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Abstract: Change detection (CD), one of the primary applications of multi-temporal satellite images,
is the process of identifying changes in the Earth’s surface occurring over a period of time using
images of the same geographic area on different dates. CD is divided into pixel-based change
detection (PBCD) and object-based change detection (OBCD). Although PBCD is more popular due
to its simple algorithms and relatively easy quantitative analysis, applying this method in very
high resolution (VHR) images often results in misdetection or noise. Because of this, researchers
have focused on extending the PBCD results to the OBCD map in VHR images. In this paper, we
present a proposed weighted Dempster-Shafer theory (wDST) fusion method to generate the OBCD
by combining multiple PBCD results. The proposed wDST approach automatically calculates and
assigns a certainty weight for each object of the PBCD result while considering the stability of the
object. Moreover, the proposed wDST method can minimize the tendency of the number of changed
objects to decrease or increase based on the ratio of changed pixels to the total pixels in the image
when the PBCD result is extended to the OBCD result. First, we performed co-registration between
the VHR multitemporal images to minimize the geometric dissimilarity. Then, we conducted the
image segmentation of the co-registered pair of multitemporal VHR imagery. Three change intensity
images were generated using change vector analysis (CVA), iteratively reweighted-multivariate
alteration detection (IRMAD), and principal component analysis (PCA). These three intensity images
were exploited to generate different binary PBCD maps, after which the maps were fused with the
segmented image using the wDST to generate the OBCD map. Finally, the accuracy of the proposed
CD technique was assessed by using a manually digitized map. Two VHR multitemporal datasets
were used to test the proposed approach. Experimental results confirmed the superiority of the
proposed method by comparing the existing PBCD methods and the OBCD method using the majority
voting technique.

Keywords: weighted Dempster-Shafer Theory (wDST); very high resolution (VHR); Pixel-Based
Change Detection (PBCD); object-based change detection (OBCD)

1. Introduction

With the development of various optical satellite sensors capable of acquiring very high resolution
(VHR) images, the images have been used in a wide range of applications in the remote sensing field.
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Among them, change detection (CD), the process of identifying changes in the surface of the Earth
occurring over a period of time using images covering the same geographic area acquired on different
dates, has proved to be a popular technique [1–5]. The VHR imagery allows us to recognize and
differentiate between various types of complex objects (e.g., buildings, trees and roads) in an acquired
image [6,7]. For VHR remote sensed imagery, accurate CD results can be obtained thanks to abundant
spatial and contextual information [8,9]. Applications such as urban expansion monitoring [10,11],
changed building detection [12], forest observation [13], and flood monitoring [14] can benefit from the
CD approach using VHR multitemporal images.

Among the numerous CD techniques that have been developed, the most common and easy to use
is the unsupervised pixel-based change detection (PBCD). It acquires information on land cover change
by measuring the change in intensity through a comparison of pixels on multitemporal images. Image
ratio, image difference, and change vector analysis are the representative and most popular PBCD
approaches used to obtain the change intensity images [15–18]. Following that, a binary threshold is
estimated to separate the pixels of the change intensity image into changed and unchanged classes [19].

However, the performance of the PBCD algorithms may decrease when applied to multitemporal
VHR imagery [20]. It is because PBCD takes an individual pixel as its basic unit without accounting
for the spatial context of an image [21]. Therefore, it causes salt-and-pepper noises in the CD results
due to the heterogeneity in a pixel-level semantic meaning and misregistration between the VHR
images [22]. Instead of using a pixel as the basic unit for CD, using an object, which is a group of pixels
that are spatially adjacent and spectrally similar to each other [23], as a basic unit can be a solution for
minimizing problems with the VHR image CD [24]. Object-based change detection (OBCD) extracts
meaningful objects by segmenting input images and, thus, is consistent with the original idea of using
CD to identify differences in the state of an observed object or phenomenon [1,25,26].

Based on our review of the literature, the OBCD methods can be categorized into two groups:
(1) fusing spatial features, which takes into consideration of the texture, shape, and topology features
of the objects, in the process of change analysis [23,24,27]; and (2) utilizing the object as the process
unit to improve the completeness and accuracy of the final result [28–30]. Many studies have focused
on using the spatial features of the objects. For example, spatial and shape features were exploited
together to enhance the ability of features to detect building changes [12]. In [11], an unsupervised
approach for OBCD in urban environments was proposed with a focus on individual buildings using
object-based difference features. To improve the accuracy of CD in urban areas using bi-temporal
VHR remote sensing images, an OBCD scheme combining multiple features and ensemble learning
has been proposed [24]. A rule-based approach based on spectral, spatial, and texture features was
also introduced for detecting landslides [31]. However, it is complicated to combine the features
when applying the rule-based approach. The well-constructed software such as eCognition to address
features at object level is necessary. Due to the complexity of images and change patterns, it is also
difficult to identify the proper features for improving the CD results. On the other hand, utilizing the
object as the process unit to combine PBCD results has been recently studied due to its simple and
intuitive methodology. In [28], a traditional PBCD was extended to the OBCD result using the majority
voting technique. This determines whether or not the object changed by calculating the ratio of the
changed and unchanged pixels within the object. With the increase in spatial resolution, the high
reflectance variability of individual objects in urban areas also increases. Therefore, no single method
can achieve satisfactory performance. Several PBCD results were thus adaptively combined with the
object-level operations using the majority voting strategy [19,29,30]. However, when fusing multiple
CD results, uncertainty will remain the primary problem. The multiple results reflect the inaccuracy of
each result and the conflict among different decisions.

Recently, analysts addressed this problem by using Dempster-Shafer Theory (DST) for fusing
different CD results with the segmented image [32]. DST is a decision theory effectively fusing multiple
pieces of evidence (i.e., multiple CD results) from different sources [33–36]. One important advantage
of DST is that it can provide explicit estimates of uncertainty between the different CD results from
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different data sources [37,38]. Thus, the fusion of CD results using DST aims to improve the reliability
of decisions by taking advantage of complementary information while decreasing their uncertainty [39].
In DST, the most critical issue is how to select the uncertainty weight, which explains the reliability
of each PBCD result. However, in the previous research relating to DST, the uncertainty weight was
empirically selected based on the results of the accuracy assessment using the manually digitized CD
reference data [32]. Moreover, the same weight value was allocated for each PBCD method equally,
although the CD result was determined to be a unit of the object. Because the equally allocated
uncertainty weight ignores the properties of each object, it is unlikely to properly reflect the changes in
the VHR multitemporal images.

Another problem occurring when applying the DST fusion and majority voting techniques will
cause due to the fact that the size of the changed areas compared to the unchanged areas in a dataset
is generally small. Accordingly, the falsely detected changed regions in the PBCD result may tend
to be removed when extended to the OBCD result because the ratio of the changed pixels to the
unchanged pixels within the object might be also small. This tendency will be severe when the segment
size becomes large. For example, when there is only one segment in the study area, there will be no
changed areas when extending the PBCD to OBCD using the majority voting or DST fusion because
the number of changed pixels in the site is smaller than those of unchanged pixels. When the number
of segments increases, this tendency decreases. However, the falsely detected changes, causing by the
PBCD methods, will also increase.

To minimize the problems caused by using the DST and majority voting techniques to fuse the
PBCD results, we proposed a weighted DST (wDST) fusion method to extend the PBCD methods to
the OBCD. We developed a method that automatically calculates and assigns the certainty weight for
each object of the PBCD result while considering the stability of the object. Moreover, the proposed
wDST method can control the number of changed objects by considering the total extracted number of
changed/unchanged pixels in each method. To this end, we first co-registered the multitemporal images
to minimize geometric dissimilarity. Then, image segmentation of the co-registered multitemporal VHR
imagery was conducted. Three change intensity images were generated using change vector analysis
(CVA) [15], iteratively reweighted-multivariate alteration detection (IRMAD) [40], and principal
component analysis (PCA) [41]. These three intensity images were exploited to generate binary PBCD
maps, after which the maps were fused with the segmented image using the wDST to generate one
OBCD map. Finally, the accuracy assessment of the proposed CD technique was conducted using a
manually digitized map. Two VHR multitemporal datasets were used to test the proposed approach.
To verify the superiority of the proposed method, the results were compared with those obtained using
existing PBCD methods and the OBCD method using the majority voting technique.

The contribution of this paper is as follows. First, the proposed CD method enables to consider
both the spectral and spatial information by using PBCD maps and segmentation image, respectively.
Second, fusing multiple PBCD methods can minimize the uncertainty of the single method selection.
Third, the proposed wDST fusion allocates the certainty weight of the object in each PBCD method
according to the stability of the object. Moreover, the proposed method can achieve reliable CD results,
regardless of the object size, based on the weight that can control the ratio of the changed/unchanged
pixels in the dataset. It is an unsupervised approach that needs no reference samples with respect
to changes.

The remaining sections of this paper are organized as follows. Section 2 describes the proposed
method for the wDST-based OBCD. The experiments and their results are addressed in Section 3.
Section 4 contains a detailed discussion of the experimental results. Finally, Section 5 outlines the
study conclusion.

2. Methodology

The overall process for the proposed CD is shown in Figure 1. Fine co-registration was
performed as a preprocessing step for VHR bi-temporal images X1 and X2 to minimize their geometric
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dissimilarities [42]. Then, three PBCD methods, which are CVA, IRMAD and PCA, were carried out
for the CD. In the meantime, a segmentation image was generated based on the image X2 using the
multiresolution technique. Finally, the wDST fusion was performed to extend the PBCD results to an
OBCD map. Detailed explanations of each step are presented in the following sub-sections.
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2.1. Co-Registration

To perform an effective and reliable CD, an accurate geometrical preprocessing such as
orthorectification is required on the multitemporal VHR images [43,44]. In the orthorectification
process, however, ancillary data such as digital elevation models and ground control points are
necessarily required [43]. Instead, we carried out co-registration between VHR multitemporal images
to minimize the geometric misalignment. Specifically, we exploited a phase-based correlation method
in locally determined templates between the images to detect conjugate points (CPs) used for the
transformation model construction [45]. To detect well-distributed CPs over the multitemporal images,
the local templates were constructed over the entire X1 image with the same interval. The location
of corresponding templates of the X2 image was determined based on the coordinate information
derived from the metadata. Then, the phase correlation was conducted to find a similarity peak, which
is associated with the position where the corresponding local templates show the optimal translation
difference. The phase correlation method can extract the translation difference between images in the x
and y directions [45,46]. The method searches the difference in the frequency domain. Let Xloc

1 (x, y)
and Xloc

2 (x, y) represent the corresponding local template images of the multitemporal images that
differ only by a translation (x0, y0), derived as:

Xloc
1 (x, y) = Xloc

2 (x− x0, y− y0) (1)

The phase correlation (C) between the two template images is calculated as:

C =

∣∣∣∣∣∣∣F−1

F
(
Xloc

2 (x, y)
)

F
(
Xloc

1 (x, y)
) 

∣∣∣∣∣∣∣ (2)

where F and F−1 are the 2D Fourier and 2D inverse Fourier transformations, respectively.
Since the location of this peak can be interpreted as the translation difference between the two

corresponding local templates, we used the peak location of the phase correlation between the template
images to extract well-distributed CPs. More specifically, the centroid of each local template in the
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image X1 was selected as a CP for the template image Xloc
1 . Then, the corresponding CP position for

the template Xloc
2 was determined as shifted location from the centroid of the template to the amount

showing the highest similarity value of the phase correlation.
After extracting the CPs, an improved piecewise linear (IPL) transformation [42], which is

an advanced version of piecewise linear transformation that construct triangular regions using
corresponding CPs to warp one image to the other image, was used to warp the image X2 to the
coordinates of the image X1. The IPL method focuses specifically on improving the co-registration
performance outside the triangular regions by extracting additional pseudo-CPs along the boundary
of the image to be warped. Interested readers can refer to [42].

2.2. Image Segmentation

A segmentation image was generated using the multi-resolution segmentation method built into
the eCognition software for object-based analysis [47]. This technique creates a polygonal object by
grouping pixels of the image into one by the use of the bottom-up strategy. It starts with small image
objects. In the beginning, the highly correlated adjacent pixels are grown into segmented objects.
This process selects random seed pixels that are best suited for potential merging and then maximizes
homogeneity within the same object and heterogeneity among different objects. This procedure repeats
until all the object conditions, which can be controlled by scale, color, and compactness three parameters,
are satisfied. The scale parameter affects the segmentation size of an image and is proportional to the
size of the objects. As this value increases, the image becomes roughly divided. The shape parameter is
a weight between the object shape and its spectral color. The smaller the value, the greater the influence
of spectral characteristics on the generation of the segmented image. The compactness parameter is
the ratio of the boundary to the area of the whole object. Among them, scale parameters have a great
impact on the CD performance [48]. Therefore, we set the shape and compactness parameters to 0.1,
and 0.5, respectively, and conducted the experimnts while changing the scale parameter values from
50 to 500 with an interval of 50 to find a reliable range of the scale parameters according to CD datasets.
The segmentation was carried out on the stacked image of all the bands constructed from X1 and X2.

2.3. Pixel-Based Change Detection (PBCD)

Due to the complexity of the multitemporal VHR images, it is often difficult to obtain an accurate
CD result from only one PBCD method. Therefore, we exploited three independent PBCD methods
and fused their CD results using the wDST fusion method. Three popular and effective unsupervised
PBCD methods including CVA, IRMAD, and PCA were considered.

The CVA method is a classical CD method and has been the foundation of numerous studies [15,49].
Change vectors were obtained by subtracting the spectral values of corresponding bands, and the
change intensity image was calculated with the Euclidean distance of all the change vectors as follows:

CICVA =
N∑

k=1

(
X1,k −X2,k

)2
(3)

where CICVA is the change intensity of the CVA, and X1,k and X2,k are the k-the band (k = 1, . . . , N) of
bi-temporal images.

The IRMAD method works based on the principle of canonical correlation analysis, which finds
the coupling vector with the highest correlation to a set of multivariate variables [40]. The change
intensity image of the IRMAD is calculated by the chi-squared distance as:

CIIRMAD =
N∑

k=1

(
Uk −Vk
σk

)2

(4)
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where σk is the standard deviation of the k-th band. Uk and Vk can be derived as:

Uk = aTX1,k, Vk = bTX2,k (5)

where a and b are the transformation vectors calculated from the canonical correlation analysis.
It assigns high weights to the unchanged pixels during the iterations to reduce the negative effect of
changed pixels while converging.

The PCA-based CD method analyzes images using the absolute-valued difference image
Xd = |X1 −X2|. After rapping a non-overlapping mask with the size of h × h (h was set to 4 in
this study) to the difference image, it extracts eigenvectors using PCA. Feature vectors for each pixel in
the difference image are then extracted by projecting the adjacent mask data into a unique vector space.
Then, a change intensity CIPCA is calculated as:

CIPCA = eTXd −Ψ (6)

where eT is the eigenvector of the covariance matrix, and Ψ is the average pixel value.
The generated values of the three change intensity images are then normalized into [0, 1]. Finally,

the Otsu threshold was applied to the normalized change intensity images to obtain the binary PBCD
maps that explain each pixel as changed or unchanged.

2.4. Weighted D-S Theory (wDST) Fusion

Due to the complexity of the VHR images, no single method can provide consistent means of
detecting landscape changes. To improve the CD performance and decrease the uncertainties from
single CD technique selection, it is feasible to set a criterion combining complementarities of the three
PBCD maps. To this end, wDST was utilized in the proposed method. In [32], DST was used to fuse the
multiple PBCD maps. However, the certainty weight, which is the fundamental parameter to carry out
the DST, for each PBCD used during the calculation of change, no change and uncertainty was manually
set. The same certainty weight was also allocated as per the PBCD method without considering the
objects’ properties. To solve these problems and further enhance the CD performance, we automatically
allocated the certainty weight in each segmented object according to the homogeneous level of the
change intensity images.

The wDST, which is based on the same concept as the DST, incorporates the basic probability
assignment function (BPAF) by fusing the probability of each PBCD map to measure the event
probability [36,50]. The wDST measures the probability of an event by fusing the probability of each
input result. Assuming that there is a space of hypotheses, denoted as Θ, in CD applications, Θ is the
set of hypotheses about change/no-change, and its power set is 2Θ. Assuming A is a nonempty subset of
2Θ, m(A) indicates the BPAF of subset A, representing the degree of belief. The BPAF m : 2Θ

−→ [0, 1]
is based on the following constraints [32]:

m(∅) = 0 (7)∑
A∈2Θ

m(A) = 1 (8)

Assuming that we have n independent PBCD maps, mi(Bi) indicates the BPAF computed from
the PBCD map i (1 ≤ i ≤ n) and Bi ∈ 2Θ, Bi , ∅. Therefore, the computation of BPAF m(A), which
denotes the probability of A by fusing the probabilities of the maps, is shown as follows:

m(A) =

 ∑
B1∩B2···∩Bn=A

 ∏
1≤i≤n

mi(Bi)


/

1− ∑
B1∩B2···∩Bn=∅

 ∏
1≤i≤n

mi(Bi)


 (9)
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In the CD problem, the space of hypotheses Θ equals to {hu, hc}, where hu indicates unchange
and hc indicates change. Therefore, the three nonempty subsets of 2Θ are {hu}, {hc}, and {hu, hc}, which
means unchange, change, and uncertainty. The BPAF for the three PBCD maps, generated by using the
CVA, IRMAD, and PCA methods, is computed considering combining with the segmentation image.
For each object j in VHR images, the BPAF of {hu}, {hc}, and {hu, hc} for the PBCD map i is defined
as [32]:

mi
j(hu) =

Nu j
i

Nt j

p j
i

mi
j(hc) = wi

Nc j
i

Nt j

p j
i (10)

mi
j(hu, hc) = 1− p j

i

where Nu j
i and Nc j

i indicate the number of unchanged and changed pixels in object j in PBCD map i,
respectively, Nt j indicates the total number of pixels in object j, wi is a weight that controls the BPAF
of the change and unchanged in PBCD map i, and p j

i (0 ≤ p j
i ≤ 1) measures the certainty weight of

the PBCD map i in the object j. If p j
i is large, the BPAF of uncertainty {hu, hc} will be small. The main

differentiation of the wDST compared to the DST is the parameters p j
i and wi.

The easiest way to determine the certainty weight p j
i is to calculate CD accuracies by comparing it

with a manually digitized reference map while changing the p j
i values [32]. However, it is difficult to

construct the reference map in practical CD applications. It is also time-consuming to find the optimal
parameter values with repeat experiments. Therefore, we propose an approach to automatically
allocate the weight p j

i according to the stability of the change intensity of the object. The certainty

weight p j
i is calculated as:

p j
i = 1− σ j

i (11)

where σ j
i indicates the standard deviation of the change intensity image in the PBCD method i at the

object j. If the change intensity is homogeneous in the object, the certainty weight value will be large,
and vice versa. Accordingly, the certainty weight can be automatically calculated while considering
the stability of the change intensity of each object.

Apart from the setting of the certainty weight, another problem of the general DST is caused by
the fact that the portion of the changed areas compared to the unchanged areas is relatively small in
most of the CD cases. It implies that the extension from the PBCD to the OBCD using the DST or the
majority voting is likely to reduce the changed areas, because those fusion methods count the number
of change and unchanged pixels within each segment and use the ratio to figure out whether this
object is changed or not. The relatively large part of the changed areas is removed when the object size
becomes larger.

To minimize the tendency of reducing the changed areas when increasing the object size, we allocate
the weight wi of the BPAF in the PBCD map i derived as:

wi =

√
Nci
Nui

(12)

where Nci and Nui indicate the number of extracted changed and unchanged pixels in PBCD i,
respectively. The wi plays a role in reducing the effect of the BPAF in large areas (i.e., generally
unchanged regions, but it can also control the opposite case according to the considered scene).
The final decision for each object to be changed is assigned when the following rule is satisfied [32]:

m j(hc) > m j(hu)m j(hc) > m j(hu, hc) (13)
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where the m(hu), m(hc), and m(hu, hc) are calculated by Equations (9) and (10). In this way, three PBCD
maps are then fused by considering the object information and their uncertainty, regardless of the
object size.

3. Experimental Results

3.1. Experiments on the First Dataset

Experiments were conducted to evaluate the performance of the proposed wDST-based OBCD
method. WorldView-3 multispectral images with a spatial resolution of 1.24 m were employed to
construct the first dataset. The images were acquired in Gwangju city, South Korea. The area includes
industrial areas, residences, agricultural lands, rivers, and changed regions related to large-scale
urban development. Images X1 and X2 were acquired on 26 May 2017 and 4 May 2018, respectively.
The image X2 was co-registered to the coordinates relating to the image X1 by applying the phase-based
correlation method [45] with the IPL transformation warping [42]. After conducting the co-registration,
the images consisted of 4717 × 4508 pixels (Figure 2). We did not perform the pansharpening of the
multispectral images since its spatial resolution is high enough to describe the scene in detail, especially
for the binary CD application, rather than the multiple CD case [51–53].
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Figure 2. Bitemporal WorldView-3 imagery acquired over Gwangju city, South Korea on (a) 26 May
2017 and (b) 4 May 2018.

Four multispectral bands (i.e., blue, green, red, and near-infrared) of the images were employed
to apply the CD procedure. The PBCD results obtained by the CVA, IRMAD, and PCA methods were
fused to the OBCD map by the wDST. When fusing based on the wDST, the segmentation image was
generated by allocating the scale parameter as 500. To evaluate the performance of the proposed
OBCD method, three PBCD results (i.e., CVA [15], IRMAD [40], and PCA [41]) prior to fusion and their
extended OBCD results using the majority voting technique [28] were generated for a comparison
purpose. Additionally, three PBCD results were combined with the dual majority voting technique to
generate the OBCD result [29]. When generating the OBCD results, the same segmentation image was
employed for the proposed method (i.e., scale, shape, and compactness parameter values set to 500,
0.1, and 0.5, respectively).

The generated CD results and the manually digitized CD reference map by image analysis experts
for accuracy assessment are presented in Figure 3. The numbers of the changed and unchanged pixels
in the reference map are 1,424,917 and 19,839,319, respectively. As one can see from the PBCD results
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(Figure 3a–c), salt-and-pepper noise-like changed pixels were mistakenly detected. These aspects
tended to be minimized when the results were extended to the OBCD (Figure 3d–f). The fused results
using the majority voting and the proposed wDST techniques were also effective in further removing
those noises (Figure 3g,h). The visual results were more similar to the reference map. The OBCD results
on dramatically changed regions are magnified in Figure 4 to compare the performance of the CD.Remote Sens. 2020, 1, x FOR PEER REVIEW  9 of 19 
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(h) OBCD using weighted Dempster-Shafer theory (wDST) and (i) reference map.
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Figure 4. Results of magnified object-based change detection in the first dataset: (a) image acquired on
26 May 2017, (b) image acquired on 4 May 2018, (c) OBCD using CVA, (d) OBCD using IRMAD, (e)
OBCD using PCA, (f) OBCD using majority voting, (g) OBCD using wDST and (h) reference map.

To evaluate CD performance quantitatively, the false alarm rate (FAR), missed rate (MR), overall
accuracy (OA), kappa, and F1-score values were calculated for the reference map and each generated
CD result. FAR is the number of false alarms per total number of unchanged samples in the reference
map. MR is the number of missed detections per the number of changed samples in the reference map.
Overall accuracy is based on the probability that the CD is correctly generated by the reference map.
The kappa coefficient, a measure of how the CD results compare to values assigned by change, is more
reliable due to the imbalance between changed reference samples and unchanged reference samples.
The F1-score is a comprehensive evaluation used in detecting problems with computer vision. The
F1-score is the harmonic mean of precision and recall. Precision can be seen as a measure of exactness
or quality, whereas recall is a measure of completeness or quantity. In simple terms, high precision
means that an algorithm returned substantially more relevant results than irrelevant ones, while high
recall means that an algorithm returned most of the relevant results.

The results of the numerical evaluation for the first dataset are presented in Table 1. The highest
accuracies for indicators are highlighted in bold. The results are likely to improve when extending
the PBCD results to the OBCD ones. The F1-scores of the CVA, IRMAD, and PCA-based CD results
improved from 0.374 to 0.610, 0.375 to 0.596, and 0.510 to 0.610 by extending the PBCD to the OBCD.
The IRMAD method tended to under-extract the changed regions compared to the CVA and PCA
methods. This tendency was confirmed by the fact that the IRMAD method yielded small FAR value
whereas large MR value. The OBCD result using the majority voting slightly improved the kappa and
F1-score values compared to the CVA, IRMAD, and PCA-based OBCD results. The proposed method
achieved the highest values of OA, kappa, and F1-score as 95.877%, 0.633, and 0.655.

To analyze the effect of the scale parameter values in the segmentation process for the OBCD
performance, the F1-score was calculated while the values changed from the 50 to 500 with an interval
of 50. At the same time, the OBCD results obtained after using majority voting were calculated. Both
results are provided in Figure 5. In both cases, the results showed a tendency for the F1-scores to
increase when the scale parameter increased. When the increasing trend exceeded a certain scale,
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it terminated and became more stable. We observed that the proposed wDST showed better results
than the majority voting, regardless of the scales.

Table 1. Assessment of change detection accuracy results in the first dataset.

Accuracy
Pixel-Based Change Detection Object-Based Change Detection

CVA IRMAD PCA CVA IRMAD PCA Majority Voting Proposed

FAR 0.168 0.050 0.130 0.031 0.007 0.019 0.015 0.014
MR 0.232 0.422 0.352 0.374 0.536 0.448 0.452 0.416

OA (%) 82.780 85.532 92.542 94.644 95.783 95.269 95.614 95.877
Kappa 0.304 0.470 0.309 0.582 0.575 0.585 0.603 0.633

F1-score 0.374 0.375 0.510 0.610 0.596 0.610 0.626 0.655

FAR: false alarm rate, MR: missed rate, OA: overall accuracy
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Figure 5. Sensitivity analysis of scale parameters for object-based change detection (first dataset).

3.2. Experiments on the Second Dataset

KOMPSAT-3 multispectral sensor images with a spatial resolution of 2.8 m were used to construct
the second dataset. The study area is located over Sejong city in South Korea. This area is an
administrative city in South Korea and has been developing since 2007, including the relocation of the
central administrative agency. Large-scale high-rise buildings and complexes have been constructed in
a short period, which contributes to the major changes in the image pair. The co-registration applied in
the first dataset was conducted to warp the image X2 relating the coordinates of the image X1 having a
size of 3879×3344 pixels. The co-registered pair of images from the second dataset is shown in Figure 6.

The same PBCD methods and parameter values used in the previous dataset were also utilized.
The obtained CD results are shown in Figure 7. The numbers of the changed and unchanged pixels in
the reference map are 2,029,749 and 10,941,627, respectively. As similar with the first dataset, the PBCD
results led to large number of false alarms, whereas the OBCD results removed many isolated errors.
Except for the proposed method, the OBCD results, however, showed a tendency to under-detect the
changed regions because too many of them were removed when the majority voting technique was
applied. Figure 8 shows the magnified OBCD results in a portion of the region of the dataset that leads
to such aspects by applying the majority voting technique, whereas the proposed method maintained
to detect the large-scale changes.
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Figure 8. Results of magnified object-based change detection in the second dataset: (a) image acquired
on 16 November 2013, (b) image acquired on 26 February 2019, (c) OBCD using CVA, (d) OBCD
using IRMAD, (e) OBCD using PCA, (f) OBCD using majority voting, (g) OBCD using wDST and (h)
reference map.

Table 2 summarizes the quantitative evaluation in the second dataset. As compared to the CD
methods, the IRMAD extracted fewer CD regions, whereas the CVA and PCA extracted relatively
larger CD regions. Similar to the previous experimental results, accuracies tended to improve when
extending the PBCD results to the OBCD ones. However, the improvement was not significant. This
is because the OBCD was likely to remove false alarms when applying the general majority voting
technique. However, in the case of the second dataset, a large portion of the areas were changed, which
means that underestimating the changed regions by removing them through the OBCD fusion did
not adequately improve the CD results. However, the proposed wDST method could detect largely
changed areas, as demonstrated by achievement of the best MR, kappa and F1-score values as 0.322,
0.555 and 0.630, respectively.

The F1-score values calculated based on different segmentation scales are illustrated in Figure 9.
In the case of the majority voting method, it shows a decreased accuracy while the scale increased
from 350 to 500. This is because a large portion of changed pixels in the PBCD map was changed as
unchanged regions in the OBCD map by applying the majority voting technique in the large-sized
objects. The second dataset consists of a relatively large number of changed regions to the extent that
underestimating the changed regions decreased accuracy. However, under different scales, the wDST
method showed a higher level of accuracy than majority voting. This demonstrates the effectiveness
of the proposed fusion methods based on wDST that can control the balance between the portion of
changed and unchanged regions in the considered dataset.
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Table 2. Assessment of change detection accuracy results in the second dataset.

Accuracy
Pixel-Based Change Detection Object-Based Change Detection

CVA IRMAD PCA CVA IRMAD PCA Majority Voting Proposed

FAR 0.135 0.090 0.129 0.053 0.020 0.129 0.042 0.088
MR 0.435 0.545 0.411 0.523 0.674 0.464 0.553 0.322

OA (%) 81.827 82.726 83.867 87.389 87.763 86.645 87.839 87.533
Kappa 0.385 0.374 0.413 0.471 0.398 0.478 0.468 0.555

F1-score 0.493 0.516 0.469 0.542 0.455 0.557 0.535 0.630
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4. Discussion

Compared to the existing preferred CD methods, the proposed wDST fusion-based CD approach
achieved the highest accuracy in terms of the F1-score and kappa values. To facilitate the practical
application of the proposed method, a detailed discussion of the analysis is presented in this section.

First is the influence of the scale parameters. In the case of the first dataset, the accuracy was
improved as the scale increased. This result was obtained in particular because of the high-spatial
resolution of the Worldview multispectral imagery. In the dataset with a spatial resolution of 1.2 m,
very small objects cannot adequately describe the semantic meaning of the scene. Therefore, objects
constructed with small-scale values are over-segmented, leading to relatively poor CD performance.
In the case of the second dataset, the opposite aspects appeared. The accuracy decreased when the
scale parameter values increased as the majority voting technique was applied. This implies that the
smaller objects can effectively describe the terrain of the second dataset constructed from Kompsat-3
imagery, which have a relatively finer spatial resolution of 2.8 m. Variations in the accuracies according
to the scales were reduced by applying the proposed wDST fusion method. The proposed approach
achieved reliable results regardless of the scales because the weight parameter controlled the impact of
the ratio between changed/unchanged regions in the scene.

In terms of measuring accuracies, some changed areas that are not of interest (e.g., seasonal
changes in vegetated areas, shadow related changes, etc.) were not included in the change reference
map. In particular, the seasonal dissimilarity in the second dataset (images collected in November
and February) caused severe change detection errors (Figure 10). Moreover, the scene included
a large number of high-rise buildings, which cause varying magnitude and direction of the relief
displacements and their shadows. These relief displacements and shadows also led the falsely detected
changes (Figure 11). Because the study site images are large in size (i.e., 4717 × 4508 pixels and 3879
× 3344 pixels for the first and the second datasets, respectively), it was difficult to digitize all the
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changes occurring in the sites. The study sites were larger (up to 10 times) than those in other related
studies [28–32]. Although the conditions for conducting the CD were limited, we could demonstrate
the effectiveness of the proposed approach by achieving the improvement in accuracy as compared to
other existing methods.
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Figure 11. Examples of false alarms resulting from high-rise buildings: (a) image acquired in November,
(b) image acquired in February, (c) reference map and (d) proposed method.

In the case of computational efficiency compared to the DST fusion, the proposed wDST fusion
needs to calculate two more parameters, including the BPAF weight wi (Equation (12)) and the certainty
weight p j

i (Equation (11)). The wi was calculated only according to the number of PBCD methods used
(i.e., 3 times in our case). The certainty weight should be calculated by multiplying the number of
used PBCD methods and the number of segments. It means that it will take some time to calculate
the certainty weight in the case where the large number of segments is generated. However, it is still
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efficient to automatically determine the weight according to the stability of the segment instead of
empirically allocating the weight.

It should be noted that the main contribution of the proposed method is to fuse multiple PBCD
results to the OBCD one by automatically considering the stability of the PBCD results in each object.
Therefore, the proposed method can be applicable to any change according to the focus of the PBCD. For
example, assuming PBCD results focus on changes regarding a specific case such as urban expansion
monitoring, forest observation, or flood monitoring, the extended OBCD result is also related to
such changes.

5. Conclusions

We proposed a weighted DST (wDST) fusion method to extend the multiple PBCD maps to the
OBCD map. The proposed wDST method can fuse multiple CD maps by automatically allocating
the weight of the object in each PBCD map while considering the stability of the object. Moreover,
the proposed method enables us to achieve reliable CD results irrespective of the object size by
considering the ratio of the changed/unchanged regions in the scene. Two VHR multitemporal datasets
were used in developing the proposed approach. Comparative analysis with existing PBCD and
OBCD methods on the datasets verified the superiority of the proposed method by yielding the highest
F1-score and kappa values.

To improve the CD results particularly for the VHR multitemporal dataset, additional consideration
should be given to the site properties and acquisition environments. For example, in the second
site, high-rise buildings caused severe CD errors due to dissimilarities in the relief displacement and
building shadows. Seasonal dissimilarities between the images also caused CD errors in the regions
that were not the focus of the analysis. These issues will be considered in our future work to improve
the CD performance of the VHR datasets. Furthermore, we will extend the proposed method to solve
a multiple CD problem.
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