e., black-and-white disks of 20 cm or 30 cm diameter, respectively) were anchored in the
gravel riverbed and measured with a Leica TS16 total station on day 1. The approximate position of
the reference target field is marked as R1 in Figure 3. The 19 reference targets exhibited a minimum,
mean, and maximum depth of 0.33 m, 1.44 m, and 2.15 m, respectively. Snorkeling was employed
for fixing the checkerboard targets in the riverbed as well as positioning the measurement pole in the
target’s center hole. This was especially necessary for all targets featuring a depth of more than 1 m.
As a guide for both installation and measurement, a rope was fixed on both sides of the riverbank.
The photographs in Figure 6c–e illustrate the setup of the reference target field.

Furthermore, Figure 6a shows one of the black-and-white checkerboard targets used as ground
control points (GCP) for absolute orientation of the image block as well as the laser scans. In total,
25 of theses quadratic targets (edge length: 30 cm) were distributed within the entire study area and
measured with a Spectra Precision SP80 GNSS receiver in real-time kinematic (RTK) mode based
on correction data obtained from the local GNSS service provider EPOSA. The GCPs feature a total
horizontal and total vertical uncertainty, respectively, of less than 2 cm (1σ). While GCPs are the first
choice for absolute orientation of an image block, laser scanning requires planar control patches. Two
A-shaped saddle roofs composed of wooden formwork panels, one on each side of the river in close
vicinity to the reference target field, served as the basis for the absolute orientation of the laser flight
block (cf. Figure 6d,e). The data captured on day 2 were only used for orthophoto generation and
cross-validation on dry land due to the very high turbidity on this day. The topo-bathymetric LiDAR
data of day 1, in turn, serve as a basis of all subsequently described data processing steps and the
presented results.
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black-and-white checkerboard ground control point target in the foreground; (b) topo-bathymetric
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Figure 6. Photo documentation of data acquisition on 27 August (day 1); (a) Pielach river with quadratic
black-and-white checkerboard ground control point target in the foreground; (b) topo-bathymetric
UAV laser scanner RIEGL VQ-840-G during data capture; (c) UAV-image of field of submerged circular
black-and-white checkerboard targets aligned with rope fixed between both riverbanks; (d) terrestrial
photo of reference target field, most of the targets are not visible with the naked eye due to the
limited Secchi depth of 1.1 m, yellow wooden plates in fore- and background: saddle roof control
patches for absolute orientation of laser scans; (e) total station Leica TS16 in front of reference field and
control patches.
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4.3. Data Processing Methods

In the following, the general workflow including preprocessing, refraction correction of the
raw LiDAR point clouds, assessment of accuracy and spatial resolution, and evaluation of depth
performance is summarized. For most of the processing steps, the scientific laser scanning software
OPALS [68] was employed.

4.3.1. Preprocessing

Data preprocessing comprised the following steps:

• Post-processing of raw GNSS and total station data and calculation of 3D coordinates of ground
control points and checkpoints using Leica software

• Aero-triangulation of all captured images and derivation of digital orthophotos using
Pix4DMapper [20]

• Post-processing of flight trajectory data and derivation of a Smoothed Best Estimate Trajectory
(SBET) [69] using observations from the installed permanent reference station

• Direct georeferencing of the laser echoes originating from online waveform processing using the
manufacturer’s software RiPROCESS

• Geometric calibration of flight block via strip adjustment [70,71]. The ICP-based calibration
procedure included estimation of mounting parameters (boresight angles, lever arm) as well
as additional trajectory corrections per strip. For each strip, a constant offset (X, Y, Z, roll,
pitch, yaw) was estimated to further improve the strip fitting precision. Consideration of the
terrestrially measured ground control points and saddle roof models (cf. Figure 6a,d) in the
strip adjustment ensured optimal absolute orientation of the flight block and consistency to the
(submerged) checkpoints.

• Quality check of the resulting 3D point cloud, calculation of strip-wise DEMs, and derivation
of pairwise DEM of Difference models including statistical analysis of the resulting strip height
differences in smooth areas [72]

• Derivation of strip-wise water surface models. First, approximate water levels were derived
interactively with the editing tool qpals (i.e., QGIS plugin for OPALS software) based on the
approach described in [73]. This initial water surface model served as the basis for selecting
potential water surface points as seed points for region growing segmentation. In the last step,
all classified water surface points were used to derive the final strip-wise water surface model
as a regular 50 cm grid using moving least squares interpolation. The resulting water surface
models capture the low-frequency contributions of the wave-induced water surface shape while
smoothing out higher frequency parts.

• Refraction correction of the raw laser echoes according to the Snell’s law [74]. Based on a recent
publication [75], a refraction coefficients of n = 1.33 was employed for beam deflection whereas
coefficients of n >= 1.36 were used for round-trip-time correction.

4.3.2. Evaluation

1. Precision: Assessment of precision comprised evaluation of measurement noise and geometric
consistency of overlapping strips.

• Measurement noise: Assessment of the sensor’s noise level was carried out at smooth surfaces
(e.g., asphalt) within the individual strips by estimating a best-fitting plane for each point of
an appropriate surface patch via least-squares adjustment based on the k nearest neighbor
points (k = 12) within a maximum search radius of 50 cm. For surfaces with known planar
geometry, the residuals (i.e., point-to-plane normal distances) provide an estimate of the
sensor’s ranging precision (cf. Figure 7a).
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• Strip fitting precision: The height deviations in smooth parts (cf. Figure 7b) of overlapping
flight strips provide an estimate of the overall quality of the sensor system including
GNSS/IMU navigation device, LiDAR unit, and scanning mechanism. First, strip-wise DEMs
were interpolated using moving least squares interpolation, and subsequently, the height
discrepancies in smooth surface parts were visualized in color-coded maps and statistically
analyzed (histograms, standard statistics). For the quantification of bias and dispersion,
robust statistics (bias: median, dispersion: σMAD= Median of Absolute Differences) are
employed. Separate analysis of dry land and submerged areas enable a distinction between
effects stemming from sensor calibration and flight block orientation (land) and effects
connected to water surface estimation and refraction correction.

2. Accuracy: estimation of absolute accuracy relies on a comparison of the laser derived point
cloud with the independently captured reference points measured as point-to-plane distances
(cf. Figure 7c). For each reference point, the k-nearest laser points (k = 8) within a maximum
search radius of 15 cm served as input for fitting a tilted plane via least-squares adjustment.
The normal distance between the reference point and the plane constitutes an objective measure
of overall accuracy as it comprises all possible error sources.

3. Depth performance: Quantifying the achieved maximum depth penetration is accomplished
via a comparison of the known depths of the metal plates with the depths derived from the
corresponding laser returns. In case the plate was discernible, the points in the center of the plate
were selected and served as the basis for the median-based estimation of the plate’s representative
height. The process was repeated for all strips containing laser echoes of the plate also considering
the individual sensor settings of the respective strip (beam divergence, iFoV, flying altitude).

4. Spatial resolution: the theoretical resolution derived from the flight mission and sensor parameters
(beam divergence, pulse repetition and scan rate, flying altitude and speed), is confronted with the
actual resolution derived from the captured laser points. The studied objects are a rope spanned
across the river and the right-angle shaped wooden plates (cf. Figure 6d). For the linear feature,
all neighboring laser points are projected to the rope axis allowing analysis of the lateral distances
(cf. Figure 7d) and for the roof-shaped feature, the shape of the point cloud is analyzed in the
vicinity of the crest line, where the point cloud shows substantial rounding of the sharp edge.
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5. Results

In this section, we present the quality evaluation results separated into precision (Section 5.1),
accuracy (Section 5.2), depth performance (Section 5.3), and spatial resolution (Section 5.4).

5.1. Precision

5.1.1. Measurement Noise

Figure 8 shows five selected surface patches (asphalt: A1, A2, gravel: G1, G2, and meadow: M1).
For each patch we provide the orthophoto and DEM (color-coded height map superimposed with 1 cm
contour lines) in the first two rows. The last row exhibits a plot of the local interpolation error (σ0).
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In case of a sufficiently planar surface, σ0 quantifies the measurement noise (reproducibility). This is
especially the case for A1. All other patches exhibit small scale topographic variations (gravel, G1 and
G1) or undulations due to grass vegetation (A2, M1).
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of 18 mrad. For the mixed asphalt/grass patch A2, increasing the flying altitude from 50 m to 70 m
does not effect the precision (mean: ≈4 mm, median: ≈3 mm). In both cases, the higher mean value
reflects the higher variations within the grass vegetation, while the more robust median can be seen as
representative for the dominant asphalt area. For all other patches, the micro-relief leads to increased
σ0 values, which are in the range of 1 cm for the gravel patches (G1, G2) and around 5 mm for the
meadow patch M1. All reported values are below 15 mm, the precision value reported in the sensor’s
spec sheet [9].
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Figure 8. Visualization of measurement noise for selected 5 × 5 m2 surface patches; A1: asphalt, A2:
asphalt and grass, G1/G2: gravel bank, M1: meadow; first row: digital orthophoto, second row: color
coded height map superimposed with 1 cm contour lines, third row: color coded map of local surface
roughness (i.e., σ0 [m]).

Table 4 summarizes the quantitative results. For the asphalt dominated patches Table 4 also
documents the noise level variations depending on the mission parameters (flying altitude, iFoV).
For A1, σ0 is below 2 mm for a narrow iFoV of 6 mrad and slightly higher (3.5 mm) for the wider iFoV
of 18 mrad. For the mixed asphalt/grass patch A2, increasing the flying altitude from 50 m to 70 m
does not effect the precision (mean: ≈4 mm, median: ≈3 mm). In both cases, the higher mean value
reflects the higher variations within the grass vegetation, while the more robust median can be seen as
representative for the dominant asphalt area. For all other patches, the micro-relief leads to increased
σ0 values, which are in the range of 1 cm for the gravel patches (G1, G2) and around 5 mm for the
meadow patch M1. All reported values are below 15 mm, the precision value reported in the sensor’s
spec sheet [9].

Table 4. Evaluation of measurement noise reported as local σ0 (mean, median, and interquartile
range (IQR)).

Patch Altitude [m] iFoV [mrad] Mean [mm] Median [mm] IQR [mm]

A1 65 6 1.9 1.8 0.7
A1 50 18 3.4 3.3 1.4
A2 50 6 4.4 2.3 4.7
A2 50 18 4.2 3.1 3.6
A2 70 18 3.9 2.9 3.1
G1 50 6 7.6 6.9 4.5
G2 50 6 8.2 7.4 3.9
M1 50 6 4.6 3.2 2.1
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5.1.2. Strip Fitting Precision

Figure 9 shows a color-coded map of strip height differences in smooth surface areas on top of
a DSM map of the entire UAV-LiDAR flight block (color-coded elevation map superimposed with
shaded relief map). The dominant white color tones of the strip differences indicate deviations of less
than 2 cm and confirm the good fitting precision of the flight strips. The histogram of the strip height
differences plotted in the lower-left corner of Figure 9 exhibits a symmetric shape. The distribution
is unbiased (mean: 1 mm, median: 0 mm) with a dispersion of 9 mm (σMAD). Occasional strip
differences in vegetated areas, which have passed the automatic smoothness filter, are responsible for
the comparably high standard deviation of 10 cm. 96% of the strip height differences are within a range
of −24 mm to +25 mm, which further underlines the fidelity of the entire sensor system including
navigation device, laser ranging unit, and scanner.
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Table 4. Evaluation of measurement noise reported as local σ0 (mean, median, and interquartile
range (IQR)).

Patch Altitude [m] iFoV [mrad] Mean [mm] Median [mm] IQR [mm]

A1 65 6 1.9 1.8 0.7
A1 50 18 3.4 3.3 1.4
A2 50 6 4.4 2.3 4.7
A2 50 18 4.2 3.1 3.6
A2 70 18 3.9 2.9 3.1
G1 50 6 7.6 6.9 4.5
G2 50 6 8.2 7.4 3.9
M1 50 6 4.6 3.2 2.1
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plotted in the lower-left corner of Figure 9 exhibits a symmetric shape. The distribution is unbiased
(mean: 1 mm, median: 0 mm) with a dispersion of 9 mm (σMAD). Occasional strip differences in
vegetated areas, which have passed the automatic smoothness filter, are responsible for the comparably
high standard deviation of 10 cm. 96% of the strip height differences are within a range of −24 mm to
+25 mm, which further underlines the fidelity of the entire sensor system including navigation device,
laser ranging unit, and scanner.
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Figure 9. Color coded mosaic of strip height differences, background: LiDAR DSM (color coded
elevation map superimposed with shaded relief map), lower left: histogram of height differences in
smooth surface areas, lower right: color bar for strip differences.

5.2. Accuracy Assessment

The absolute accuracy, measured as signed point-to-plane distances between terrestrially measured
reference points and LiDAR-derived planes are plotted in Figure 9 (labeled red dots) and Figure 10 for
land and underwater, respectively.

On the land side, the deviations are mainly below 3 cm, with only two checkpoints at the western
end of the flight block exhibiting deviations of ≈5 cm. The poorer absolute fitting accuracy in this
part of the block is due to the unavailability of appropriate laser control patches in this area of the
block, where absolute orientation was of minor concern for the conducted evaluation. Control patches
(wooden saddle roof formwork constructions) were located in the vicinity of the river section featuring
the submerged reference targets (cf. Figure 6c–e). In this area utmost accuracy of the absolute block
orientation was crucial, and the deviations in this region are 2 cm or better. Table 5 summarize
the deviations on dry land for selected reference points on the saddle roof shaped control patches
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(CP, cf. blue dots in Figure 9) and on the water-land-boundary (WLB, cf. black dots in Figure 9).
The deviations are generally below 1 cm (cf. points 1001–1020, 2001–2010, 108–110) and only the
points on the ridge of the control patches (1022–1024, 2010–2012) exhibit larger, systematically negative
deviations of more than 3 cm. This will be further discussed in Sections 5.4 and 6.

Table 5. Accuracy assessment for reference targets on land; selected point-to-plane distances [m]
between reference points and LiDAR derived planes.

ID Area Dev. ID Area Dev. ID Area Dev.

1001 CP(W) −0.006 2001 CP(E) 0.013 108 WLB −0.005
1005 CP(W) −0.007 2003 CP(E) 0.001 109 WLB −0.008
1010 CP(W) 0.008 2005 CP(E) −0.006 110 WLB 0.006
1016 CP(W) −0.004 2008 CP(E) −0.002
1020 CP(W) −0.006 2010 CP(E) −0.035
1021 CP(W) −0.031 2011 CP(E) −0.045
1022 CP(W) −0.034 2012 CP(E) −0.079
1023 CP(W) −0.033 2013 CP(E) 0.003
1024 CP(W) −0.036 2014 CP(E) −0.001

Figure 10 shows the results of the bathymetric accuracy assessment for all 20 submerged reference
targets. The upper left plot shows the locations of the reference targets, arranged in three cross-sections,
together with the point labels of the middle section, for which the deviations are presented numerically
in Table 6 together with the respective water depth. For refraction correction of the raw laser echoes, we
strictly used a refractive index of n = 1.33 for beam deflection (i.e., angular component). For run-time
correction, we varied the coefficient from n = 1.33 to n = 1.36 according to literature [75,76] and also
beyond that till n = 1.42. Table 6 shows that the use of standard refraction coefficients (1.33, 1.36) leads
to a systematic, depth-dependent, negative bias indicated by the red color tones. The respective columns
in Table 6 also clearly show the depth-dependent increase of the deviations reaching 7.8 cm for the
deepest point 206 (water depth = 2.1 m) for refractive index of 1.36. Due to this unexpected systematic
effect, we first double-checked the accuracy of the water surface, but did not find any evidence that the
modeled water surface model is responsible for the bias (cf. deviations water-land-boundary points in
Table 5 and the cross-sectional plot in Figure 11). In addition, we performed refraction correction with
different software tools (RiPROCESS, OPALS) leading to consistent results. We, therefore, performed
tests with refraction coefficients beyond n = 1.36 and found that the bias entirely disappears for
n = 1.42. This can be seen from the white color tones of the respective plots in Figure 10 as well as
from the underlined values in Table 6.
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Figure 10. Color coded point-to-plane distances [m] between check points and LiDAR derived planes,
run-time correction based on refraction coefficients ranging from n = 1.33 to n = 1.42

Table 6. Accuracy assessment for underwater reference targets; selected point-to-plane distances
[m] between reference points and LiDAR derived planes using different refraction coefficients for
run-time correction.

ID Depth n = 1.33 n = 1.36 n = 1.38 n = 1.40 n = 1.42

201 0.395 −0.006 0.004 0.009 0.014 0.016
202 0.934 −0.048 −0.027 −0.016 −0.001 0.011
203 1.260 −0.088 −0.061 −0.043 −0.026 −0.009
204 1.425 −0.094 −0.066 −0.045 −0.026 −0.006
205 1.881 −0.098 −0.069 −0.041 −0.019 0.000
206 2.097 −0.123 −0.078 −0.050 −0.029 0.001
207 1.443 −0.094 −0.063 −0.039 −0.022 −0.006

Figure 11 shows a vertical section of the refraction corrected LiDAR point cloud (n = 1.36) colored
by signal amplitude overlaid with (i) the reference points (magenta) and (ii) the modelled water surface
(black). The saddle roof on the right (i.e., western) embankment shows very good agreement with the
reference points whereas the submerged reference targets lie systematically above the LiDAR point
cloud of the river bottom.
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Figure 11. Vertical section of refraction corrected 3D point cloud (n = 1.36) of strip 105334 colored by
signal amplitude; larger magenta dots: checkpoints, black: modelled water surface.

5.3. Depth Performance

To evaluate the sensor’s depth performance, four white metal plates were lowered into pond FP1
at the eastern border of the flight block (cf. Figure 5) in depths of 1.1–3.1 m corresponding to 0.8–2.2 SD.
The plates were captured multiple times with different sensor settings (PRR, altitude, iFoV). Figure 12
depicts the 3D point clouds of two selected strips (063116, 093054), both flown 50 m above ground
level with a PRR of 50 kHz, but with a different iFoV of 6 mrad and 18 mrad, respectively. Figure 12

Figure 10. Color coded point-to-plane distances [m] between check points and LiDAR derived planes,
run-time correction based on refraction coefficients ranging from n = 1.33 to n = 1.42.
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Table 6. Accuracy assessment for underwater reference targets; selected point-to-plane distances
[m] between reference points and LiDAR derived planes using different refraction coefficients for
run-time correction.

ID Depth n = 1.33 n = 1.36 n = 1.38 n = 1.40 n = 1.42

201 0.395 −0.006 0.004 0.009 0.014 0.016
202 0.934 −0.048 −0.027 −0.016 −0.001 0.011
203 1.260 −0.088 −0.061 −0.043 −0.026 −0.009
204 1.425 −0.094 −0.066 −0.045 −0.026 −0.006
205 1.881 −0.098 −0.069 −0.041 −0.019 0.000
206 2.097 −0.123 −0.078 −0.050 −0.029 0.001
207 1.443 −0.094 −0.063 −0.039 −0.022 −0.006

Figure 11 shows a vertical section of the refraction corrected LiDAR point cloud (n = 1.36) colored
by signal amplitude overlaid with (i) the reference points (magenta) and (ii) the modelled water surface
(black). The saddle roof on the right (i.e., western) embankment shows very good agreement with the
reference points whereas the submerged reference targets lie systematically above the LiDAR point
cloud of the river bottom.
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5.3. Depth Performance

To evaluate the sensor’s depth performance, four white metal plates were lowered into pond FP1
at the eastern border of the flight block (cf. Figure 5) in depths of 1.1–3.1 m corresponding to 0.8–2.2 SD.
The plates were captured multiple times with different sensor settings (PRR, altitude, iFoV). Figure 12
depicts the 3D point clouds of two selected strips (063116, 093054), both flown 50 m above ground
level with a PRR of 50 kHz, but with a different iFoV of 6 mrad and 18 mrad, respectively. Figure 12

Figure 11. Vertical section of refraction corrected 3D point cloud (n = 1.36) of strip 105334 colored by
signal amplitude; larger magenta dots: checkpoints, black: modelled water surface.

5.3. Depth Performance

To evaluate the sensor’s depth performance, four white metal plates were lowered into pond FP1
at the eastern border of the flight block (cf. Figure 5) in depths of 1.1–3.1 m corresponding to 0.8–2.2 SD.
The plates were captured multiple times with different sensor settings (PRR, altitude, iFoV). Figure 12
depicts the 3D point clouds of two selected strips (063116, 093054), both flown 50 m above ground
level with a PRR of 50 kHz, but with a different iFoV of 6 mrad and 18 mrad, respectively. Figure 12
reveals that the wider iFoV generally delivers more points on the detectable plates P1-P3 and the plates
appear larger than the nominal size of 1 m2. The signal amplitude is higher for the wider 18 mrad iFoV,
indicated by the more reddish color tones, as more backscattered laser light reaches the detector.
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appear larger than the nominal size of 1 m2. The signal amplitude is higher for the wider 18 mrad iFoV,
indicated by the more reddish color tones, as more backscattered laser light reaches the detector.

Figure 12. Perspective view of 3D point points of lowered metal plates P1-P4 colored by signal
amplitude [dB]. upper row: strip 063116, iFoV: 6 mrad, lower row: strip 093054, iFoV: 18 mrad.

For the same strips, Table 7 provides a quantitative summary. Table 7 documents that plates P1–P3
could be detected in the point clouds, but not P4 at a depth of 3.11 m or 2.2 SD, respectively. This holds
for the strip flown with a 6 mrad iFoV as well as for the strip with the wider 18 mrad iFoV. As expected,
the signal amplitude level of the 18 mrad iFoV is generally higher for all plates, and at P3 the receiver
still measures 14.5 dB. This, however, was not enough to identify P4 located just beyond the 2 SD
limit. The relative depth of P3 amounts to 1.94 SD, thus, slightly below the sensor specification of 2 SD.
Furthermore, the nominal-actual depth comparison reveals the same systematic depth overestimation
as already reported in Section 5.2.

Table 7. Depth performance assessment.

Plate Strip iFoV Altitude Nominal Depth Actual Depth Deviation rel. Depth Amplitude
[m] [m] [m] [m] [SD] [dB]

P1 063116 6 50 1.16 1.18 ± 0.01 0.02 0.84 26.8
P2 063116 6 50 1.99 2.03 ± 0.02 0.04 1.45 17.6
P3 063116 6 50 2.64 2.71 ± 0.01 0.07 1.94 7.8
P4 063116 6 50 3.11 - - - -

P1 093054 18 50 1.16 1.18 ± 0.01 0.01 0.84 29.7
P2 093054 18 50 1.99 2.03 ± 0.02 0.04 1.45 22.7
P3 093054 18 50 2.64 2.74 ± 0.01 0.10 1.94 14.5
P4 093054 18 50 3.11 —- —- —- —-

Figure 13 further illustrates the impact of the user-definable receiver iFoV in terms of depth
penetration at a near shore transect of pond FP1. In both cases, the point clouds were captured from
a flying altitude of 50 m but with a different iFOV (strip 063419: brown, 6 mrad; strip 093410: blue,
18 mrad). The larger iFoV leads to a higher depth penetration. In the depicted case of a freshwater
pond with an SD of 1.4 m at the time of data acquisition, the maximum depth is about 2.67 m with the
6 mrad iFoV and 3.07 m using the larger 18 mrad iFOV, corresponding to 1.9 SD and 2.2 SD, respectively.
The gain in the presented case is 40 cm (0.3 SD) or 15%, respectively. Thus, the manufacturer’s

Figure 12. Perspective view of 3D point points of lowered metal plates P1-P4 colored by signal
amplitude [dB]. upper row: strip 063116, iFoV: 6 mrad, lower row: strip 093054, iFoV: 18 mrad.

For the same strips, Table 7 provides a quantitative summary. Table 7 documents that plates P1–P3
could be detected in the point clouds, but not P4 at a depth of 3.11 m or 2.2 SD, respectively. This holds
for the strip flown with a 6 mrad iFoV as well as for the strip with the wider 18 mrad iFoV. As expected,
the signal amplitude level of the 18 mrad iFoV is generally higher for all plates, and at P3 the receiver
still measures 14.5 dB. This, however, was not enough to identify P4 located just beyond the 2 SD
limit. The relative depth of P3 amounts to 1.94 SD, thus, slightly below the sensor specification of 2 SD.
Furthermore, the nominal-actual depth comparison reveals the same systematic depth overestimation
as already reported in Section 5.2.

Table 7. Depth performance assessment.

Plate Strip iFoV Altitude Nominal Depth Actual Depth Deviation rel. Depth Amplitude
[m] [m] [m] [m] [SD] [dB]

P1 063116 6 50 1.16 1.18 ± 0.01 0.02 0.84 26.8
P2 063116 6 50 1.99 2.03 ± 0.02 0.04 1.45 17.6
P3 063116 6 50 2.64 2.71 ± 0.01 0.07 1.94 7.8
P4 063116 6 50 3.11 - - - -

P1 093054 18 50 1.16 1.18 ± 0.01 0.01 0.84 29.7
P2 093054 18 50 1.99 2.03 ± 0.02 0.04 1.45 22.7
P3 093054 18 50 2.64 2.74 ± 0.01 0.10 1.94 14.5
P4 093054 18 50 3.11 —- —- —- —-

Figure 13 further illustrates the impact of the user-definable receiver iFoV in terms of depth
penetration at a near shore transect of pond FP1. In both cases, the point clouds were captured from
a flying altitude of 50 m but with a different iFOV (strip 063419: brown, 6 mrad; strip 093410: blue,
18 mrad). The larger iFoV leads to a higher depth penetration. In the depicted case of a freshwater
pond with an SD of 1.4 m at the time of data acquisition, the maximum depth is about 2.67 m with the
6 mrad iFoV and 3.07 m using the larger 18 mrad iFOV, corresponding to 1.9 SD and 2.2 SD, respectively.
The gain in the presented case is 40 cm (0.3 SD) or 15%, respectively. Thus, the manufacturer’s
specification of 2 SD was verified in the experiment. The wider iFoV also marginally increases the
measurement noise, which can be seen from the higher amount of clutter points in Figure 13 as well as
from Table 4 (A1, median). This aspect is further discussed in Section 5.4.
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Figure 13. Vertical section of refraction corrected 3D point clouds of strip 063419 (brown, iFoV:
6 mrad) and 093410 (blue, iFoV: 18 mrad); flying altitude: 50 m; refraction coefficient used for run-time
correction: (n = 1.36).

5.4. Spatial Resolution

The spatial resolution of any LiDAR system is limited by the size of footprint diameter, which,
in turn, is a function of the beam divergence γ and the measurement range R. In this experiment,
a constant beam divergence of 2 mrad was employed to ensure eye safety at the standard flying altitude
of 50 m. The footprint diameter D calculates to D = R γ, i.e., 10 cm for the standard flight setup in
our experiment.

To evaluate the actual footprint diameter, two suitable objects have been chosen and analyzed in
detail, namely (i) a linear object and (ii) a sharp angle. Figure 14 shows the 3D point clouds of the study
objects in a perspective view (a-c) and a sectional view (d) colorized by signal amplitude. The linear
object (rope) does not appear as a confined line of points but rather as a band featuring a width of
30 cm, thus, 3 times the theoretical footprint size.

Figure 14. Empirical assessment of spatial resolution; top row: rope spanned across river, bottom row:
gable roof shaped control patch; (a–c) perspective view of 3D point cloud; (d) vertical section; points
colored by signal amplitude [dB].

At the ridgeline of the gable roof-shaped control patch, the points do not form a sharp edge but
appear as a circular cylinder featuring a diameter of 20 cm as the finite laser footprint illuminates both
roof sides. This effect is responsible for the larger deviations for all control points along the ridgeline
reported in Section 5.2 (cf. Table 5, e.g., point 1022) while all control points, for which the laser footprint
is entirely on one side of the wooden panel, exhibit deviations below 1 cm.

Figure 13. Vertical section of refraction corrected 3D point clouds of strip 063419 (brown, iFoV: 6 mrad)
and 093410 (blue, iFoV: 18 mrad); flying altitude: 50 m; refraction coefficient used for run-time correction:
(n = 1.36).

5.4. Spatial Resolution

The spatial resolution of any LiDAR system is limited by the size of footprint diameter, which,
in turn, is a function of the beam divergence γ and the measurement range R. In this experiment,
a constant beam divergence of 2 mrad was employed to ensure eye safety at the standard flying altitude
of 50 m. The footprint diameter D calculates to D = Rγ, i.e., 10 cm for the standard flight setup in
our experiment.

To evaluate the actual footprint diameter, two suitable objects have been chosen and analyzed in
detail, namely (i) a linear object and (ii) a sharp angle. Figure 14 shows the 3D point clouds of the study
objects in a perspective view (a-c) and a sectional view (d) colorized by signal amplitude. The linear
object (rope) does not appear as a confined line of points but rather as a band featuring a width of
30 cm, thus, 3 times the theoretical footprint size.
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a constant beam divergence of 2 mrad was employed to ensure eye safety at the standard flying altitude
of 50 m. The footprint diameter D calculates to D = R γ, i.e., 10 cm for the standard flight setup in
our experiment.

To evaluate the actual footprint diameter, two suitable objects have been chosen and analyzed in
detail, namely (i) a linear object and (ii) a sharp angle. Figure 14 shows the 3D point clouds of the study
objects in a perspective view (a-c) and a sectional view (d) colorized by signal amplitude. The linear
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gable roof shaped control patch; (a–c) perspective view of 3D point cloud; (d) vertical section; points
colored by signal amplitude [dB].

At the ridgeline of the gable roof-shaped control patch, the points do not form a sharp edge but
appear as a circular cylinder featuring a diameter of 20 cm as the finite laser footprint illuminates both
roof sides. This effect is responsible for the larger deviations for all control points along the ridgeline
reported in Section 5.2 (cf. Table 5, e.g., point 1022) while all control points, for which the laser footprint
is entirely on one side of the wooden panel, exhibit deviations below 1 cm.

Figure 14. Empirical assessment of spatial resolution; top row: rope spanned across river, bottom row:
gable roof shaped control patch; (a–c) perspective view of 3D point cloud; (d) vertical section; points
colored by signal amplitude [dB].

At the ridgeline of the gable roof-shaped control patch, the points do not form a sharp edge but
appear as a circular cylinder featuring a diameter of 20 cm as the finite laser footprint illuminates both
roof sides. This effect is responsible for the larger deviations for all control points along the ridgeline
reported in Section 5.2 (cf. Table 5, e.g., point 1022) while all control points, for which the laser footprint
is entirely on one side of the wooden panel, exhibit deviations below 1 cm.

It is noted that, as expected, also the receiver iFoV substantially influences the spatial resolution,
even for constant beam divergence settings. The plate experiment presented in Section 5.3 shows this
clearly. While all plates exhibit an area of 1 m2, increasing the iFoV has a big impact on the apparent
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size of the plate as depicted in the point cloud. For plate P1, for instance, the area covered by laser
returns reflecting from the plate with the 18 mrad iFoV setting measures 3.5 m2. This is caused by
beam spreading due to volume scattering in the water column. With a larger iFOV, more signal from
the periphery of the conical laser beam reaches the detector enabling echo detection even if the plate
is only partially within the illuminated footprint. However, full and partial hits of the plates can
be distinguished via analysis of the amplitude values. Amplitudes are nearly constant if the entire
laser footprint impinges on the plate, and rapidly drop outwards with a decreasing percentage of
illuminated plate area (cf. bottom left plot of Figure 12).

6. Discussion

The presented compact topo-bathymetric laser scanner exhibits a weight of 12 kg and a power
consumption of 160 W. This makes the instrument suitable for integration on light manned aircraft,
gyrocpters, and helicopters as well as on larger UAV platforms, as was the case for our data acquisition.
The considerable payload and power consumption, however, limit UAV flight endurance with the
selected UAV. The longest net acquisition airtime in our experiment was about 10 min excluding
starting, landing, and IMU/GNSS initialization. This might be sufficient endurance for corridor
mapping in a visual line of sight (VLOS) context, but poses hard constraints for larger project areas and
beyond VLOS operation. Thus, our UAV-borne experiment is regarded as a successful proof-of-concept,
but further sensor miniaturization is needed for integration on mainstream UAV platforms like
the DJI Matrice 600 Pro or comparable platforms. No matter if the sensor is integrated on a light
manned or unmanned aerial platform, in both cases the mobilization costs are considerably lower
compared to traditional ALB surveys and smaller aircraft feature a higher maneuverability. The sensor,
therefore, constitutes a cost-effective alternative, especially for mapping bathymetry of narrow river
channels, as a supplement to area-wide topographic laser scanning which is today often available on
a country-wide level.

A major benefit of the sensor design is the adjustable pulse repetition rate, laser beam divergence,
and receiver iFoV, making eye-safe operation possible for low flying altitudes like the standard 50 m
altitude in our experiment. Due to the smaller sensor-to-target distances and the narrow laser cone,
the resulting nominal laser footprint diameter in the dm-range is much smaller compared to existing
topo-bathymetric sensors operated on manned aircraft featuring footprint sizes of about half a meter.
This gain in spatial resolution opens new applications in the context of hydraulic engineering (roughness
estimation) for reliable flood simulations, eco-hydraulics (habitat modelling), fluvial geomorphology,
and many more.

As stated before, the limiting factor for spatial resolution in the lateral direction of the laser beam
is the laser footprint, i.e., the illuminated area on the target. As reported in Section 5.4, this is not the
same as the area resulting from the vendor specifications. The power distribution in the laser footprint
has Gaussian shape and it is common practice to specify the beam diameter by twice the radius where
the optical power has decreased by a factor of 1/e2. For a beam diameter w, the power distribution I(r)
as a function of off-axis distance r is given by

I(r) = I0e−(
2
√

2
w r)

2

, (1)

with I0 the power at the center. The power level at r = w/2 is 0.14% of the power level at the maximum.
Expressing the power level at r = w/2 in Decibels gives

10 log10

(
I(0.5w)

I0

)
≈ −8.7dB. (2)

A signal causing a return strength in the center of the beam that is more than 8.7 dB above the
receiver detection threshold will cause a detectable signal in an adjacent measurement even when
further apart than the nominal beam diameter radius. The effective size of the footprint, thus, is
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determined not only by the properties of the laser beam but also by the sensitivity of the receiver
circuitry and the iFOV. A small isolated object will be seen in adjacent laser points until it is too weak
to be detected. However, the object will appear with diminishing amplitudes towards the edges
(cf. Figure 14b).

The finite footprint and high receiver sensitivity also cause smoothing effects if the target’s shape
is not flat within the illuminated area. This applies to discontinuities in height (cliff, wall) or slope
(sharp edge), or in case of high curvature (e.g., small boulders). In any case, this leads to rounding
artifacts as exemplified in Figure 14d for a sharp edge. In the context of mapping river channel
bathymetry, this limits the ability to precisely reconstruct objects smaller than ≈20 cm. While the
instrument’s spatial resolution is too low for roughness estimation on grain size level, it is suitable for
the detection of blocks, boulders, and other flow resistance relevant objects. As an example, the circular
underwater reference targets clearly stood out from the surrounding river bottom although they were
firmly anchored in the ground and, thus, only protruded from the ground surface by a few cm.

For smooth surfaces, the sensor showed a measurement noise below 1 cm verified at horizontal
asphalt surfaces (cf. surface patch A1 in Figure 8 and Table 4) as well as on tilted surfaces (cf. Table 5,
e.g., points 1001–1020). Beyond the local level, this also holds for the strip fitting precision of the
entire flight block, which even outperformed comparable data acquisitions with a state-of-the-art
topographic UAV laser scanner employed in the same study area in the previous work [66,71]. High
relative accuracy is of special importance, e.g., for detailed hydrodynamic-numerical modeling in flat
areas where a few cm can determine whether or not certain areas are flooded.

While the absolute accuracy of the flight block, measured as point-to-plane distances between
terrestrially surveyed reference targets and the LiDAR point cloud, is generally better than 3 cm on land
(cf. red dots in Figure 9), systematic deviations were observed for submerged checkpoints. In addition
to geometric calibration of the sensor system and (ranging, scanning, lever arms, boresight angles,
trajectory), the overall accuracy of LiDAR-derived bathymetry depends on the accuracy of (i) the
modeled water surface and (ii) the refraction coefficients for run-time correction. Data analysis has
revealed that laser echoes from the water surface are dense (i.e., practically every laser shot returned
an echo from the surface) and the signal amplitude is sufficiently strong to enable reliable range
measurement. Figures 11 and 14a,b illustrate that (i) the recorded signal amplitudes are around 20 dB;
(ii) the point density is high; and (iii) the vertical spread is remarkably low. It is well known from
literature including our own work [1,57,77,78] that the laser signal reflected from water surfaces is
a mixture of reflections from the surface and volume backscattering from the water column beneath
the surface. Surface data obtained from conventional green-only ALB sensors operated from manned
platforms in flying altitudes of around 600 m often show a fuzzy appearance. In contrast, surface
data acquired in this experiment are concise and the point clouds show a vertical spread of only a few
cm. Independent validation of the modeled water surface with terrestrially surveyed checkpoints
at the water-land-boundary (cf. Table 5) also confirmed the accuracy of the water surface model.
Thus, we rule out that inaccuracies of the modeled water surface are responsible for the detected
depth-dependent bias.

Concerning run-time correction, we first started with standard values documented in the
literature. [76] reports a valid range of n = 1.329–1.367, but the upper bound is only valid for
extreme salinity and temperature conditions. In recent work, [75] reported that group velocity is
relevant for run-time correction of pulsed lasers rather than the phase velocity of the underlying laser
wavelength (λ = 532 nm). With a respective experiment, they showed that a value of around 1.36 is
valid for freshwater conditions. Therefore, this value was also used for run-time correction in this
work, but comparison with the reference points still showed a systematic, depth-dependent error.
The bias only disappeared when using a hypothetical refraction coefficient of n = 1.42. As there is
no physical explanation for such a high refractive index, the question for the reason of the systematic
deviation still remains. Multi-path effects due to complex forward scattering within the water columns
are the most likely explanation for the observed phenomenon. As documented in Table 2 and as can be
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seen from the on-site photographs in Figure 6, the turbidity level was high (Secchi depth in the river:
1.1 m) due to a thunderstorm event in the days before data acquisition. This resulted in a high load of
suspended sediment. Scattering at the sediment particles leads to a widening of the laser footprint,
which entails non-linearity of the ray paths leading to elongated path lengths in water, which might
result in the observed underestimation of the river bottom height. Following this line of argument,
a repeat survey is planned in the winter season 2020 in clear water conditions to verify and quantify
the influence of turbidity on the UAV-LiDAR derived depth measurements.

The depth performance of 2 SD stated by the manufacturer was confirmed in the conducted
evaluation. All results relied on online waveform processing [62] and did not make use of sophisticated
waveform processing [79,80]. Processing of data acquired with different iFoV settings confirmed
an increased depth performance using the widest possible setting of 18 mrad compared to the default
setting of 6 mrad. The gain measures 0.3 SD or 15% but comes at the price of a reduced spatial
resolution as the receiver’s perceivable target area is larger, exemplary illustrated in Figure 12 at plate
P1. In a practical context, this clearly shows that a trade-off between high spatial resolution and
maximum depth performance needs to be found. A potential best practice procedure may include
a repeat survey of the same flight lines first with scanner settings optimized for spatial resolution (high
PRR, narrow beam divergence and iFoV) and second with parameters optimized for maximum depth
penetration. With the studied instrument, this can be achieved in a single flight mission as individual
sensor settings are feasible on a per flight line basis.

The conducted depth performance assessment based on the four lowered metal plates yielded
that plate P4 at a depth of 2.2 SD could not be identified in any of the flight strips including the
ones with 18 mrad iFoV. This is astonishing, as the natural bottom of the pond could be measured at
approximately the same depth (cf. blue points in Figure 13). By extrapolating the signal amplitude
decrease from plate P3 (14.5 dB), enough signal should have been available to also detect P4. One
of the plausible reasons is an abrupt turbidity increase within the freshwater pond at a water depth
of around 3 m. We consider this the most likely explanation as the pond is mainly used for fishing
purposes and the dominating species (Cyprinus carpio) tends to dig into the mud at the bottom of the
pond potentially swirling up mud particles.

Beyond the pure sensor settings, an additional increase of depth performance is expected via
sophisticated waveform processing. [81] reported an increased areal coverage when employing
a surface-volume-bottom based exponential decomposition approach, in both very shallow and deeper
water areas. [5,82] use waveform stacking, i.e., averaging of neighboring waveforms, to enhance ALB
depth performance reporting an increase of 30%. The presented sensor is specifically well suited for the
application of waveform stacking, also referred to as pre-detection averaging, as waveform recording
does not depend on a trigger event (i.e., echo detection) during data acquisition but waveforms are
continuously stored within a certain range gate. While this is not possible for typical ALB flying
altitudes of 600 m due to storage capacity limits, it is well possible for the shorter ranges in UAV-borne
laser bathymetry. By combining the possibilities offered by the sensor (PRR, beam divergence, iFoV)
with data processing based on the cited strategies, a maximum depth penetration of about 2.9 SD can
be expected, but further experiments are required to verify this value.

Further advantages arise from the integration of active and passive sensors in a single hybrid
system. Examples for applications benefiting from the concurrent acquisition of laser and image data
are water body detection [83] and discharge estimation [46].

7. Conclusions

In this paper, we introduced the concept of a novel compact topo-bathymetric laser scanner
and presented a comprehensive assessment evaluating measurement noise, strip fitting precision,
accuracy compared to terrestrially measured reference data, depth performance, and spatial resolution.
With a weight of 12 kg the sensor is suitable for integration on light manned as well as powerful
unmanned platforms, reducing the mobilization costs compared to conventional ALB. The scanner
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features an adjustable pulse repetition rate (50–200 kHz), scan rate (10–100 lines/s), beam divergence
(1–6 mrad), and receiver’s iFoV (of 3–18 mrad). With nominal flying altitudes from 50–150 m, this
enables flexible flight planning and full user control concerning the properties of the resulting 3D point
clouds w.r.t. point density, spatial resolution, achievable depth performance, and aerial coverage.

For assessing the overall quality, a flight mission was designed and carried out on 28 August 2019,
at the pre-Alpine Pielach River (Austria) with the sensor mounted on an octocopter UAV platform.
After geometric calibration and refraction correction, the resulting 3D point clouds were compared to
reference points obtained by terrestrial surveys with RTK GNSS and total station. The evaluations
exhibited a local measurement noise at smooth asphalt surfaces of 1–3 mm, a relative strip fitting
precision of about 1 cm, and an absolute flight block accuracy of 2–3 cm compared to check points on
dry land.

Assessment of the bathymetric accuracy yielded a depth-dependent bias when employing
a representative refraction coefficient of n = 1.36 for run-time correction in water. The maximum
deviation of 7.8 cm at a water depth of 2.1 m only disappeared when using a hypothetical refraction
coefficient of n = 1.42, which is physically implausible. We hypothesize that the bias results from
multi-path effects caused by forward scattering at dissolved sediment particles, as turbidity was high
(SD: ≈1.1 m) due to thunderstorm events in the days before data acquisition.

Depth performance evaluation, based on four metal plates lowered into a freshwater pond in
different depths, confirmed a maximum water penetration depth of 2 SD for the laser echoes derived
with online waveform processing. In addition to that, the entire echo waveform is also stored for
off-line waveform analysis. Waveform recording does not depend on a triggering event but the entire
waveform is rather captured within a user-definable range gate. This enables waveform stacking
by summing up the waveforms of neighboring laser shots, which potentially increases the depth
performance to 2.5–2.8 SD. Respective experiments addressing these open questions are currently
in preparation.

To sum up, the presented compact topo-bathymetric laser scanner is well suited for mapping
river channel bathymetry. The sensor system poses an alternative to conventional ALB for mapping
smaller rivers and shallow lakes when mounted on flexible UAV-platforms and also for larger coastal
environments when integrated on light manned aircraft. One of the main benefits compared to other
UAV-based bathymetric laser sensors is the full adjustability of the sensor parameters enabling the
end-user to balance accuracy, depth performance, spatial resolution, and aerial coverage.

Author Contributions: G.M. designed the data acquisition (selection of study area, flight mission parameters,
reference measurements) and was responsible for data processing (geo-referencing, performance assessment),
writing main parts of the text, and supervision the overall manuscript preparation. M.P. provided the text for
sensor concept section. R.S. has performed the waveform analysis and other data processing tasks. S.F. and L.N.
designed and installed the measurement field for accuracy assessment, and conducted the terrestrial surveying.
All authors contributed to the interpretation of the results and to revision of the manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: The presented investigation was partially conducted within the project “Bathymetry by Fusion of
Airborne Laser Scanning and Multi-Spectral Aerial Imagery” (SO 935/6-2) funded by the German Research
Foundation (DFG). The work of Martin Pfennigbauer and Roland Schwarz was funded by the Austrian Research
Funding Agency (FFG) within the project “Aerial search & Rescue support and supErvision of inAccessible
terrainS” (AREAS) 86702.

Acknowledgments: The authors acknowledge TU Wien Bibliothek for financial support through its Open Access
Funding Program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Guenther, G.C.; Cunningham, A.G.; Laroque, P.E.; Reid, D.J. Meeting the accuracy challenge in airborne lidar
bathymetry. In Proceedings of the 20th EARSeL Symposium: Workshop on Lidar Remote Sensing of Land
and Sea, Dresden, Germany, 16–17 June 2000.



Remote Sens. 2020, 12, 986 25 of 28

2. Parrish, C.E.; Dijkstra, J.A.; O’Neil-Dunne, J.P.M.; McKenna, L.; Pe’eri, S. Post-Sandy Benthic Habitat Mapping
Using New Topobathymetric Lidar Technology and Object-Based Image Classification. J. Coast. Res. 2016,
76, 200–208. [CrossRef]

3. Kinzel, P.J.; Legleiter, C.J.; Nelson, J.M. Mapping River Bathymetry With a Small Footprint Green LiDAR:
Applications and Challenges. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 183–204. [CrossRef]

4. Mandlburger, G.; Hauer, C.; Wieser, M.; Pfeifer, N. Topo-bathymetric LiDAR for monitoring river
morphodynamics and instream habitats-A case study at the Pielach River. Remote Sens. 2015, 7, 6160–6195.
[CrossRef]

5. Maas, H.G.; Mader, D.; Richter, K.; Westfeld, P. Improvements in lidar bathymetry data analysis. ISPRS Int.
Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W10, 113–117. [CrossRef]

6. Mitchell, S.E.; Thayer, J.P. Ranging through Shallow Semitransparent Media with Polarization Lidar. J. Atmos.
Ocean. Technol. 2014, 31, 681–697. [CrossRef]

7. Goosen, R. This Is How Airborne Multibeam Lidar Coastal Mapping in Paradise is Done. 2019. Available
online: https://www.hydro-international.com/content/article/this-is-how-airborne-multibeam-lidar-coast
al-mapping-in-paradise-is-done (accessed on 8 February 2020).

8. Fugro. Rapid Airborne Multibeam Mapping System, ALB. 2020. Available online: https://www.fugro.
com/about-fugro/our-expertise/innovations/rapid-airborne-multibeam-mapping-system (accessed on 8
February 2020).

9. Riegl. VQ-840-G topo-hydrographic full waveform scanner data sheet. 2020. Available online: http://www.ri
egl.com/uploads/tx_pxpriegldownloads/RIEGL_VQ-840-G_Preliminary-Datasheet_2019-09-02.pdf (accessed
on 17 March 2020).

10. Murase, T.; Tanaka, M.; Tani, T.; Miyashita, Y.; Ohkawa, N.; Ishiguro, S.; Suzuki, Y.; Kayanne, H.; Yamano, H.
A photogrammetric correction procedure for light refraction effects at a two-medium boundary. Photogramm.
Eng. Remote Sens. 2008, 74, 1129–1136. [CrossRef]

11. Lyzenga, D.R. Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt.
1978, 17, 379–383. [CrossRef]

12. Pfennigbauer, M.; Ullrich, A.; Steinbacher, F.; Aufleger, M. High-resolution hydrographic airborne laser
scanner for surveying inland waters and shallow coastal zones. Laser Radar Technol. Appl. 2011, 8037, 6.
[CrossRef]

13. Tonina, D.; McKean, J.A.; Benjankar, R.M.; Wright, C.W.; Goode, J.R.; Chen, Q.; Reeder, W.J.; Carmichael, R.A.;
Edmondson, M.R. Mapping river bathymetries: Evaluating topobathymetric LiDAR survey. Earth Surf.
Process. Landforms 2019, 44, 507–520. [CrossRef]

14. Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS
J. Photogramm. Remote Sens. 2014, 92, 79–97. [CrossRef]

15. Schönberger, J.L.; Frahm, J. Structure-from-Motion Revisited. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113.
[CrossRef]

16. Hirschmuller, H. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Trans. Pattern
Anal. Mach. Intell. 2008, 30, 328–341. [CrossRef]

17. Anderson, K.; Westoby, M.J.; James, M.R. Low-budget topographic surveying comes of age: Structure from
motion photogrammetry in geography and the geosciences. Prog. Phys. Geogr. Earth Environ. 2019, 43,
163–173. [CrossRef]

18. Nesbit, P.R.; Hugenholtz, C.H. Enhancing UAV–SfM 3D Model Accuracy in High-Relief Landscapes by
Incorporating Oblique Images. Remote Sens. 2019, 11, 239. [CrossRef]

19. Agisoft. Metashape—Photogrammetric Processing of Digital Images and 3D Spatial Data Generation. 2020.
Available online: http://www.agisoft.com/ (accessed on 8 February 2020).

20. Pix4D. Pix4Dmapper: Professional Drone Mapping and Photogrammetry Software. 2020. Available online:
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software (accessed on 8 February 2020).

21. Rothermel, M.; Wenzel, K.; Fritsch, D.; Haala, N. SURE: Photogrammetric surface reconstruction from
imagery. In Proceedings of the Low Cost 3D Workshop, Berlin, Germany, 6–7 December 2012.

22. Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles
(UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal
Environments. Remote Sens. 2013, 5, 6880–6898. [CrossRef]

http://dx.doi.org/10.2112/SI76-017
http://dx.doi.org/10.1111/jawr.12008
http://dx.doi.org/10.3390/rs70506160
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W10-113-2019
http://dx.doi.org/10.1175/JTECH-D-13-00014.1
https://www.hydro-international.com/content/article/this-is-how-airborne-multibeam-lidar-coastal-mapping-in-paradise-is-done
https://www.hydro-international.com/content/article/this-is-how-airborne-multibeam-lidar-coastal-mapping-in-paradise-is-done
https://www.fugro.com/about-fugro/our-expertise/innovations/rapid-airborne-multibeam-mapping-system
https://www.fugro.com/about-fugro/our-expertise/innovations/rapid-airborne-multibeam-mapping-system
http://www.riegl.com/uploads/tx_pxpriegldownloads/RIEGL_VQ-840-G_Preliminary-Datasheet_2019-09-02.pdf
http://www.riegl.com/uploads/tx_pxpriegldownloads/RIEGL_VQ-840-G_Preliminary-Datasheet_2019-09-02.pdf
http://dx.doi.org/10.14358/PERS.74.9.1129
http://dx.doi.org/10.1364/AO.17.000379
http://dx.doi.org/10.1117/12.883910
http://dx.doi.org/10.1002/esp.4513
http://dx.doi.org/10.1016/j.isprsjprs.2014.02.013
http://dx.doi.org/10.1109/CVPR.2016.445
http://dx.doi.org/10.1109/TPAMI.2007.1166
http://dx.doi.org/10.1177/0309133319837454
http://dx.doi.org/10.3390/rs11030239
http://www.agisoft.com/
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
http://dx.doi.org/10.3390/rs5126880


Remote Sens. 2020, 12, 986 26 of 28

23. Templin, T.; Popielarczyk, D.; Kosecki, R. Application of Low-Cost Fixed-Wing UAV for Inland Lakes
Shoreline Investigation. Pure Appl. Geophys. 2018, 175, 3263–3283. [CrossRef]

24. Maas, H.G. On the Accuracy Potential in Underwater/Multimedia Photogrammetry. Sensors 2015, 15,
18140–18152. [CrossRef]

25. Westaway, R.M.; Lane, S.N.; Hicks, D.M. Remote sensing of clear-water, shallow, gravel-bed rivers using
digital photogrammetry. Photogramm. Eng. Remote Sens. 2001, 67, 1271–1281.

26. Dietrich, J.T. Bathymetric Structure-from-Motion: extracting shallow stream bathymetry from multi-view
stereo photogrammetry. Earth Surf. Process. Landforms 2016, 42, 355–364. [CrossRef]

27. Carrivick, J.L.; Smith, M.W. Fluvial and aquatic applications of Structure from Motion photogrammetry and
unmanned aerial vehicle/drone technology. WIREs Water 2019, 6, e1328. [CrossRef]

28. Agrafiotis, P.; Skarlatos, D.; Georgopoulos, A.; Karantzalos, K. Shallow Water Bathymetry Mapping From
Uav Imagery Based on Machine Learning. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019,
XLII-2/W10, 9–16. [CrossRef]

29. Agrafiotis, P.; Karantzalos, K.; Georgopoulos, A.; Skarlatos, D. Correcting Image Refraction: Towards
Accurate Aerial Image-Based Bathymetry Mapping in Shallow Waters. Remote Sens. 2020, 12, 322. [CrossRef]

30. Agrafiotis, P.; Skarlatos, D.; Georgopoulos, A.; Karantzalos, K. DepthLearn: Learning to Correct the Refraction
on Point Clouds Derived from Aerial Imagery for Accurate Dense Shallow Water Bathymetry Based on
SVMs-Fusion with LiDAR Point Clouds. Remote Sens. 2019, 11, 2225. [CrossRef]

31. Mandlburger, G.; Lehner, H.; Pfeifer, N. A Comparison of Single Photon and Full Waveform Lidar. ISPRS
Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 397–404. [CrossRef]

32. Lyzenga, D.R.; Malinas, N.P.; Tanis, F.J. Multispectral bathymetry using a simple physically based algorithm.
IEEE Trans. Geosci. Remote Sens. 2006, 44, 2251–2259. [CrossRef]

33. Legleiter, C.J.; Dar, A.R.; Rick, L.L. Spectrally based remote sensing of river bathymetry. Earth Surf. Process.
Landforms 2009, 34, 1039–1059. [CrossRef]

34. Legleiter, C.J. Inferring river bathymetry via Image to Depth Quantile Transformation (IDQT). Water Resour.
Res. 2016, 52, 3722–3741. [CrossRef]

35. Legleiter, C.J.; Fosness, R.L. Defining the Limits of Spectrally Based Bathymetric Mapping on a Large River.
Remote Sens. 2019, 11, 665. [CrossRef]

36. Hernandez, W.J.; Armstrong, R.A. Deriving Bathymetry from Multispectral Remote Sensing Data. J. Mar. Sci.
Eng. 2016, 4, 8. [CrossRef]

37. Sagawa, T.; Yamashita, Y.; Okumura, T.; Yamanokuchi, T. Satellite Derived Bathymetry Using Machine
Learning and Multi-Temporal Satellite Images. Remote Sens. 2019, 11, 1155. [CrossRef]

38. Gentile, V.; Mróz, M.; Spitoni, M.; Lejot, J.; Piégay, H.; Demarchi, L. Bathymetric Mapping of Shallow Rivers
with UAV Hyperspectral Data. In Proceedings of the Fifth International Conference on Telecommunications
and Remote Sensing, Milan, Italy, 10–11 October 2016; pp. 43–49. [CrossRef]

39. Birkebak, M.; Eren, F.; Pe’eri, S.; Weston, N. The Effect of Surface Waves on Airborne Lidar Bathymetry (ALB)
Measurement Uncertainties. Remote Sens. 2018, 10, 453. [CrossRef]

40. Quadros, N.; Keysers, J. Emerging Trends in Bathymetric Lidar Technology. 2018. Available online: https:
//www.hydro-international.com/content/article/emerging-trends-in-bathymetric-lidar-technology (accessed
on 8 February 2020).

41. ASTRALiTe. Website of ASTRALiTe, Inc. 2020. Available online: https://www.astralite.net/ (accessed on 8
February 2020).

42. Mitchell, S.; Thayer, J.P.; Hayman, M. Polarization lidar for shallow water depth measurement. Appl. Opt.
2010, 49, 6995–7000. [CrossRef] [PubMed]

43. Wilder Young, J. Little Topo-Bathy Lidar. 2017. Available online: https://lidarmag.com/2017/09/17/little-topo-
bathy-lidar/= (accessed on 8 February 2020).

44. ASTRALite. Press Release: ASTRALiTe Demonstrates Scanning Topo–Bathy LiDAR System on DJI Matrice
600 Pro. 2018. Available online: https://www.businesswire.com/news/home/20181119005609/en/ASTRALiTe
-Demonstrates-Scanning-Topo%E2%80%93Bathy-LiDAR-System-DJI (accessed on 8 February 2020).

45. SBG Systems. UAV-Based LiDAR Can Measure Shallow Water Depth. 2019. Available online: http
s://spectrum.ieee.org/robotics/drones/uavbased-lidar-can-measure-shallow-water-depth (accessed on 8
February 2020).

http://dx.doi.org/10.1007/s00024-017-1707-7
http://dx.doi.org/10.3390/s150818140
http://dx.doi.org/10.1002/esp.4060
http://dx.doi.org/10.1002/wat2.1328
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W10-9-2019
http://dx.doi.org/10.3390/rs12020322
http://dx.doi.org/10.3390/rs11192225
http://dx.doi.org/10.5194/isprs-annals-IV-2-W5-397-2019
http://dx.doi.org/10.1109/TGRS.2006.872909
http://dx.doi.org/10.1002/esp.1787
http://dx.doi.org/10.1002/2016WR018730
http://dx.doi.org/10.3390/rs11060665
http://dx.doi.org/10.3390/jmse4010008
http://dx.doi.org/10.3390/rs11101155
http://dx.doi.org/10.5220/0006227000430049
http://dx.doi.org/10.3390/rs10030453
https://www.hydro-international.com/content/article/emerging-trends-in-bathymetric-lidar-technology
https://www.hydro-international.com/content/article/emerging-trends-in-bathymetric-lidar-technology
https://www.astralite.net/
http://dx.doi.org/10.1364/AO.49.006995
http://www.ncbi.nlm.nih.gov/pubmed/21173834
https://lidarmag.com/2017/09/17/little-topo-bathy-lidar/=
https://lidarmag.com/2017/09/17/little-topo-bathy-lidar/=
https://www.businesswire.com/news/home/20181119005609/en/ASTRALiTe-Demonstrates-Scanning-Topo%E2%80%93Bathy-LiDAR-System-DJI
https://www.businesswire.com/news/home/20181119005609/en/ASTRALiTe-Demonstrates-Scanning-Topo%E2%80%93Bathy-LiDAR-System-DJI
https://spectrum.ieee.org/robotics/drones/uavbased-lidar-can-measure-shallow-water-depth
https://spectrum.ieee.org/robotics/drones/uavbased-lidar-can-measure-shallow-water-depth


Remote Sens. 2020, 12, 986 27 of 28

46. Kinzel, P.J.; Legleiter, C.J. sUAS-Based Remote Sensing of River Discharge Using Thermal Particle Image
Velocimetry and Bathymetric Lidar. Remote Sens. 2019, 11, 2317. [CrossRef]

47. Mitchell, T. From PILLS To RAMMS. In Proceedings of the 20th Annual JALBTCX Airborne Coastal Mapping
and Charting Technical Workshop, South Bend, Indiana, 4–6 June 2019.

48. Zuckerman, S. PILLS 2.5: From Design to Operations. In Proceedings of the 20th Annual JALBTCX Airborne
Coastal Mapping and Charting Technical Workshop, South Bend, Indiana, 4–6 June 2019.

49. Fugro. 2020. Available online: https://lidarmag.com/2019/11/13/fugro-ramms-technology-benefits-us-navy-
mapping-system/ (accessed on 8 February 2020).

50. Amuse Oneself Inc. Product website and spec sheet of TDOT GREEN. 2020. Available online: https:
//amuse-oneself.com/en/service/tdotgreen (accessed on 8 February 2020).

51. Kasvi, E.; Salmela, J.; Lotsari, E.; Kumpula, T.; Lane, S. Comparison of remote sensing based approaches for
mapping bathymetry of shallow, clear water rivers. Geomorphology 2019, 333, 180–197. [CrossRef]

52. Shintani, C.; Fonstad, M.A. Comparing remote-sensing techniques collecting bathymetric data from
a gravel-bed river. Int. J. Remote Sens. 2017, 38, 2883–2902. [CrossRef]

53. Eren, F.; Jung, J.; Parrish, C.E.; Sarkozi-Forfinski, N.; Calder, B.R. Total Vertical Uncertainty (TVU) Modeling
for Topo-Bathymetric LIDAR Systems. Photogramm. Eng. Remote Sens. 2019, 85, 585–596. [CrossRef]

54. Saylam, K.; Hupp, J.R.; Andrews, J.R.; Averett, A.R.; Knudby, A.J. Quantifying Airborne Lidar Bathymetry
Quality-Control Measures: A Case Study in Frio River, Texas. Sensors 2018, 18, 4153. [CrossRef]

55. Steinvall, O.K.; Koppari, K.R.; Karlsson, U.C.M. Experimental evaluation of an airborne depth-sounding
lidar. Opt. Eng. 1993, 32, 1307. [CrossRef]

56. Hilldale, R.; Raff, D. Assessing the ability of airborne LiDAR to map river bathymetry. Earth Surf. Process.
Landforms 2008, 33, 773–783. [CrossRef]

57. Fernandez-Diaz, J.; Glennie, C.; Carter, W.; Shrestha, R.; Sartori, M.; Singhania, A.; Legleiter, C.; Overstreet, B.
Early Results of Simultaneous Terrain and Shallow Water Bathymetry Mapping Using a Single-Wavelength
Airborne LiDAR Sensor. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 623–635. [CrossRef]

58. Fernandez-Diaz, J.C.; Carter, W.E.; Glennie, C.; Shrestha, R.L.; Pan, Z.; Ekhtari, N.; Singhania, A.; Hauser, D.;
Sartori, M. Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar.
Remote Sens. 2016, 8, 936. [CrossRef]

59. Legleiter, C.J.; Overstreet, B.T.; Glennie, C.L.; Pan, Z.; Fernandez-Diaz, J.C.; Singhania, A. Evaluating the
capabilities of the CASI hyperspectral imaging system and Aquarius bathymetric LiDAR for measuring
channel morphology in two distinct river environments. Earth Surf. Process. Landforms 2016, 41, 344–363.
[CrossRef]

60. Wright, C.W.; Kranenburg, C.; Battista, T.A.; Parrish, C. Depth Calibration and Validation of the Experimental
Advanced Airborne Research Lidar, EAARL-B. J. Coast. Res. 2016, 76, 4–17. [CrossRef]

61. Mandlburger, G.; Pfennigbauer, M.; Wieser, M.; Riegl, U.; Pfeifer, N. Evaluation of a novel uav-borne
topo-bathymetric laser profiler. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 933–939.
[CrossRef]

62. Pfennigbauer, M.; Wolf, C.; Weinkopf, J.; Ullrich, A. Online waveform processing for demanding target
situations. Proc. SPIE 2014, 90800J. [CrossRef]

63. Montgomery, D.R.; Buffington, J.M. Channel reach morphology in mountain drainage basins. GSA Bull.
1997, 109, 596–611. [CrossRef]

64. Melcher, A.H.; Schmutz, S. The importance of structural features for spawning habitat of nase Chondrostoma
nasus (L.) and barbel Barbus barbus (L.) in a pre-Alpine river. River Syst. 2010, 19, 33–42. [CrossRef]

65. Zitek, A.; Schmutz, S.; Jungwirth, M. Assessing the efficiency of connectivity measures with regard to the
EU-Water Framework Directive in a Danube-tributary system. Hydrobiologia 2008, 609, 139–161. [CrossRef]

66. Mandlburger, G.; Pfennigbauer, M.; Riegl, U.; Haring, A.; Wieser, M.; Glira, P.; Winiwarter, L. Complementing
airborne laser bathymetry with UAV-based lidar for capturing alluvial landscapes. Proc. SPIE 2015, 9637.
[CrossRef]

67. Wieser, M.; Mandlburger, G.; Hollaus, M.; Otepka, J.; Glira, P.; Pfeifer, N. A Case Study of UAS Borne Laser
Scanning for Measurement of Tree Stem Diameter. Remote Sens. 2017, 9, 1154. [CrossRef]

68. Pfeifer, N.; Mandlburger, G.; Otepka, J.; Karel, W. OPALS—A framework for Airborne Laser Scanning data
analysis. Comput. Environ. Urban Syst. 2014, 45, 2. [CrossRef]

http://dx.doi.org/10.3390/rs11192317
https://lidarmag.com/2019/11/13/fugro-ramms-technology-benefits-us-navy-mapping-system/
https://lidarmag.com/2019/11/13/fugro-ramms-technology-benefits-us-navy-mapping-system/
https://amuse-oneself.com/en/service/tdotgreen
https://amuse-oneself.com/en/service/tdotgreen
http://dx.doi.org/10.1016/j.geomorph.2019.02.017
http://dx.doi.org/10.1080/01431161.2017.1280636
http://dx.doi.org/10.14358/PERS.85.8.585
http://dx.doi.org/10.3390/s18124153
http://dx.doi.org/10.1117/12.135859
http://dx.doi.org/10.1002/esp.1575
http://dx.doi.org/10.1109/JSTARS.2013.2265255
http://dx.doi.org/10.3390/rs8110936
http://dx.doi.org/10.1002/esp.3794
http://dx.doi.org/10.2112/SI76-002
http://dx.doi.org/10.5194/isprsarchives-XLI-B1-933-2016
http://dx.doi.org/10.1117/12.2052994
http://dx.doi.org/10.1130/0016-7606(1997)109&lt;0596:CRMIMD&gt;2.3.CO;2
http://dx.doi.org/10.1127/1868-5749/2010/019-0033
http://dx.doi.org/10.1007/s10750-008-9394-0
http://dx.doi.org/10.1117/12.2194779
http://dx.doi.org/10.3390/rs9111154
http://dx.doi.org/10.1016/j.compenvurbsys.2013.11.002


Remote Sens. 2020, 12, 986 28 of 28

69. Hutton, J.J.; Gopaul, N.; Zhang, X.; Wang, J.; Menon, V.; Rieck, D.; Kipka, A.; Pastor, F. Centimeter-Level,
Robust Gnss-Aided Inertial Post-Processing for Mobile Mapping Without Local Reference Stations. ISPRS
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B3, 819–826. [CrossRef]

70. Glira, P.; Pfeifer, N.; Briese, C.; Ressl, C. A Correspondence Framework for ALS Strip Adjustments based on
Variants of the ICP Algorithm. PFG Photogramm. Fernerkundung, Geoinf. 2015, 2015, 275–289. [CrossRef]

71. Glira, P.; Pfeifer, N.; Mandlburger, G. Rigorous Strip Adjustment of UAV-based Laserscanning Data Including
Time-Dependent Correction of Trajectory Errors. Photogramm. Eng. Remote Sens. 2016, 82, 945–954. [CrossRef]

72. Ressl, C.; Kager, H.; Mandlburger, G. Quality checking of als projects using statistics of strip differences. Int.
Arch. Photogramm. Remote Sens. 2008, 37, 253–260.

73. Mandlburger, G.; Hauer, C.; Höfle, B.; Habersack, H.; Pfeifer, N. Optimisation of LiDAR derived terrain
models for river flow modelling. Hydrol. Earth Syst. Sci. 2009, 13, 1453–1466. [CrossRef]

74. Westfeld, P.; Maas, H.G.; Richter, K.; Weiß, R. Analysis and correction of ocean wave pattern induced
systematic coordinate errors in airborne LiDAR bathymetry. ISPRS J. Photogramm. Remote Sens. 2017, 128,
314–325. [CrossRef]

75. Schwarz, R.; Pfeifer, N.; Pfennigbauer, M.; Mandlburger, G. Depth Measurement Bias in Pulsed Airborne
Laser Hydrography Induced by Chromatic Dispersion. IEEE Geosci. Remote Sens. Lett. 2020. submitted.

76. Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: Cambridge, MA, USA,
1994.

77. Mandlburger, G.; Pfennigbauer, M.; Pfeifer, N. Analyzing near water surface penetration in laser
bathymetry—A case study at the River Pielach. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf.
Sci. 2013, 2. [CrossRef]

78. Mandlburger, G.; Jutzi, B. On the feasibility of water surface mapping with single photon lidar. ISPRS Int. J.
-Geo-Inf. 2019, 8, 188. [CrossRef]

79. Allouis, T.; Bailly, J.S.; Pastol, Y.; Le Roux, C. Comparison of LiDAR waveform processing methods for very
shallow water bathymetry using Raman, near-infrared and green signals. Earth Surf. Process. Landforms 2010,
35, 640–650. [CrossRef]

80. Kogut, T.; Bakuła, K. Improvement of Full Waveform Airborne Laser Bathymetry Data Processing based on
Waves of Neighborhood Points. Remote Sens. 2019, 11, 1255. [CrossRef]

81. Schwarz, R.; Mandlburger, G.; Pfennigbauer, M.; Pfeifer, N. Design and evaluation of a full-wave surface and
bottom-detection algorithm for LiDAR bathymetry of very shallow waters. ISPRS J. Photogramm. Remote
Sens. 2019, 150. [CrossRef]

82. Mader, D.; Richter, K.; Westfeld, P.; Weiß, R.; Maas, H.G. Detection and Extraction of Water Bottom Topography
From Laserbathymetry Data by Using Full-Waveform-Stacking Techniques. ISPRS Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 1053–1059. [CrossRef]
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