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Abstract: Himawari-8 (H8), as a new generation geostationary meteorological satellite, has great
potential for monitoring the spatial–temporal variation of aerosol properties. However, the large
amount of spectral data with differing observation geometries require re-formulation of the surface
reflectance correction to utilize this new satellite data. This is achieved by using an improved version
of the time series (TS) technique proposed by Mei et al., (2012) based on the assumption that the
ratio of the surface reflectance in different spectral bands does not change between any two scan
times within an hour. In addition, more suitable aerosol models were adopted, based on cluster
analysis of local Aerosol Robotic Network (AERONET) data. The improved TS algorithm (ITS) was
applied to retrieve the Aerosol Optical Depth (AOD) over eastern China and the results compare
favorably with collocated reference AOD data at eleven sun photometer sites (R > 0.8, Root Mean
Square Error (RMSE) < 0.2). Comparison with the H8 official AOD product and with MODIS Dark
Target (DT)–Deep Blue (DB) combined AOD data shows the good performance of the ITS method for
AOD retrieval with different observation angles.

Keywords: Himawari-8; aerosol optical depth (AOD); time series; eastern China

1. Introduction

Aerosols are important for climate and climate change, due to their reflection and absorption of
solar radiation and their effects on cloud properties [1]. They are also important for human health,
especially for people with respiratory problems and lung diseases [2,3]. Furthermore, they play a role
in atmospheric chemistry, while at the same time their variability is very large, which severely affects
cloud microphysics [4,5]. Hence, it is important to obtain accurate information on the occurrence of
aerosols and their properties. One way to obtain this information on large spatial scales is the use of
satellites, using sensors with an initiative-designed task for aerosol retrieval. Many sensors designed
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for land and sea surface temperatures are also suitable for aerosol retrieval, such as the European Space
Agency’s (ESA) along-track scanning radiometers (ATSR-2 and AATSR) [6–8].

Sensors suitable for aerosol retrievals are Moderate Resolution Imaging Spectroradiometer
(MODIS) [9], Visible infrared Imaging Radiometer (VIIRS) [10], Polarization and Directionality of the
Earth’s Reflectances (POLDER) [11] and the Chinese directional polarimetric camera (DPC) [12],
with different characteristics for aerosol retrieval, such as wavebands at wavelengths ranging
from the ultra-violet (UV) to the thermal infrared (TIR; MODIS, VIIRS), two or more viewing
angles (ATSR, POLDER), and polarization (POLDER, DPC). All of these sensors are attached to
sun-synchronous, polar-orbiting satellites, which implies that the revisit time for each point on Earth is
one day or more (depending on swath width). Therefore, at best one or two observations per day are
available [13–15]. In this study, we focus on the use of geostationary satellites, and in particular the
advanced Himawari imager (AHI) onboard the Himawari-8 (H8) satellite. Geostationary satellites
observe only a certain part of the earth, however at a temporal frequency of several observations each
hour during the daytime. This provides information on the diurnal variation of aerosol properties,
which is important for air quality studies and health effects, as well as to study aerosol transport. In
the current study, we only consider aerosol retrieval over land.

Only a few algorithms have reached a state of maturity, rendering them suitable for the operational
production of aerosol data and the creation of climate data records [16,17]. The most crucial issue for
the retrieval of aerosol properties using passive sensors is the effective separation of the contributions
from the underlying surface and atmospheric components to the reflectance measured at the top of the
atmosphere (TOA), especially because the combination is nonlinear and under-constrained [18,19].

The wide variety of land surface types results in variability of the surface appearance from
dark forest to bright desert, snow, or ice covered surfaces, with an associated variation of surface
reflectance [20]. Due to the huge spatial–temporal variability in aerosol concentration and the complex
mixing of aerosol types, aerosol retrieval is difficult [4,21,22]. Therefore, to retrieve aerosol information
from satellite observations, effective separation of the surface reflectance and atmospheric path radiance
contributions to the reflectance measured at the TOA is necessary. Furthermore, satellite observations do
not provide enough information for a detailed characterization of the aerosol properties, and therefore
assumptions of the aerosol type are required.

To effectively correct for the surface contributions to the TOA reflectance, several methods have
been proposed using different assumptions. For sensors with a single view, the accuracy of the aerosol
signal separated from the TOA signal is largely based on an accurate determination of the surface
reflection [19,23]. For MODIS, the dark target (DT) method has been developed [24], which uses the
real-time relationship between the reflectance in the visible and shortwave infrared bands over dark
dense vegetation. However, the DT method applies only to a limited range of surface albedos [9],
while for more reflecting surfaces other methods are needed. This idea was also later used in the retrieval
of sensor Advanced Baseline Imager (ABI) (on American stationary satellite Geostationary Operational
Environmental Satellites - R Series (GOES-R)) [25]. The deep blue (DB) method [26] was developed for
use over brighter surfaces, which utilizes wavelengths in the UV spectral region where the surface
appears dark. These methods have also been applied to other sensors, such as VIIRS, Sea-Viewing
Wide Field-of-View Sensor (SeaWiFS), and Advanced Very High Resolution Radiometer (AVHRR) [27].
DB and DT data products are, in principle, complementary, covering different types of surfaces,
while MODIS Collection 6 and 6.1 data product include a combined DT and DB AOD product [28–30].
Other methods use physical models to represent the angular variation of the surface reflectance, as
described by the bidirectional reflectance distribution function (BRDF). A widely used BRDF data set
is available from MODIS observations using the Ross–Li model based on images measured over 16
consecutive days [31]. For geostationary satellites, it is relatively easier to obtain enough observations.
Govaerts et al. [32–34] used the Rahman–Pinty–Verstraete (RPV) model to simultaneously retrieve
the average AOD and surface BRDF reflectance of Meteosat Second Generation–Spinning Enhanced
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Visible and Infra-red Imager (MSG–SEVIRI) within a day. Because of the high temporal resolution of
geostationary satellites, their data can facilitate surface and aerosol research.

In the current study, we focus on the use of the H8–AHI geostationary satellite. For aerosol
retrieval, Ge et al. [35] used the relationship between the reflection in the visible and mid-infrared
bands of H8–AHI, following the MODIS and ABI algorithms [24,25]. However, due to the long
observation period of a geostationary satellite, this method has some shortcomings in establishing a
strong relationship between the surface reflectance in the visible spectral band and the TOA reflectance
in the infrared band. She et al. [36] used the MODIS BRDF dataset [31] to jointly retrieve the hourly
AOD and the surface reflectance, but this method also suffers from some errors due to fixing the shape
of the surface BRDF. In the H8–AHI official aerosol retrieval algorithm (further referred to as the
“official algorithm”), a predefined minimum surface method was used from a historical dataset with
hourly equivalent BRDF information [37] (similar to Geostationary Ocean Color Imager (GOCI) [38,39]).
This method may introduce some uncertainties by synthesizing the optimal albedo from historical data,
resulting in obvious deviations in some areas compared with AOD measurements from AERONET
sites [40,41].

In addition to surface assumptions, there are still some difficulties in deriving AOD from
atmospheric signals. The aerosol microphysical parameters determine the scattering and absorption of
light by particles, so the use of incorrect aerosol parameters directly leads to incorrect AOD retrievals.
In general, aerosol properties can be obtained from the analysis of long-term measurements [21,32].
However, for simplicity, many algorithms use existing aerosol models and do not take into account the
spatiotemporal variations of actual aerosol types [35,42].

Mei et al. [43] presented a time series (TS) method for MSG–SEVIRI data, which is based on
the assumption that the surface albedo in one pixel remains unchanged during three consecutive
scans. With predefined fixed aerosol types, this method obtained the AOD by utilizing a numerical
minimization routine. The algorithm makes full use of the characteristics of high temporal resolution
and does not need to obtain accurate surface reflectance; therefore, it can be applied to various surface
types. In addition, the algorithm can also obtain the optimal aerosol type from predefined aerosol
types by limiting the spatial variation of aerosol types.

In theory, the TS method is especially suitable for geostationary satellites. However, the
original TS algorithm is not effective on H8–AHI due to method accuracy and inappropriate aerosol
parameters [44–46]. Therefore, this study attempts to improve the TS algorithm in the following five
aspects: (1) re-derive the basic transfer function and consider gas correction and Rayleigh scattering
coupling; (2) modify the cost function to better consider the ratio of surface changes; (3) extend the
observation period of the TS method to retrieve more retrievals; (4) set up aerosol models through
cluster analysis to get more accurate results; (5) use optimal estimates for fast iteration with an efficient
constraint. The results obtained using the improved time series (ITS) algorithm have a cross-comparison
with ground-based data, the MODIS AOD product, and the H8–AHI official AOD dataset. A detailed
description of the retrieval methodology is provided in Section 2, where the data are also introduced.
The comparison between retrieval results is discussed in Section 3. Conclusions are presented in
Section 4.

2. Retrieval Strategy and Data

2.1. Advanced Himawari Imager

The advanced Himawari imager (AHI) is a 16-channel, multispectral imager onboard the
geostationary satellite Himawari-8 (H8), developed by the Japan Meteorological Agency (JMA).
H8–AHI perform full-disk observations over East Asia and the western Pacific at 10 min intervals.
The first 6 bands (0.47 µm–2.2 µm) from the visible to the mid-infrared can be used to capture the
radiance of atmospheric aerosols and the earth’s surface at a maximum spatial resolution of 1 kilometer



Remote Sens. 2020, 12, 978 4 of 24

in East Asia at 10 min intervals. To facilitate processing and utilization, JAXA released real-time L1B
spectral data with 5 km resolution in NC format [15,47].

In the current study on the development of the ITS algorithm, we use the 5 km resolution L1B
spectral dataset available from the JAXA website (http://www.eorc.jaxa.jp/ptree/index.html). Real-time
L2 cloud products with the same spatial–temporal resolution are used to select cloud-free pixels [48,49].
L1B TOA albedo values at 470, 510, 640, 870, and 2250 nm measured at 10 min intervals from 09:00 to
16:00 China Standard Time (CST, i.e., UTC + 8:00) over the study area are used as input. The study
period is from August 2018 to May 2019.

Complementary to satellite observations, local AOD measurements are made using ground-based
sun photometers. The data from sun photometer networks, such as the global Aerosol Robotic
Network (AERONET) [50,51] or the Chinese Sun–Sky Radiometer Observation Network (SONET) [52],
are more accurate than satellite products, and therefore are used as a reference for the validation of
satellite-retrieved AOD [35,36]. In the current study, ground-based AOD measurements from eleven
AERONET and SONET sun photometer sites (see Table 1 for details) are used for validation. The four
AERONET sites are Beijing-CAMS, Xianghe, Xuzhou, and Taihu. The seven SONET sites are Beijing,
Yanqihu, Jiaozuo, Songshan, Hefei, Nanjing, and Shanghai. AERONET provides aerosol data at three
quality levels: level 1.0 (unscreened), level 1.5 (cloud-screened and quality controlled), and level 2.0
(quality-assured) (http://aeronet.gsfc.nasa.gov). The quality of SONET AOD data corresponds to that
of AERONET Level 1.5 [45,46]. Because L2.0 AERONET data for 2018 were not yet available at the
time of the current study, Level 1.5 AERONET V3 AOD data were used together with corresponding
SONET data.

Table 1. Locations of the eleven sun photometer sites used in the current study, including the surface
type and period for which data were available.

Sites Longitude (◦) Latitude (◦) Altitude (m) Period Surface

Beijing-CAMS 116.38 39.98 92 2018.8–2019.05 Urban

Beijing 116.38 40.01 59 2018.8–2019.05 Urban

Xianghe 116.96 39.75 36 2018.8–2019.05 Rural

Xuzhou 117.14 34.22 60 2018.8–2019.05 Suburb

Taihu 120.22 31.42 20 2018.8–2018.10 Urban

Yanqihu 116.67 40.41 100 2018.8–2019.05 Rural

Jiaozuo 113.25 35.19 113 2018.8–2019.05 Urban

Songshan 113.10 34.54 475 2018.8–2019.05 Woodland

Hefei 117.16 31.91 36 2018.8–2019.05 Suburb

Nanjing 118.96 32.12 52 2018.8–2019.05 Suburbs

Shanghai 121.48 31.28 85 2018.8–2019.05 Urban

For comparison, the H8–AHI official version 2.1 level 2.0 5km AOD product [53] and the
MODIS C6.1 10 km AOD data (DT and DB combined dataset, DT–DB) from Terra and Aqua were
selected. The MODIS 10 km product is widely used and can be obtained from the LAADS website
(http://ladsweb.nascom.nasa.gov/data). MODIS is in a sun-synchronous polar orbit, with equator
crossing times at about 10:30 (Terra satellite) and 13:30 (Aqua satellite) China Standard Time (CST).

2.2. Basic Method

The ITS algorithm needs to construct the cost function based on the surface reflectance. The ITS
method uses the same two-stream approximate radiative transfer model as the original TS method
(classic formula derived by Liou et al.) [54]. This model decomposes the pure atmospheric scattering

http://www.eorc.jaxa.jp/ptree/index.html
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processes in spherical coordinates into upward and downward flux streams (F↑, F↓; τ represent the
atmospheric optical thickness at any position):

dF↑(τ)
dτ = γ1F↑(τ) − γ2F↓(τ) − γ3$F0 exp(− τ

µ0
)

dF↓(τ)
dτ = γ2F↑(τ) − γ1F↓(τ) + (1− γ3)$F0 exp(− τ

µ0
)

(1)

In Equation (1), F0 and µ0 represent the solar flux and cosine of its direction angle, while the
coefficients γ1,γ2,γ3 are only related to the single scattering albedo (ssa, $) and the asymmetry factor
(asy, g) of the atmosphere layer. To integrate these formulas, the boundary conditions need to be
clear. Then, considering the surface albedo and the albedo at TOA, A, A′, the boundary conditions for
upward and downward fluxes at the top and bottom of the atmosphere are reset as Equation (2).

F ↑ (τ = 0)
µ0F0 + F ↓ (τ = 0)

= A′ (2a)

F ↓ (τ = 0) = 0 (2b)

F ↑ (τ = τ0)

F ↓ (τ = τ0)
= A (2c)

In Equation (2), τ is the atmospheric optical depth, where F (arrow up and down with τ = 0)
indicates the fluxes at TOA, and likewise F (arrow up and down with τ = τ0) indicates the fluxes at
the surface. Based on known boundary conditions and atmospheric parameters, the surface albedo A
can be derived from TOA reflection A′. After mathematical deformation and simplification, the final
formula can be formulated as Equation (3):

A =
(a− cA′)ekτ + (b + cΓA′)Γe−kτ +

(
Γ2
− 1

)
G+e−

τ
µ0

(a− cA′)Γekτ + (b + cΓA′)e−kτ + (Γ2 − 1)(G− + c)e−
τ
µ0

(3)

In Equation (3), since no new variables were introduced, a, b, c, Γ are derived from the parameters
in Equation (1), so they are only related to atmospheric parameters and incident solar radiation.
They are functions of the incoming solar radiation flux (F0), solar zenith angle (µ0), single scattering
albedo (ssa,ω̃), and asymmetry factor (asy, g) [55,56]. All the parameters are used by Mei et al., (2012),
which are the deformations of the two-stream parameters (a detailed explanation of the symbols and
the equation derivation are presented in the Appendix A).

The parameters of solar flux are easily obtained, so this formula indicates that for known atmospheric
parameters (aerosol and gas), the surface albedo can be calculated from the TOA reflectance measured
by H8–AHI.

For a clear sky, we assume that the atmospheric optical depth (τ) consists of two parts
(Equation (4a)): the molecular Rayleigh scattering (τR) and the aerosol optical depth (τA). An
approximate expression for the Rayleigh scattering, Equation (4b), is sufficiently accurate for most
applications in remote sensing [1]. The aerosol optical depth (AOD) varies with wavelength, as
described by the Ångström turbidity Formula (4c) [1]. Over a small area and within a short period
time, the aerosol properties (represented by the wavelength exponent α) can be considered to be
invariant, while the concentration of the aerosol particles (given by the Ångström turbidity coefficient
β) may change.

τ = τA + τR (4a)

τλR(∞) = 0.00879λ−4.09 (4b)

τA = βλ−α (4c)
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Due to the mixing of all atmospheric particles, the optical properties of the atmospheric layer
use Equations (5a) and (5b) to describe the atmospheric coupling single scattering albedo (ω̃′) and
coupling asymmetric factor (g′) by optical depth weighting [57,58].

ω̃′ = (ω̃A·τA + τR)/(τA + τR) (5a)

g′ = (gA·τA·ω̃A)/(τA·ω̃A + τR) (5b)

Additionally, gas absorption should be considered. Similar to the procedure adopted by MODIS,
we use the National Centers for Environmental Prediction (NCEP) data to correct for the effect of gas
absorption (H2O, CO2, and O3) on the measured TOA reflectance before retrieval is attempted [59].
The NCEP data include the 1◦ × 1◦ global meteorological analysis data. For each pixel in the L1B data,
the corrected reflectance A′ is given by Equation (6), which has a scale factor Tgas

λ
based on wavelength,

air mass factor, and weighting coefficients (Appendices B and C; benefiting from the similar band
between AHI and MODIS, here we directly use MODIS parameter values).

A′λ = Tgas
λ

AL1B
λ (6)

In the case of strongly absorbing aerosols and an optically thin layer, a negative surface albedo
may result from the numerical correction due to the high forward scatter peaks of atmospheric particles
(an inherent defect of the two-stream approximation). Therefore, we also adjust this case by using a δ
function that removes the amount of scattering of the forward peak while ensuring the consistency of
parameters τ, $, and g [54].

2.3. Aerosol Types

Aerosol properties are important and inappropriate aerosol type can result in inaccurate retrieval
results. In the literature, different models have been proposed. For example, Govaerts et al., (2010)
suggested a model consisting of six aerosol types (three for spherical and three for non-spherical particles)
for use in MSG–SEVIRI AOD retrieval [32]. This model was also used by Mei et al., (2012). Derived from
AERONET global data, the aerosol model used in the MODIS DT algorithm is another good model [28].
However, considering the scope of the study area, the optical properties of the global model do not agree
well with local areas (Figure 1a,b). The scatterplots of the ssa versus asy at an AERONET wavelength
of 675 nm, together with the values for Govaerts and MODIS aerosol models, show that these models
are not completely representative for the actual aerosol properties over eastern China, especially for the
absorbing spherical particles (ssa is on the edge of the cloud of data points or beyond).

Therefore, it is more suitable to construct aerosol types from long-term local measurements
and accumulated meteorological data. However, a suitable aerosol model needs to consider the
microphysical properties of the particles and local climatology, which is very complicated. For the
two-stream approximation method in this study, the optical absorption parameter (ssa) and size
parameter (asy) derived from the aerosol microphysical properties are sufficiently accurate to define
different aerosol types [22,43]. Therefore, a simple k-means clustering method can be used for aerosol
classification based on ssa and asy for AERONET observations in different bands. The theoretical
understanding of this statistical method is incomplete; however, it can avoid explicit assumptions
regarding aerosol physics in other aerosol models.

To this end, AERONET V3 level 2.0 aerosol data (best quality) at 440, 500, 675, and 870 nm spectral
bands from more than 10 local AERONET sites over eastern China were collected since 2010. For ssa
and asy in different bands, the k-means clustering method only needs to specify the number of types to
divide the different types. Considering the average difference of each type and other models, 5 types
are finally determined. For comparison, the results at 675 nm are presented in Figure 1c, with each of
the five clusters coded in different colors. The values for other H8–AHI wavelengths were obtained by
interpolation using quadratic fitting, which are shown in Figure 1d–f and Table 2.
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Figure 1. Three aerosol types (panel (a) for Govaerts’ model, panel (b) for MODIS, panel (c,d–f) for
cluster types at different bands). The Aerosol Robotic Network (AERONET)-derived data are plotted
as the small background points, while the larger colored dots represent different aerosol types.

Table 2. Aerosol types resulting from the cluster analysis described in the text: single scattering albedo
values (ssa, ω̃) and asymmetry parameters (asy, g) at four different wavelengths.

Model
ω̃/g 470 nm 510 nm 640 nm 870 nm

1 0.941/0.743 0.946/0.736 0.963/0.711 0.962/0.696

2 0.839/0.697 0.83/0.688 0.814/0.664 0.785/0.659

3 0.944/0.70 0.946/0.689 0.953/0.653 0.947/0.632

4 0.89/0.704 0.891/0.696 0.895/0.672 0.88/0.66

5 0.895/0.673 0.897/0.66 0.904/0.618 0.889/0.60

In addition, AOD conversion between bands for different types can use the Ångström exponent
(AE). AE is provided directly in the AERONET dataset and the highest frequency AE value in the
histogram of each cluster is determined as the final AE. Using this AE value, the AOD at different
wavelengths can be obtained using Equation (4c). Then, Equation (3) becomes a function that only
contains AOD as unknown.

2.4. The Core Strategy

In the original TS algorithm presented by Mei et al. [1], the surface reflectance was assumed to be
invariant between three consecutive observations within 30 min. There are three main disadvantages:
(1) If the surface reflectance values in different bands have multiple differences, then the square sum
will further expand this difference, resulting in a band with high reflectance becoming dominant in the
cost function. For example, the 640 nm band of the dark pixel in the original DT algorithm is twice
as large as the 470 nm band [24]. (2) The assumption of invariant surfaces leads to an uncertain time
period for maintaining this invariance. In fact, although the surface reflectance changes slowly with
time, it still cannot be considered constant due to the complex BRDF [33,34]. (3) Due to the cloud mask,
the requirement for effective observations in three consecutive times also greatly reduces the retrieved
pixels. Therefore, the cost function needs to be reconstructed.
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For multi-viewing-angle instruments, the observations at different angles allow for simultaneous
retrieval of surface reflectance and AOD [60]. The ratio of the directional reflectance values for
different viewing directions, here referred to as the K-ratio, is approximately constant at different
wavelengths [1,19,61]. This principle can also be applied to geostationary satellites based on the
reflectance variation caused by different angles of the sunlight over a period of time. An effective cost
function (Equation (7)) is established, from which the most suitable result should satisfy the minimum
sum of differences between the K-ratios in different bands.

The cost function of ITS can be evaluated using the following equation:

ε f inal = min
m=5

 n∑
i=1

∑
t

(
Am
λt1,i/Am

λt2,i −Am
λt1,i+1/Am

λt2,i+1

)2
 (7)

where m is the aerosol type (the total number of aerosol types is 5) defined for observations at time
t1, t2 (which represents any scans within one hour) and different wavebands (i represents the spectral
band, n is the total number of bands equal to 4). The different K-ratios can be calculated for different
AOD combinations to determine the minimum value for the cost function ε. In this cost function,
the subtractions of different K-ratios take on an order of wavelength. In fact, the pair can be arbitrarily
chosen here and the result is not much different (because the values of K-ratios change slowly within
an hour). By changing aerosol type, five values ε can be obtained, with the smallest one corresponding
to the most probable AOD and aerosol type in the retrieval area.

In addition, by using K-ratios invariance, the observation intervals can also be expanded.
The H8–AHI official document (constructed surface reflectance data set for each hour during daytime
using the second minimum method) and She et al. also recommend one hour [36]. Considering the
spatial–temporal variation of aerosol properties, in this paper, if there are two effective scans in an hour,
Equation (6) can be used. Therefore, in the absence of sufficient observations due to the real weather,
we can also get enough data. Then, an optimal constraint estimation is used to search for the best result
within the bounds of real aerosol and surface conditions (assuming that the surface reflectance of the
640 nm visible band is less than the TOA reflectance of the 2250 nm middle infrared band).

The AERONET wavelengths used to define the aerosol types in this study (Figure 1 and Table 1)
are close to the H8–AHI visible and NIR bands, so the optical properties ssa and asy of H8–AHI
spectra (470, 510, 640, and 860 nm) can be obtained by quadratic fitting from AERONET data. For a
single pixel, the selection of aerosol types may have some uncertainties due to the model accuracy, the
aerosol type error, and other factors. An important constraint for the final aerosol type is used: the
aerosol properties do not change during one hour and over a 1◦ × 1◦ spatial grid [22,43]. With this
scheme, the aerosol type for pixels within an area can be updated by counting the aerosol type that
appears most.

2.5. Execution Steps

Figure 2 shows the flow chart of the ITS aerosol retrieval algorithm. For each series of cloud-free
pixels from more than two H8–AHI scans within an hour, the preliminary result consists of an aerosol
type, AODs, and surface albedos (for each scan), which are retrieved in steps 1 and 2. For the pixel
series in each 1◦ × 1◦ grid, the most frequent aerosol type for about 400 pixels would be set as the final
aerosol type for that grid (step 3). That aerosol type is used for the final processing of the 1◦ × 1◦ image
(step 4) and provides the final result (step 5). This procedure imposes a spatial constraint on the aerosol
types, which to some extent ensures the accuracy of the final result.
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Figure 2. Flow chart for the improved time series (ITS) aerosol retrieval algorithm. See text for explanation
of the various steps. AOD, aerosol optical depth; H8–AHI, Himawari-8–advanced Himawari imager.

2.6. Study Area

The study area is located between 105◦ to 125◦E and 25◦ to 45◦N, which covers Eastern China,
the Bohai Sea, and part of the Huanghai Sea (Figure 3). Many megacities are located in this area,
meaning it is strongly influenced by anthropogenic atmospheric pollution [2,5]. Because of the
differences between land and ocean algorithms, for this study, we only consider the retrieval of aerosols
over land and validate the results by comparison with data from eleven ground-based AOD reference
sites in Eastern China. The locations of these AERONET and SONET sites are marked in Figure 3 in
yellow and red, respectively.
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2.7. Evaluation Metrics

Spatial–temporal matching criteria are the most important criteria for the comparison of different
datasets. The MODIS dataset was resampled to the same resolution as H8–AHI (5 km) by using
the nearest neighbor interpolation method. However, the AODs from the MODIS product and the
ITS-derived AODs are retrieved at 550 nm, the H8–AHI official product is retrieved at 519 nm, and both
are different from the wavelength of the ground-based reference data. Therefore, all AOD data were
converted to 0.55 µm using Equation (3c). For the convenience of comparison, the overpass times of
MODIS Terra and Aqua were defined to 10:30 CST and 13:30 CST (slightly different from the actual
local time).

The AOD retrieved for one pixel using the ITS method is only related to the reflectance of that
same pixel in two consecutive moments, which is independent of other surrounding pixels. In order to
verify the collocations from different datasets accurately, a spatial–temporal matching method used the
average values of ground-based measurements during a certain time period (10 min, ± 5 min around
the satellite overpass time) and the average of the satellite-retrieved AOD over an area of 5 × 5 pixels
around the sun photometer site (for stability, more than 10 valid values in 25 pixels were included the
calculation) was used [10,43].

For the evaluation of the H8–AHI ITS algorithm, scatterplots were made of the retrieved AOD
versus reference AOD data. Four parameters were used as metrics to evaluate the performance of the
ITS method: (i) the correlation coefficient (R); (ii) the percentage of ITS retrievals falling within the
expected error (EE) (±(0.05 + 0.15τ)), which applies to MODIS data over land and has been adopted
by others [9,10]; (iii) mean difference (MD =

∑
(τretrieved − τgroundbased)/n describes the mean bias

between two datasets; (iv) root mean square error (RMSE =
√∑

(τretrieved − τgroundbased)
2/n) refers to

the satellite product’s absolute deviation from ground-based AOD).

3. Results and Analysis

3.1. Validation against AERONET Measurements

Scatterplots of satellite-retrieved AOD products versus collocated ground-based AOD data are
presented in Figure 4. For comparison, the H8–AHI L2 official AOD product is shown in the left
column, the MODIS product is shown in the middle column, and the ITS method is shown in the right
column. Overall, the three datasets compare favorably with the ground-based reference measurements.
However, at most sites, the data retrieved using the ITS algorithm have better correlation and lower
RMSE than the official H8–AHI product, and at all sites more collocations fall within the EE than
the official H8–AHI product. The results from the ITS algorithm are overall not as good as those
from MODIS, but at some sites (Nanjing, Taihu, and Shanghai) the ITS statistics are better than those
from MODIS.

The official algorithm has taken into account the hourly BRDF characteristics, but the result is the
worst in the three datasets with small correlation coefficients (often <0.8) and large RMSEs (>0.32).
Especially at Yanqihu, Beijing, Beijing-CAMS, and Xianghe sites, the official product at low AOD
(AERONET AOD<0.15) is much too high. In these cases, the results from the ITS method are much
better than those from the official product, with a smaller number of overestimations, a larger R
(>0.8), and a smaller RMSE (<0.20). Because both algorithms use the same cloud screening product,
cloud contamination cannot be the reason for the higher AOD of the official product. Levy et al., (2010)
concluded that surface assumptions tend to dominate AOD retrieval when there is low aerosol loading
(AOD<0.15) [9]. Therefore, we conclude that the surface albedo assumption with the constant K-ratio
used in the ITS algorithm provides a better surface correction than the minimum reflectance method
used in the official product. However, as mentioned in Table 1, the underlying surface of Beijing and
Beijing-CAMS belongs to the urban surface, whereas the Yanqihu and Xianghe sites are located in
rural areas.
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Figure 4. Color scatterplots of aerosol optical depth (AOD) from the H8–AHI official product (left),
the MODIS AOD product (middle), and the ITS method (right) against ground-based reference AOD
measurements at six sites (each row represents one site) from August to December 2018. The color bar
indicates the number of data points, the red solid line is linear regression, the gray solid line is the 1:1
line, and the dashed blue lines are the expected error (EE) envelopes. N means the number and other
meaning of the text in the legends has been described in Section 2.7.

For Beijing and Beijing-CAMS, the ITS method partially overestimates the AOD (which is not
encountered in other sites with an urban underlying surface, such as Jiaozuo and Shanghai), indicating
that the surface correction in the ITS method may need further consideration. At the Xuzhou site,
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the distributions of three datasets are similar and the correlation coefficient of H8–AHI official product
is larger than that for the ITS and MODIS. However, the collocations from ITS have the smallest RMSE
and more collocations fall in the EE lines. Except for the two sites in Beijing, the ITS-derived data from
other sites have a similar distribution (the upper or lower deviations of the EE envelope) from the
MODIS product. When the underlying surface is a different type, there is no significant difference
in the results, which indicates that the ITS algorithm can successfully retrieve AOD irrespective of
surface type and the aerosol model is representative of the actual situation. H8–AHI provides much
more data than MODIS due to the high temporal frequency, which fully reflects the advantages of the
ITS algorithm applied to geostationary satellites. At the Taihu site, due to the weather, the number
of successful retrievals from the ITS algorithm is less than that from the official product because two
validated cloud-free pixels are needed in one hour. This results in the rejection of more pixels than the
H8–AHI official method, which uses a single cloud-free observation.

3.2. Time Series Analysis

The frequent observations of geostationary satellites allow for monitoring of the diurnal evolution
of the AOD. Figure 5 shows the AOD time series over a period of several days for selected sites, and for
one site (Taihu) a full-time series of about 3 months. To this end, collocations between three satellite
datasets and ground-based observations were selected from Figure 4, for which large numbers of
AOD retrievals with different aerosol loading rates are available. The data in Figure 5 show that for
different aerosol loadings, the ITS-derived AOD generally traces the ground-based observations well.
Absolute differences are less than 0.2 and vary throughout the day. This indicates that the algorithm
can capture small aerosol changes that vary with solar irradiation and the different underlying surfaces.

At the Beijing-CAMS (panel a) and Xianghe (panel b) sites, the performances of the H8–AHI
official product and ITS method are different from those shown in Figure 4. The official product has
a large overestimation under low aerosol loading, which is also reflected in Figure 5. Although the
reference data show an almost constant AOD, those from the official product increase substantially with
time and remain high. This indicates that the surface hypothesis and aerosol type used in the official
algorithm do not always provide the correct result. In contrast, the ITS-derived AODs at the Beijing
site are often closer to the reference, although high AOD is also observed in that data. At the Xianghe
site, the ITS-derived AOD traces the reference data quite well and deviations are small, regardless of
the level of aerosol loading. This illustrates the applicability of the ITS algorithm for multiple surface
types. However, the performance in Beijing indicates that the ITS algorithm still needs to be further
processed under some complex surfaces.

The Jiaozuo site (line c) is located in another urban area. Compared with Beijing, the AODs
derived by the ITS agree well with the ground-based observations, and the daily variation is very
smooth. This indicates that the ITS algorithm has a good performance, which it also has over some
urban surfaces.

For the Taihu site, a full time series of about 3 months (4 August to 10 October 2018) is presented.
The performance of the H8–AHI official algorithm is good at the Taihu site, with more successful
retrievals than the ITS method. The ITS-derived AOD and the official product both trace the
reference data well, often with a small underestimation by the ITS and a larger overestimation by the
official product.
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3.3. Spatial–Temporal Distributions of ITS-Derived Data

Maps of the AOD over eastern China, derived using the ITS method, are shown in Figure 6 for
each hour from 09:00 to 16:00 LST on October 04, 2018. The maps show the spatial variation over the
study area and the evolution during the day, with a strong increase shown over almost the whole
study area, and in particular over the North China Plain. This fully demonstrates the advantages of
geostationary satellites for aerosol research.

Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 28 

 

 

Figure 5. Comparison of AOD retrieved using the ITS method (red), the H8–AHI official product 445 
(blue), the MODIS product (black star), and AERONET observations (green) for four different 446 
AERONET sites (indicated at the top right of each panel). The top three panels show only a few days 447 
each, whereas the bottom panel (Taihu) shows all retrieved AOD values over about 3 months 448 
(August to October) in 2018. 449 

3.3. Spatial–temporal distributions of ITS-derived data 450 
Maps of the AOD over eastern China, derived using the ITS method, are shown in Figure 6 for 451 

each hour from 09:00 to 16:00 LST on October 04, 2018. The maps show the spatial variation over the 452 
study area and the evolution during the day, with a strong increase shown over almost the whole 453 
study area, and in particular over the North China Plain. This fully demonstrates the advantages of 454 
geostationary satellites for aerosol research. 455 

 456 

Figure 6. ITS-retrieved AOD maps on October 04, 2018, for 8 consecutive hours from 09:00 to 16:00. 457 

3.4. Comparison with official H8–AHI and MODIS AOD products  458 
This section focuses on the spatial distribution of the ITS-retrieved AOD and its performance 459 

compared with that from the H8–AHI official product and the MODIS products. AOD maps for each 460 
of these three products, retrieved from observations on October 5, 2018, during the time of the Terra 461 
and Aqua overpasses (about 10:30 and 13.30 CST, respectively), are presented in Figure 7. Seasonal 462 
mean results including September and October 2018 are compared in Figure 8. The spatial 463 
distributions of the three datasets in Figure 7 show similar patterns but the values are very different. 464 
At 10:30 CST, the coverage of the official product (panel b) is very sparse. In contrast, in the 465 
afternoon, the H8–AHI official product (panel e) AOD is much larger than that from the ITS or 466 
MODIS. ITS-derived AOD (c and f) is much closer to the MODIS AOD (a and d), although somewhat 467 
lower. The aggregated data of the three dataset the MODIS Aqua overpass time (about 13:30 CST) 468 
can further exhibit the difference. To calculate the means, only the pixels for which the number of 469 
retrievals is larger than 2 (at least two cloud-free days) were used to calculate the monthly means. 470 
The ITS and MODIS AOD mean maps show a similar spatial pattern, while the AOD of the official 471 
product is overall much higher. This observation is consistent with the scatterplots in Figure 4. 472 
Comparison of the ITS-derived AOD maps with those from MODIS shows a qualitative similar 473 
spatial distribution, however the ITS-derived AOD is somewhat lower and patchier. This may be 474 
due to the internal accuracy difference of the two-stream model in the ITS algorithm. 475 

Figure 6. ITS-retrieved AOD maps on October 04, 2018, for 8 consecutive hours from 09:00 to 16:00.

3.4. Comparison with Official H8–AHI and MODIS AOD Products

This section focuses on the spatial distribution of the ITS-retrieved AOD and its performance
compared with that from the H8–AHI official product and the MODIS products. AOD maps for each of
these three products, retrieved from observations on October 5, 2018, during the time of the Terra and
Aqua overpasses (about 10:30 and 13.30 CST, respectively), are presented in Figure 7. Seasonal mean
results including September and October 2018 are compared in Figure 8. The spatial distributions of
the three datasets in Figure 7 show similar patterns but the values are very different. At 10:30 CST,
the coverage of the official product (panel b) is very sparse. In contrast, in the afternoon, the H8–AHI
official product (panel e) AOD is much larger than that from the ITS or MODIS. ITS-derived AOD
(c and f) is much closer to the MODIS AOD (a and d), although somewhat lower. The aggregated
data of the three dataset the MODIS Aqua overpass time (about 13:30 CST) can further exhibit the
difference. To calculate the means, only the pixels for which the number of retrievals is larger than 2
(at least two cloud-free days) were used to calculate the monthly means. The ITS and MODIS AOD
mean maps show a similar spatial pattern, while the AOD of the official product is overall much higher.
This observation is consistent with the scatterplots in Figure 4. Comparison of the ITS-derived AOD
maps with those from MODIS shows a qualitative similar spatial distribution, however the ITS-derived
AOD is somewhat lower and patchier. This may be due to the internal accuracy difference of the
two-stream model in the ITS algorithm.
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Figure 7. AOD maps derived from the MODIS Terra and Aqua products (panel (a,d)), the H8–AHI
official product (b,e), and the ITS method (panel (c,f)) on October 05, 2018, at 10:30 China Standard
Time (CST; top) and 13:30 CST (bottom).
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For further comparison of the ITS-derived AOD and the MODIS product, the pixel-by-pixel
differences between the ITS and Terra (about 10:30 CST) products are plotted in Figure 9a, while the
difference plot for ITS Aqua (about 13:30 CST) is presented in Figure 9b. Figure 9a shows that in the
northern part of the study area, the ITS-derived AOD is generally higher than the MODIS AOD, whereas
in the southern part of the area the ITS-derived AOD is smaller. Some areas are slightly overvalued
(red), but undervalued areas (blue) are more common. The coverage of positive and negative biases
does not have a clear range boundary or trend between morning and afternoon. The scatterplots
in Figure 9c shows that the bulk of the data is centered around the identity line, indicating good
quantitative agreement between ITS and MODIS Terra for AOD up to about 0.5. However, large
deviations occur, especially overestimation by a factor of 2–3. The comparison with MODIS Aqua is
much lower; especially for low AOD, the ITS-derived results have an obvious underestimation and
there seems to be little relation between the ITS and MODIS Aqua AOD during the afternoon overpass.
The difference in the performance of the ITS algorithm between the morning and afternoon indicates
that further improvements need to be made.
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ITS-derived AOD vs. MODIS Terra (c) and MODIS Aqua (d).

3.5. Aerosol Type Analysis

The ITS method can simultaneously retrieve AOD and aerosol-type products (from five predefined
types). Most aerosol retrievals focus on AOD accuracy [10,62], but aerosol-type products are also a
research topic [60,63,64]. In this section, the preliminary results from the ITS method are discussed.

With the two-stream approximate method in the ITS algorithm, different aerosol types can be
retrieved for adjacent pixels with similar aerosol loading (accuracy limitations). This is physically not
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acceptable, and therefore for each 1◦ × 1◦ grid cell the aerosol type, which occurs in the largest number
of pixels, is selected as the most probable type for that grid cell. It appears that most of the time and in
most areas, moderately absorption (type 3; Figure 1 and Table 1) occurs most frequently. This type
also occurs most frequently according to AERONET statistics. This may be due to the relatively small
study area where anthropogenic aerosols dominate.

Figure 10 shows the time series of three aerosol parameters (AOD, ssa, and asy at 670 nm) derived
from AERONET measurements and retrieved by the ITS algorithm for single pixels at the Beijing site.
The quality of the ITS dataset at this site is not as good as other sites (Figure 4), which is representative
of studying the relationship between aerosol types and AOD. Overall, the ITS-derived AODs have a
qualitatively similar variation to the AERONET data. The most corresponding points, where ssa is
equal to 0.953 and asy is equal to 0.653, belong to the third type. The largest differences between the
ITS and AERONET AOD occur when the ssa and asy are also different from the reference data, such as
on January 9 and February 28. The AOD variation is similar to that of the reference AERONET data,
however the AOD values diverge when the ssa deviation is small and asy deviation is large, such as
the date before January 17 and the period between February and March. When ssa and asy are in good
agreement with the actual aerosol properties from ground-based measurements, this also applies to
ITS-derived AOD (after March).
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and from AERONET inversions (green) from January to May 2019 at the Beijing site. The ITS-derived
ssa has been color coded according to the aerosol type (types 1–5, see legend).
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As expected, the aerosol type directly affects the accuracy of the AOD retrievals. As shown
in Figure 10 (top panel), the ITS-derived AODs do not compare well with the reference data until
February, whereas after February the comparison is good and the ITS AOD traces the AERONET AOD.
The overestimation in the winter may be due to the bright surface at that time of the year, together with
low AOD, as observed by AERONET [9]. During episodes with higher AOD, the ITS data compare
favorably with the AERONET data.

4. Discussion and Conclusion

H8–AHI, which has an unprecedented high temporal resolution, has the capability to capture
the dynamic variations of aerosols, and thus provide an important contribution to atmospheric
environmental monitoring [65,66]. The use of H8–AHI data for aerosol retrieval requires an effective
separation of the effects of the surface and the atmosphere, with the reflectance measured by the sensor
at the top of the atmosphere. To this end, the use of a fast and accurate algorithm derived by Mei et al.,
(2012) was proposed and further improvements were made for use with H8–AHI data. Compared
with the official algorithm and the MODIS DT algorithm, this algorithm can make full use of the
characteristics of geostationary satellites. The generic nature of this algorithm renders it suitable for
real-time operational use. Simultaneously retrieved aerosol types give the algorithm wider application
prospects. Validation with independent reference data from AERONET and comparison with MODIS
AOD show the good performance at the ITS-retrieved AOD. The ITS algorithm performance is better
than that of the current official H8–AHI aerosol product (smaller RMSE and more points within the
EE at all sites) and close to the MODIS product. The aerosol models are used in the algorithms,
which were developed for this area using the clustering method for AERONET data in the study area.
The evaluation of the retrieved aerosol types shows a good agreement between the retrieval aerosol
type and the real aerosol type.

However, improvements to this new algorithm are still needed. Comparison with AERONET
measurements at the Beijing-CAMS and Beijing sites shows an obvious overestimation at low aerosol
loading (AOD<0.2), although the ITS results are better than the official product. Additionally, the ITS
performs better at other urban sites than at the Beijing sites. This may be explained from the
residual contribution of the surface albedo and the differences in retrieval algorithms between
ground-based instruments and satellite sensors (which may be insensitive to very thin aerosol
layers [54]). The overestimation of the AOD for low aerosol loading at the Beijing sites has also been
reported in other studies [35,36] and requires further analysis. In addition, because this algorithm uses
only two effective scans in an hour, it lacks a strict surface constraint over one or more days [67].

The use of accurate aerosol types is crucial. The aerosol type retrieved by the ITS algorithm has
a good correlation with the real situation, and the influence of the absorption as expressed by the
ssa and the asy on AOD was found (Figure 10). However, this algorithm only considers these two
parameters, so it should be improved in the future to cover a variety of atmospheric properties for a
specific area, such as eastern China [62]. On the other hand, the degrees of freedom available from
satellite observations are insufficient to provide detailed information on the aerosol properties, which
may lead to a simple formulation of aerosol models, providing a priori estimates, which are refined in
the retrieval processing using the observations at different wavelengths [33,34].

The uncertainty factors mentioned above will be addressed in a future study to improve the
performance of the ITS algorithm for atmospheric monitoring using the H8–AHI satellite.
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Abbreviations

Symbol Description
F ↑ (τ) Total upward flux densities with atmosphere optical depth equal to τ
F ↓ (τ) Total downward flux densities with atmosphere optical depth equal to τ
F0 Solar flux density at the top of atmosphere
µ0 Cosine of solar zenith angle
A (Aλ ) Earth’s surface reflectance (at λ spectral band)
A′(A′λ) Earth’s system reflectance (at λ spectral band)
τ, τ0 Total optical depth
τA Aerosol optical depth
τR Rayleigh optical depth
g, g′ Asymmetry factor
$,$′ Single scattering albedo
α Wavelength exponent in angstrom’s turbidity formula
β Angstrom’s turbidity coefficient
Tgas
λ Atmospheric gas transmission factor

m Number of predefined aerosol types
n Number of bands
θ,θ0 View zenith angle, solar zenith angle

Appendix A. Symbols in Equation (2)
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Reference: Mei et al., (2012) [1], Liou et al., (2004) [54].
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Appendix B. Symbols in Equation (5).
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λ
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λ
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)

Appendix C.

Table A1. The appropriate coefficients for each gas.

Wavelength KH2O
1, λ KH2O

2, λ KH2O
3, λ τH2O

λ KO3
λ τO3

λ τCO2
λ

0.47 4.26 × 10−6 2.432 × 10−3

0.55 1.05 × 10−4 2.957 × 10−2

0.66 −5.739 0.926 −0.019 1.543 × 10−2 5.09 × 10−5 2.478 × 10−2

0.86 −5.330 0.824 −0.028 1.947 × 10−2

Reference: Xue et al. (2014) [1], Levy et al. (2013) [28].
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