
remote sensing

Article

Big Earth Observation Data Integration in Remote
Sensing Based on a Distributed Spatial Framework

Yinyi Cheng 1,2,3,4, Kefa Zhou 1,2,3,4,*, Jinlin Wang 1,2,3,4 and Jining Yan 5

1 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese
Academy of Sciences, Urumqi 830011, China; chengyinyi17@mails.ucas.ac.cn (Y.C.);
wangjinlin@ms.xjb.ac.cn (J.W.)

2 Xinjiang Key Laboratory of Mineral Resources and Digital Geology, Urumqi 830011, China
3 Xinjiang Research Center for Mineral Resources, Chinese Academy of Sciences, Urumqi 830011, China
4 University of Chinese Academy of Sciences, Beijing 100049, China
5 School of Computer Science, China University of Geosciences, Wuhan 430074, China; yanjn@cug.edu.cn
* Correspondence: zhoukf@ms.xjb.ac.cn

Received: 28 February 2020; Accepted: 15 March 2020; Published: 17 March 2020
����������
�������

Abstract: The arrival of the era of big data for Earth observation (EO) indicates that traditional
data management models have been unable to meet the needs of remote sensing data in big data
environments. With the launch of the first remote sensing satellite, the volume of remote sensing
data has also been increasing, and traditional data storage methods have been unable to ensure the
efficient management of large amounts of remote sensing data. Therefore, a professional remote
sensing big data integration method is sorely needed. In recent years, the emergence of some new
technical methods has provided effective solutions for multi-source remote sensing data integration.
This paper proposes a multi-source remote sensing data integration framework based on a distributed
management model. In this framework, the multi-source remote sensing data are partitioned by the
proposed spatial segmentation indexing (SSI) model through spatial grid segmentation. The designed
complete information description system, based on International Organization for Standardization
(ISO) 19115, can explain multi-source remote sensing data in detail. Then, the distributed storage
method of data based on MongoDB is used to store multi-source remote sensing data. The distributed
storage method is physically based on the sharding mechanism of the MongoDB database, and it
can provide advantages for the security and performance of the preservation of remote sensing
data. Finally, several experiments have been designed to test the performance of this framework
in integrating multi-source remote sensing data. The results show that the storage and retrieval
performance of the distributed remote sensing data integration framework proposed in this paper
is superior. At the same time, the grid level of the SSI model proposed in this paper also has an
important impact on the storage efficiency of remote sensing data. Therefore, the remote storage
data integration framework, based on distributed storage, can provide new technical support and
development prospects for big EO data.

Keywords: big earth observation data; remote sensing data integration; distributed storage; SSI
Model; OLC; remote sensing metadata

1. Introduction

Changes in the atmosphere, ocean, land, vegetation, and other factors in Earth systems affect
human activities all the time. As an integrated system, the Earth includes all fields involved in
the various disciplines of geoscience and information technology. Earth observation (EO) systems
provide a useful source of information for humans to understand Earth systems, and also are an

Remote Sens. 2020, 12, 972; doi:10.3390/rs12060972 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs12060972
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/6/972?type=check_update&version=2

Remote Sens. 2020, 12, 972 2 of 17

indispensable research method for researchers to study Earth systems in detail. EO systems can provide
continuous global multi-temporal Earth data [1]. These kinds of data can be used to describe the
Earth system as a whole [2]. EO systems include Earth observation satellites, airborne remote sensing
systems, and EO data receiving systems, and multiple platforms for observing Earth cooperate with
each other [3]. This greater system is equipped with various types of sensors, which can implement
real-time observation and dynamic monitoring of the global land, atmosphere, and ocean. As of 2017,
1738 satellites were in normal operation, including 596 EO satellites. The amount of data acquired
by the Ziyuan-3 (ZY-3) satellite in 2012 was more than 10 TB per day. Advances in remote sensing
technology and information technology have led to the rapid growth of remote sensing data, and
global remote sensing data will eventually reach the petabyte level [4–6]. Therefore, global Earth
observation already has the ability to acquire high-resolution and high-precision temporal data for
the atmosphere, ocean, and land, and EO systems have entered the era of big EO data. Remote
sensing data are one of the most important data sources in EO systems [7]. Big EO data are obtained
from Earth observation systems, such as the Global Earth Observation System of Systems (GEOSS,
http://www.earthobservations.org/index.php), the European Space Agency Copernicus Open Access
system (https://scihub.copernicus.eu/), Earth Observing System Data and Information System (EOSIS,
https://earthdata.nasa.gov/), and the United States Geological Survey (USGS) Global Visualization
Viewer system (https://glovis.usgs.gov/).

In recent years, more attention has been paid to the remote sensing data integration from different
sources. Over the past 30 years, the China Remote Sensing Satellite Ground Station has received a series
of domestic and foreign satellite data, including that from Landsat, Systeme Probatoire d’Observation
de la Terre (SPOT) and China & Brazil Earth Resource Satellite (CBERS). As of 2013, it has archived
more than 3.3 million kinds of EO satellite data. Due to differences in orbital parameters, satellite
revisit periods, spatial resolutions, and sensor types of the remote sensing data, these differences have
caused some difficulties in the integration of the vast amount of remote sensing data [8]. In addition,
a complete remote sensing big data information descriptive system can provide users with quick
and accurate retrieval services for big EO data. Therefore, exploring an efficient remote sensing data
management framework from different sources can provide a data foundation for big EO data [9].
The National Snow and Ice Data Center has transformed its remote sensing data storage method from
standalone storage to an online storage mode [10]. Liu proposed a distributed integration framework
for heterogeneous EO data under the OpenSearch protocol [11]. At the same time, new EO data
systems, represented by the Google Earth Engine (GEE) in the United States, Data Cube in Australia,
and Copernicus for the European Space Agency (ESA), etc., have achieved multi-source remote sensing
data integration.

Presently, there are two modes for managing and storing remote sensing image data, namely, file
management and relational database management. Due to the characteristics of remote sensing data,
most remote sensing image processing software uses a file management system to organize remote
sensing data [12]. However, a relational database management system (RDBMS) has the ability to
manage remote sensing data by integrating complex data types [13]. Recently, a number of distributed
storage technologies with the ability to manage unstructured data have provided support for big EO
data. Kou proposed a strategy of using a RDBMS and Hadoop Distributed File System (HDFS) to store
remote sensing data and metadata [14]. Jing proposed a storage model for distributed remote sensing
data based on HBase [15]. Marek provided a distributed system for storing EO data based on HTML5
and WebGL [16]. At present, the traditional methods for managing EO data have been unable to meet
the requirements of data integration in big data environments. As Ma has stated, in order to improve
the sharing and interoperation of EO data, innovation of the data storage framework is necessary [17].
Therefore, we should explore an efficient multi-source big EO data integration organization model.
This model should (1) have a reasonable spatial organization management model, (2) build a complete
spatial information descriptive system, and (3) use an efficient spatially distributed storage framework.

http://www.earthobservations.org/index.php
https://scihub.copernicus.eu/
https://earthdata.nasa.gov/
https://glovis.usgs.gov/

Remote Sens. 2020, 12, 972 3 of 17

Not Only Structured Query Language (NoSQL) a spatial organization and distributed database
technology, can provide new research methods for processing and analyzing big EO data. In this paper,
a new framework is proposed to solve the data structure problems in implementing the integration of
multi-source remote sensing data. In terms of spatial management, the spatial segmentation indexing
(SSI) model proposed in this paper improves the organizational management and integration efficiency
of remote sensing data. For data management, this paper uses MongoDB technology to perform the
distributed integration of remote sensing data and metadata. Especially, the parallel processing method
of remote sensing data based on MongoDB is innovatively proposed in this paper to implement the
distributed storage of remote sensing data. This not only improves the storage efficiency of remote
sensing data in the database, but also provides data structure support for the parallel computing of
big EO data. At the same time, the remote sensing metadata are no longer integrated via extensible
markup language (XML). This method can reduce the redundancy between metadata and improve the
retrieval efficiency of multi-source remote sensing data.

This paper aims to build a distributed spatial framework to integrate EO data. The structure
of this article is as follows: Section 2 introduces the big EO data integration distributed framework
proposed in this paper, describing it in detail, including the SSI model, remote sensing information
descriptive system, and distributed storage method. The experimental data and the design of the
experiment here is presented in Section 3. The storage efficiency and retrieval results of multi-source
remote sensing data in different environments will be discussed in Section 4. Section 5 summarizes
the paper.

2. Method

2.1. Multi-Source Remote Sensing Data Integration Framework

This paper proposes an efficient spatial data management method based on a distributed database
for the integration and management of shared multi-source remote sensing data sets. This framework
consists of two parts: the remote sensing data are spatially partitioned according to the SSI model,
and the fragmented data are automatically associated with the descriptive information system. Then,
through a distributed data center, a splitter, separating remote sensing data and metadata, is inserted
into the distributed data management system for sharding storage, as shown in Figure 1.

Remote Sens. 2020, 12, 972 4 of 18

that the database cannot provide data support and achieve 100% availability. In this way, the
framework can provide secure, efficient, and fast multi-source remote sensing data storage and
retrieval capabilities for big EO data services.

Figure 1. Architecture of the proposed method.

2.2. Spatial Segmentation Indexing Model

The SSI model is based on the Open Location Code (OLC) spatial position latitude and
longitude encoding method. The OLC was proposed by Google in 2014. The core idea is that
after encoding the WGS84 latitude and longitude, the returned string can represent any area
on the Earth. As shown in Table 1, as the length of the code increases, the accuracy of the regions
on the Earth represented by the code increase. The height and width of the area represented by
the first two codes are both 20 degrees. In these two codes, the first number represents the
latitude and the second represents the accuracy, as shown in Figure 2. In the first 10-bit code,
every second code added has an accuracy of 1/20 of that of the original. With the increase of
the number of code bits, the target area is divided into 20 × 20 grids. Similarly, the first of the
two-digit numbers represents the latitude and the second represents the longitude. Starting
from the 11-bit code, different algorithms are used to encode and convert. This has the
advantage of shortening the length of the code. For instance, one may divide the area of the 10-
digit code into a 4 × 5 grid, where a number represents a grid. For example, we have calculated
an 11-digit code, which represents the area of 1/32000° × 1/40000°, or the area of 3.4 × 2.7 square
meters in the equatorial area. The basic encoding rule is completely arranged by the 26 English
letters and 36 characters from 0 to 9 and uses 10,000 words from 36 languages for evaluation,
and 20 characters are selected as the identifier required in the encoding. The purpose of this
rule is to avoid unnecessary spelling mistakes and accidental coincidence with existing words.
Since OLC is based on 20, the characters will be less than the latitude and longitude.

Figure 1. Architecture of the proposed method.

In order to improve the integration efficiency of the remote sensing data, based on the spatial
indexing method of the SSI model, the remote sensing data are divided from large datasets into blocks
with spatial organization. The remote sensing metadata, with the Geo-JavaScript Object Notation

Remote Sens. 2020, 12, 972 4 of 17

(GeoJSON) format, are automatically matched with corresponding remote sensing data block. The
remote sensing data block and the metadata form a splitter, which is uploaded to the distributed data
center through a transmission protocol such as File Transfer Protocol (FTP) or HyperText Transfer
Protocol (HTTP). In this process, the remote sensing data are transmitted in the Geotiff format and
the metadata are transmitted in GeoJSON format. The distributed data center will hand over the
multi-source remote sensing data records to the MongoDB server for processing. The config server
uses dataset information and data fragmentation information for distribution. Each shard includes
at least three members that store data, including a primary member and two secondary members.
When the master database goes down, two slaves will run for election, one of which will become the
master database. After the original master database recovers, it may join the current replication cluster
as a slave. The horizontal expansion of the sharding mode can make more efficient use of unused
computer resources, while using replication sets for sharding can reduce the time that the database
cannot provide data support and achieve 100% availability. In this way, the framework can provide
secure, efficient, and fast multi-source remote sensing data storage and retrieval capabilities for big EO
data services.

2.2. Spatial Segmentation Indexing Model

The SSI model is based on the Open Location Code (OLC) spatial position latitude and longitude
encoding method. The OLC was proposed by Google in 2014. The core idea is that after encoding the
WGS84 latitude and longitude, the returned string can represent any area on the Earth. As shown
in Table 1, as the length of the code increases, the accuracy of the regions on the Earth represented
by the code increase. The height and width of the area represented by the first two codes are both 20
degrees. In these two codes, the first number represents the latitude and the second represents the
accuracy, as shown in Figure 2. In the first 10-bit code, every second code added has an accuracy of
1/20 of that of the original. With the increase of the number of code bits, the target area is divided
into 20 × 20 grids. Similarly, the first of the two-digit numbers represents the latitude and the second
represents the longitude. Starting from the 11-bit code, different algorithms are used to encode and
convert. This has the advantage of shortening the length of the code. For instance, one may divide the
area of the 10-digit code into a 4 × 5 grid, where a number represents a grid. For example, we have
calculated an 11-digit code, which represents the area of 1/32000◦ × 1/40000◦, or the area of 3.4 × 2.7
square meters in the equatorial area. The basic encoding rule is completely arranged by the 26 English
letters and 36 characters from 0 to 9 and uses 10,000 words from 36 languages for evaluation, and 20
characters are selected as the identifier required in the encoding. The purpose of this rule is to avoid
unnecessary spelling mistakes and accidental coincidence with existing words. Since OLC is based on
20, the characters will be less than the latitude and longitude.

Table 1. Precision of the valid code lengths on different level.

Level Precision
in Degrees (◦)

Precision
(Meter)

1 20 2.2 × 106

2 1 1.1 × 105

3 1/20 5 × 103

4 1/400 278

5 1/8000 13.9

6 1/40000 × 1/32000 2.8 × 3.5

7 1/200000 × 1/128000 0.56 × 0.87

Remote Sens. 2020, 12, 972 5 of 17
Remote Sens. 2020, 12, 972 5 of 18

Figure 2. Level 0 Grid with Open Location Code (OLC) on spatial segmentation indexing (SSI)
Model.

Table 1. Precision of the valid code lengths on different level.

Level Precision
in Degrees（°）

Precision
（Meter）

1 20 2.2×106
2 1 1.1×105
3 1/20 5×103
4 1/400 278
5 1/8000 13.9
6 1/40000×1/32000 2.8×3.5
7 1/200000×1/128000 0.56×0.87

Finally, after multiple partitions, the entire Earth system can be accurately described, even
down to the millimeter level. Through the conversion of offline algorithms, a string of
characters can replace two or more redundant latitude and longitude coordinate points to
represent a spatial index. At the same time, the conversion to latitude and longitude
coordinates can provide spatial index association with the instance distance on the Earth. In
addition, because models such as quadtrees are not used, there will be no errors in spatial
expansion. In short, the big EO data in different spatial coordinate systems can be accurately
located by a unique spatial index in order to build a system with geospatial significance.

Based on the OLC spatial segmentation indexing strategy, a spatial segmentation indexing
(SSI) model for multi-source remote sensing data is proposed in this paper. The SSI model will
be used as the spatial index identifier in this paper. Remote sensing data slices will no longer
be identified by matching the minimum bounding rectangle (MBR) with the grid [18]. The MBR
will cause the spatial index of the remote sensing data to overlap and the position to be
misaligned. In this paper, the pre-processed multi-source remote sensing data are spatially
matched with the SSI model, which meets the accuracy requirements. The matched code is
inserted into the corresponding remote sensing data metadata. Through spatial index encoding
and the conversion of remote sensing data at different spatial locations, a virtual mapping is
established between the geospatial location and the spatial index. In fact, the SSI model has
established spatial relationships between different types of remote sensing data and
geographic entities in the Earth system. The latitude and longitude position information
recording method, with higher redundancy, is hence improved, thereby increasing the speed
of spatial retrieval and reducing the storage size of the remote sensing attribute data. In
addition, by finding the corresponding SSI grid code through coordinates, the remote sensing
data slices in the target area can be quickly located. Therefore, the SSI model provides a good

Figure 2. Level 0 Grid with Open Location Code (OLC) on spatial segmentation indexing (SSI) Model.

Finally, after multiple partitions, the entire Earth system can be accurately described, even down
to the millimeter level. Through the conversion of offline algorithms, a string of characters can
replace two or more redundant latitude and longitude coordinate points to represent a spatial index.
At the same time, the conversion to latitude and longitude coordinates can provide spatial index
association with the instance distance on the Earth. In addition, because models such as quadtrees
are not used, there will be no errors in spatial expansion. In short, the big EO data in different spatial
coordinate systems can be accurately located by a unique spatial index in order to build a system with
geospatial significance.

Based on the OLC spatial segmentation indexing strategy, a spatial segmentation indexing (SSI)
model for multi-source remote sensing data is proposed in this paper. The SSI model will be used
as the spatial index identifier in this paper. Remote sensing data slices will no longer be identified
by matching the minimum bounding rectangle (MBR) with the grid [18]. The MBR will cause the
spatial index of the remote sensing data to overlap and the position to be misaligned. In this paper,
the pre-processed multi-source remote sensing data are spatially matched with the SSI model, which
meets the accuracy requirements. The matched code is inserted into the corresponding remote sensing
data metadata. Through spatial index encoding and the conversion of remote sensing data at different
spatial locations, a virtual mapping is established between the geospatial location and the spatial index.
In fact, the SSI model has established spatial relationships between different types of remote sensing
data and geographic entities in the Earth system. The latitude and longitude position information
recording method, with higher redundancy, is hence improved, thereby increasing the speed of spatial
retrieval and reducing the storage size of the remote sensing attribute data. In addition, by finding the
corresponding SSI grid code through coordinates, the remote sensing data slices in the target area can
be quickly located. Therefore, the SSI model provides a good spatial management and organization
method for big EO data and realizes the function of fast spatial retrieval.

2.3. Geo-JavaScript Object Notation (GeoJSON)-Based Distributed Remote Sensing Data Description Method

The method proposed in this paper in based on metadata of remote sensing data on ISO 19115-2:
2009 and the description method is based on the GeoJSON format. It plays an important connection
role in the framework, as shown Figure 3. The metadata of remote sensing data represent descriptive
information about the data and usually contain multiple dimensional features, such as geographic
location information, band information, the satellite access time, and the spatial resolution. However,
due to the characteristics of multi-source remote sensing data, the format differences of remote sensing
metadata from different sources have made it impossible to integrate multi-source remote sensing
data [19]. Wang proposed to use XML as a standard to solve the exchange and sharing of metadata

Remote Sens. 2020, 12, 972 6 of 17

from different sources [20]. The China Center for Resources Satellite Data and Applications uses the
XML file format as the storage format for remote sensing metadata. For the spatial management of
multi-source remote sensing data, a metadata system with real-time retrieval characteristics needs to
be constructed. This paper proposes a distributed remote sensing metadata management mechanism
based on the GeoJSON format. XML is a language similar to HTML. It has no predefined tags and uses
document type definition (DTD) to organize data. The XML file format is huge and complex, and often
requires a lot of computer resources to process the XML file. GeoJSON is used in this paper instead,
which is a lightweight exchange format that supports various geographic data structures. It has the
characteristics of a simple format and easy storage. It is a spatial expansion based on the JavaScript
Object Notation (JSON) file format. The kernel contains many geospatial attributes, especially some
important coordinate systems. Remote sensing metadata can be used to store information in a key/value
structure. Meanwhile, it is a geospatial data storage format supported by MongoDB, which is used
in this paper, which can provide the advantages of rapid sharding and retrieval for the distributed
storage of remote sensing metadata.

Remote Sens. 2020, 12, 972 6 of 18

spatial management and organization method for big EO data and realizes the function of fast
spatial retrieval.

2.3. Geo-JavaScript Object Notation (GeoJSON)-Based Distributed Remote Sensing Data
Description Method

The method proposed in this paper in based on metadata of remote sensing data on ISO
19115-2: 2009 and the description method is based on the GeoJSON format. It plays an important
connection role in the framework, as shown Figure 3. The metadata of remote sensing data
represent descriptive information about the data and usually contain multiple dimensional
features, such as geographic location information, band information, the satellite access time, and
the spatial resolution. However, due to the characteristics of multi-source remote sensing data,
the format differences of remote sensing metadata from different sources have made it impossible
to integrate multi-source remote sensing data [19]. Wang proposed to use XML as a standard to
solve the exchange and sharing of metadata from different sources [20]. The China Center for
Resources Satellite Data and Applications uses the XML file format as the storage format for
remote sensing metadata. For the spatial management of multi-source remote sensing data, a
metadata system with real-time retrieval characteristics needs to be constructed. This paper
proposes a distributed remote sensing metadata management mechanism based on the GeoJSON
format. XML is a language similar to HTML. It has no predefined tags and uses document type
definition (DTD) to organize data. The XML file format is huge and complex, and often requires
a lot of computer resources to process the XML file. GeoJSON is used in this paper instead, which
is a lightweight exchange format that supports various geographic data structures. It has the
characteristics of a simple format and easy storage. It is a spatial expansion based on the
JavaScript Object Notation (JSON) file format. The kernel contains many geospatial attributes,
especially some important coordinate systems. Remote sensing metadata can be used to store
information in a key/value structure. Meanwhile, it is a geospatial data storage format supported

Figure 3. Distributed remote sensing data description method Geo-JavaScript Object Notation
(GeoJSON)-Based logic diagram.

Figure 3. Distributed remote sensing data description method Geo-JavaScript Object Notation
(GeoJSON)-Based logic diagram.

Metadata are also a kind of data. Metadata represent the most basic feature set abstracted
from complex remote sensing data. Metadata are usually organized by elements, entities, and
subsets. Elements are used to describe a specific feature of the dataset. Entities are a collection
of metadata elements that describe similar characteristics. Subsets are collections of interrelated
metadata entities and elements. This paper is based on the ISO 19115-2: 2009 geographic metadata
standard. According to the characteristics of remote sensing data, an expression method combining
the Unified Modeling Language (UML) and a data dictionary is used to describe the content and
structure of remote sensing core metadata [21]. In practical applications, remote sensing metadata

Remote Sens. 2020, 12, 972 7 of 17

should describe the characteristic information of the multi-source remote sensing data. Based on
the above ideas, this paper mainly designs a framework model composed of 7 metadata subsets,
as shown in Figure 4, which mainly include content information, data quality information, citation
information, identification information, responsible party information, distribution information, and
spatial reference information. Corresponding to the framework model, the metadata entity collection
information includes all core metadata of multi-source remote sensing data. The entity MD_metadata
is used to represent the metadata entity, and its entity structure is shown in the Figure 5, which
specifically includes seven entity sets, namely, MD_ContDesc(MD_ContDesc is used to describe
the content information of the EO dataset), DQ_Description(DQ_Description is used to describe
the evaluation of the quality of the EO dataset), CI_Citation(CI_Citation is used to describe the
reference information of the EO data), MD_Identification(MD_Identification is used to describe the
basic information of the EO dataset), CI_RespParty(RespParty is used to describe the responsible
party of the EO data), MD_Medium(MD_Medium is used to describe the storage medium of the EO
data), and SC_SIRefSys(SC_SIRefSys is used to describe the spatial reference system of the EO data.).
Through complete remote sensing metadata, the required remote sensing information resources may
be rapidly located.

Remote Sens. 2020, 12, 972 7 of 18

Metadata are also a kind of data. Metadata represent the most basic feature set abstracted
from complex remote sensing data. Metadata are usually organized by elements, entities, and
subsets. Elements are used to describe a specific feature of the dataset. Entities are a collection
of metadata elements that describe similar characteristics. Subsets are collections of interrelated
metadata entities and elements. This paper is based on the ISO 19115-2: 2009 geographic
metadata standard. According to the characteristics of remote sensing data, an expression
method combining the Unified Modeling Language (UML) and a data dictionary is used to
describe the content and structure of remote sensing core metadata [21]. In practical
applications, remote sensing metadata should describe the characteristic information of the
multi-source remote sensing data. Based on the above ideas, this paper mainly designs a
framework model composed of 7 metadata subsets, as shown in Figure 4, which mainly include
content information, data quality information, citation information, identification information,
responsible party information, distribution information, and spatial reference information.
Corresponding to the framework model, the metadata entity collection information includes
all core metadata of multi-source remote sensing data. The entity MD_metadata is used to
represent the metadata entity, and its entity structure is shown in the Figure 5, which
specifically includes seven entity sets, namely, MD_ContDesc(MD_ContDesc is used to
describe the content information of the EO dataset), DQ_Description(DQ_Description is used
to describe the evaluation of the quality of the EO dataset), CI_Citation(CI_Citation is used to
describe the reference information of the EO data), MD_Identification(MD_Identification is
used to describe the basic information of the EO dataset), CI_RespParty(RespParty is used to
describe the responsible party of the EO data), MD_Medium(MD_Medium is used to
describe

Figure 4. Multi-source remote sensing metadata concept structure diagram.

Metadata
Information

Identification

Information

Data Quality

Information

Citation
Information

Content
Information

SpatialRef
Information

ResponsibleParty

 Information

Distribution
Information

Figure 4. Multi-source remote sensing metadata concept structure diagram.

After the above conversion and processing, the metadata and the corresponding remote sensing
data are stored in a distributed cluster. When storing data, the remote sensing datasets are divided
into several chunks and stored on different shards via the automatic sharding of MongoDB. Because
the metadata are document-type data, and the remote sensing data are multi-layer raster data with
geographic information, the principle of preservation is different.

Remote Sens. 2020, 12, 972 8 of 17
Remote Sens. 2020, 12, 972 8 of 18

Figure 5. Complete multi-source remote sensing information description table. Figure 5. Complete multi-source remote sensing information description table.

Remote Sens. 2020, 12, 972 9 of 17

2.4. Distributed Storage of Multi-Source Remote Sensing Data Based on MongoDB

After establishing a spatial management index method for multi-source remote sensing data and
designing a complete remote sensing metadata system, massive multi-source remote sensing data
should be stored efficiently to achieve the integration of big EO data. Due to the comprehensive
improvement of the spatial and temporal resolution of remote sensing data, the traditional spatial data
organization model has been unable to meet the existing data requirements. Therefore, the sharding
mechanism of the distributed database was used to store multi-source remote sensing data, and its
function has mainly been implemented by MongoDB. MongoDB is developed in the C++ language.
It is an open source, non-relational database system based on distributed file storage. MongoDB aims
to provide scalable high-performance data storage for web applications. However, MongoDB does not
have geospatial extension capabilities and cannot be saved directly in the database, unlike document
data. This paper develops a unique distributed storage method of remote sensing data based on
MongoDB. By setting the relationship between the shard key and the index of chunks, the remote
sensing data are stored in different shards in the form of slices, as shown in Figure 6.

Remote Sens. 2020, 12, 972 9 of 18

After the above conversion and processing, the metadata and the corresponding remote
sensing data are stored in a distributed cluster. When storing data, the remote sensing datasets
are divided into several chunks and stored on different shards via the automatic sharding of
MongoDB. Because the metadata are document-type data, and the remote sensing data are
multi-layer raster data with geographic information, the principle of preservation is different.

2.4. Distributed Storage of Multi-Source Remote Sensing Data Based on MongoDB

After establishing a spatial management index method for multi-source remote sensing
data and designing a complete remote sensing metadata system, massive multi-source remote
sensing data should be stored efficiently to achieve the integration of big EO data. Due to the
comprehensive improvement of the spatial and temporal resolution of remote sensing data, the
traditional spatial data organization model has been unable to meet the existing data
requirements. Therefore, the sharding mechanism of the distributed database was used to store
multi-source remote sensing data, and its function has mainly been implemented by MongoDB.
MongoDB is developed in the C++ language. It is an open source, non-relational database
system based on distributed file storage. MongoDB aims to provide scalable high-performance
data storage for web applications. However, MongoDB does not have geospatial extension
capabilities and cannot be saved directly in the database, unlike document data. This paper
develops a unique distributed storage method of remote sensing data based on MongoDB. By
setting the relationship between the shard key and the index of chunks, the remote sensing
data are stored in different shards in the form of slices, as shown in Figure 6.

Figure 6. Storage workflow in the distributed environment.

The sharding of storage on MongoDB has the following characteristics: 1) after
determining the shard key, the MongoDB cluster will automatically partition the data; 2) the
balancer process allocates data for each shard and guarantees minimal migration; 3) MongoDB

Figure 6. Storage workflow in the distributed environment.

The sharding of storage on MongoDB has the following characteristics: (1) after determining
the shard key, the MongoDB cluster will automatically partition the data; (2) the balancer process
allocates data for each shard and guarantees minimal migration; (3) MongoDB enables flexible setting
of chunk sizes. Sharding is a way for MongoDB to horizontally expand the data [22,23]. By selecting
the appropriate shard key, the data are evenly stored in the sharding server cluster. The components of
sharding mainly include the mongos process, the config server, and the shard server cluster. The function
of the mongos process is to forward the request to the corresponding sharding server. It does not store
or process the data. The mongos process allows applications to use the MongoDB cluster as a single
database instance operation, which facilitates the ease of application development when accessing data.

Remote Sens. 2020, 12, 972 10 of 17

Each remote sensing dataset finds the corresponding sharding server for reading and writing through
the mongos process. When an external command initiates a query, the mongos process is routed to the
specified node to return data. The config server stores cluster metadata, configuration information,
and routing information. This includes a collection of instances, such as config.mongos, config.chunks,
and config.shards.

The remote sensing dataset is routed to the corresponding shard through the metadata in the
config server. The sharding server is the location where data are actually stored in the distributed
cluster. Within a sharding server, the remote sensing data will be divided into multiple chunks by
MongoDB, and each chunk represents a part of the data inside a sharding server. The remote sensing
data and the metadata are divided into multiple chunks, and each record is assigned to a different
chunk according to the arrangement of the shard keys. When the size of a chunk exceeds the chunk
size set for that configuration, the MongoDB background process will split this chunk into smaller
chunks; thus, avoiding the situation where the chunk is too large. In addition, the balancing strategy
exists throughout the entire distributed database system to ensure load balancing for each shard. The
balancer process will automatically check the distribution of chunks on all shard nodes. When the
number of chunks on a shard reaches a certain migration threshold, the balancer process will try to
automatically migrate chunks between shards and try to reach the same number of chunks in each
shard. This mechanism not only ensures that remote sensing data and the corresponding metadata are
efficiently stored in a unified data management system, but also makes full use of unused computer
storage resources to achieve the purpose of reasonable storage and rapid retrieval.

3. Experiment

The purpose of this experiment conducted here is to test the efficiency of the distributed remote
sensing data storage and retrieval based on the SSI model. As stated previously, this framework mainly
includes two parts, namely, spatial partitioning and distributed storage. Based on the method of this
paper, after the accurate description of the metadata was completed, the remote sensing data were
divided into different data slices according to the partition standard of the SSI model. In order to test
the effect of the level of efficiency on storing remote sensing data in the database with the SSI model,
the same remote sensing dataset has been divided by different levels of grids, and the time consumed
by different grid levels of data slice storage in the database has been recorded. Similarly, remote
sensing data without SSI model partition have been inserted into a multi-node cluster environment
database and standalone mode database, and the performance of the different types of databases has
been evaluated. In addition, in order to illustrate the feasibility of efficiently retrieving remote sensing
data in distributed environments under the same indexing conditions, a retrieval method based on
metadata has been performed in the experiment. Through the data migration method and transmission
process in practical applications, the performance evaluation and future plans of this framework have
been described.

3.1. Datasets and Environment

The purpose of the integration of big EO data is to organize various types of remote sensing data
under the same system for management. Various data have different scientific objectives. For example,
the Sentinel-2 satellite is a multispectral high-resolution imaging satellite for land monitoring. It can
provide images of vegetation, soil, inland, and coastal waters, and can also be used for emergency
rescue services. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data
have a broad prospect in the extraction of mineral alteration information and its spectral range has
the characteristics of soil absorption spectrum, which can improve the classification accuracy. At the
same time, remote sensing data with the same scientific objective will also have different spatial and
spectral resolutions. The experimental remote sensing data of this research work includes that of
the Moderate Resolution Imaging Spectroradiometer (MODIS) and ASTER sensors on the TERRA
and AQUA satellites, the MultiSpectral Instrument (MSI) sensors on Sentinel-2, and the Operational

Remote Sens. 2020, 12, 972 11 of 17

Land Imager (OLI) sensors on Landsat 8, which can be downloaded from the following websites:
Level 1 and Atmosphere Archive and Distribution System Distributed Active Archive Center (LAADS
DAAC) (https://ladsweb.nascom.nasa.gov/search), ESA (https://scihub.copernicus.eu/), and USGS
(https://earthexplorer.usgs.gov/). The remote sensing data obtained by each sensor have a complete
metadata table to describe the various indicators and characteristics in detail. The data used in this
experiment and some of the corresponding metadata are shown in Table 2.

Table 2. Source datasets of metadata for experiment. Defense Meteorological Satellite Program (DMSP),
Gaofen-1 (GF-1), Huanjing-1A\B (HJ-1A\B), Operational Land Imager (OLI), Enhanced Thematic
Mapper (ETM+), Thematic Mapper\Multispectral Scanner System (TM/MSS), Operational Line-Scan
System (OLS), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Moderate
Resolution Imaging Spectroradiometer (MODIS), Panchromatic and Multi-Spectral_1_2 (PMS_1_2),
Charge-Coupled Diode \Hyperspectral Imaging Sensor (CCD/HIS).

Satellite Sensor
Spatial

Resolution
(m)

Spectral
Region (µm)

Swath Revisit Acquisition
Year

Data
Width (Km) Period Type

Landsat8 OLI 15,30 0.43–2.29 185 16 Days 2013–now Global Environmental
Change

Landsat7 ETM+ 15,30,60 0.45–12.50 185 16 Days 1999–now Natural Resources
Research

Landsat5 TM/MSS 30,120 0.45–12.50 185 16 Days 1984–2011 Natural Resources
Research

Sentinel-2 MSI 10,20,60 0.4–2.4 290 10 Days 2015–now Global Environmental

DMSP OLS 500 0.4–1.1
10.0–13.4 3000 101Mins 1992–2013 Research on Urban

Expansion

TERRA ASTER 30,60,90 0.52–2.43
8.125–11.65 60 4–16 Days 1999–2005 Temperature

Retrieval
TERRA
AQUA MODIS 250,500,100 0.405–14.385 2330 1 Days 1999–now Integrated Earth

Observation
GF-1 PMS_1_2 2,8,16 0.45–0.89 800 4 Days 2013–now Delicacy Application

HJ-1A\B CCD/HSI 30,100 0.43–0.95 700,50 4 Days 2008–now Environmental
Monitoring

In the experiment, multi-source remote sensing datasets have been partitioned by the SSI model
with different levels and then stored in a distributed structure. The metadata in the experiment are
inserted into the corresponding data shard, together with the remote sensing image. The remote
sensing data integration framework proposed in this paper has been tested by data capture, fragment
loading, spatial segmentation, and metadata indexing. By using heterogeneous remote sensing data,
the experimental results are mainly related to the level of the spatial grid partition of the remote sensing
data based on the SSI model and the degree of metadata indexing. On the basis of the distributed
remote sensing data structure proposed in this paper, the time of data management is completely
determined by the reasonable degree of spatial index and metadata index of remote sensing data.
There are great differences between the organization of multi-node cluster management and standalone
mode management for remote sensing data in the distributed environment. Therefore, we have
used the remote sensing data in Table 2 in the distributed dataset experiment in the same computer
environment for different logical compositions and structures.

The environment of this experiment was completely distributed, and a cluster was created.
This cluster was connected by multiple replication sets. Each cluster was composed of three nodes,
consisting of a primary node and two secondary nodes. These three nodes were all built with MongoDB
version 4.0.9. The primary node contains all operation logs of the remote sensing data, and the
secondary node stores all the remote sensing data. The configuration of three the data nodes consists
of an i7-4790 (3.6GHz) Central Processing Unit (CPU) and 4.0 GB of Random Access Memory (RAM).
Additionally, Python version 3.7 was used as the environment for inserting and querying remote
sensing data.

https://ladsweb.nascom.nasa.gov/search
https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/

Remote Sens. 2020, 12, 972 12 of 17

3.2. SSI Model-Based Remote Sensing Data Storage and Retrieval Experiment

In this experiment, multi-source remote sensing datasets were stored in a distributed database
cluster based on MongoDB through the framework proposed in this paper. All remote sensing data
slices based on the SSI model were inserted into a standalone mode database and multi-node database
cluster, respectively, and the time consumed to store these data was recorded. The storage experiment
process mainly includes two parts, namely, transmitting remote sensing data slices and allocating
storage resources. After the storage experiment, the retrieval experiment was performed on the remote
sensing data that had been inserted into the distributed database. The OLC code was used in the
metadata table as an index to measure the time consumed in different environment.

Figure 7 shows the storage of remote sensing data in a MongoDB cluster. The input is the remote
sensing data slices that have been spatially partitioned based on the SSI model. These data slices have
been assigned spatial index codes and are linked to corresponding metadata tables. After the data
slices were inserted into the computer memory space, the mongos process allocated different slices to
the corresponding shards via the shard’s information and the slice information in the config server.
A reasonable shard key is used as an index by the MongoDB cluster, and the input data were allocated
by the principle of the shard key. After receiving the request, the mongos process transferred the data to
the shard. There are two possibilities for each shard: (1) as the volume of data increases, the size of the
datum chunks in shard A will exceed the configured chunk size. In general, the default value is 64
M. When the chunk exceeds the threshold, the chunk is split into two identical chunks. The growth
of data will make the chunks split more and more. (2) When the number of chunks on each shard
is unbalanced, the balancer component in the mongos process will execute the automatic balancing
strategy. Here, the process moves the chunk from the shard B with a larger amount of data to the shard
C, which has the least amount. Chunks in MongoDB will only split and will not merge. Therefore, if the
chunk size is modified to be larger, the number of existing chunks will not be reduced, but the chunk
size will continue to increase with data inserted until the target size is reached. Through this storage
method, the computer resources of each data shard are not wasted, thereby achieving the purpose of
load balancing. In addition, when data are transmitted to the distributed cluster, while the shard in it
is down or offline, the data can be stored in other shards first. After the fault is eliminated, the mongos
process will retransmit the data back to the original shard. In this way, it can not only provide high
efficiency for data storage, but also ensure the security of data during transmission. Multiple shards
can form a complete MongoDB cluster.

In order to test the storage efficiency of remote sensing data in different environments and the
impact of different levels of shards on the storage speed, based on the SSI model, four sets of remote
sensing data with successively increasing capacities were selected as experimental data. Four groups
of data were inserted into a multi-node database cluster and a standalone database to verify the
performance of the proposed method. The four groups of data were partitioned by the SSI model
into “Level 2”, “Level 3”, and “Level 4”, and the experiments were divided into 12 groups and three
large groups of experiments, using such experiments to test the impact of the partition level on the
performance of the framework. In addition, subsequent query experiments have been performed on
the basis of this experiment.

In the storage experiment, remote sensing data were spatially partitioned according to different
levels and stored in a standalone database and multi-node database cluster, respectively. The retrieval
experiment was implemented in two different environments through the OLC identification code in
the metadata. In a multi-node cluster, when an external request initiates a data retrieval, in order to get
an appropriate retrieval response, the mongos process has to interact with multiple shards. Finally, the
mongos process is automatically routed to the specified node based on the data distribution and returns
the retrieval results. The purpose of this experiment is to test the retrieval performance of the structure
with shards, which will be more advantageous than the retrieval standalone mode.

Remote Sens. 2020, 12, 972 13 of 17

Remote Sens. 2020, 12, 972 13 of 18

3.2. SSI Model-Based Remote Sensing Data Storage and Retrieval Experiment

In this experiment, multi-source remote sensing datasets were stored in a distributed database
cluster based on MongoDB through the framework proposed in this paper. All remote sensing data
slices based on the SSI model were inserted into a standalone mode database and multi-node
database cluster, respectively, and the time consumed to store these data was recorded. The storage
experiment process mainly includes two parts, namely, transmitting remote sensing data slices and
allocating storage resources. After the storage experiment, the retrieval experiment was performed
on the remote sensing data that had been inserted into the distributed database. The OLC code was
used in the metadata table as an index to measure the time consumed in different environment.

Figure 7 shows the storage of remote sensing data in a MongoDB cluster. The input is the remote
sensing data slices that have been spatially partitioned based on the SSI model. These data slices have
been assigned spatial index codes and are linked to corresponding metadata tables. After the data slices
were inserted into the computer memory space, the mongos process allocated different slices to the
corresponding shards via the shard’s information and the slice information in the config server. A
reasonable shard key is used as an index by the MongoDB cluster, and the input data were allocated by
the principle of the shard key. After receiving the request, the mongos process transferred the data to the
shard. There are two possibilities for each shard: 1) as the volume of data increases, the size of the datum
chunks in shard A will exceed the configured chunk size. In general, the default value is 64 M. When the
chunk exceeds the threshold, the chunk is split into two identical chunks. The growth of data will make
the chunks split more and more. 2) When the number of chunks on each shard is unbalanced, the balancer
component in the mongos process will execute the automatic balancing strategy. Here, the process moves
the chunk from the shard B with a larger amount of data to the shard C, which has the least amount.
Chunks in MongoDB will only split and will not merge. Therefore, if the chunk size is modified to be
larger, the number of existing chunks will not be reduced, but the chunk size will continue to increase
with data inserted until the target size is reached. Through this storage method, the computer resources
of each data shard are not wasted, thereby achieving the purpose of load balancing. In addition, when
data are transmitted to the distributed cluster, while the shard in it is down or offline, the data can be
stored in other shards first. After the fault is eliminated, the mongos process will retransmit the data back
to the original shard. In this way, it can not only provide high efficiency for data storage, but also ensure
the security of data during transmission. Multiple shards can form a complete MongoDB cluster.

Figure 7. Remote sensing data distributed storage process. Figure 7. Remote sensing data distributed storage process.

4. Experiment Result and Analysis

The efficiency of storing remote sensing data in a multi-node cluster is indeed higher than that of
standalone mode, as shown in Figure 8. With the increase of remote sensing data, the time consumed
continues to increase. When the amount of remote sensing data is greater than 40 GB, the growth rate
of time consumption in the standalone mode remains the same, but the growth rate in distributed
mode slows down gradually. The purpose is to distribute multiple business logics of a single storage
request to multiple nodes, so that multiple logical commands can be processed simultaneously. This
result obviously shows that the proposed remote sensing data integration framework is feasible. In
this experimental group, as the amount of data increases, the time consumed by storing data also
increases, as shown in Figure 9. At the same time, as the grid level of the SSI model increases and
the time consumed also increases. However, when the grid level is higher, the time increase is not
obvious. For the same data, the storage time of a grid based on Level 4 is longer than that based on
Level 2. The reason is that the rise of the grid level leads to more loose data, so the mongos process
spends more computer resources and time to allocate data. This distributed storage mode is a parallel
processing flow, which is related to the running nodes. This experiment is a three-node MongoDB
cluster. The data partition of the “Level 4” grid reaches the threshold of the cluster processing dataset
in this experiment, so the time consumed is slightly longer than the other levels. However, the cluster
established in this experiment can process Level 2 and Level 3 data blocks. Therefore, the time for
storing Level 2 and Level 3 data reaches a relatively stable state.

When the amount of remote sensing data is relatively small, the number of nodes in the cluster
and the grid level of the SSI model have little effect on the efficiency of retrieval. As the amount of
remote sensing data gradually increases, the time consumed by the retrieval work also gradually
increases. The reason for this is that the increased data causes more records to be traversed by the
mongos process. Under the same conditions of the amount of remote sensing data, as grid level in the
SSI model increases, the time consumed by the retrieval is gradually reduced. At the same time, the
retrieval experiment and storage experiment have the same trend, i.e., when the grid level in the SSI
model is increased, the time consumed by the retrieval will reach a relatively balanced state, which is
consistent with the results of different grid level storage experiments.

Remote Sens. 2020, 12, 972 14 of 17

Remote Sens. 2020, 12, 972 15 of 18

Figure 8. The result of storage experiment.

Figure 9. The result of storage experiment with different Level on SSI model.

As can be seen in Table 3, in the same situation, the retrieval speed of the multi-node cluster is
slightly faster than that of standalone database, and the advantages are not obvious. The main reason
is the choice of shard key which is also crucial for retrieval speed. The quality of the shard key
determines whether the data are evenly distributed in shards. If a proper slice key is selected, data
will be written to only one shard. Data will not be inserted into other shards until the shard threshold
is reached. Retrieval in a multi-shard cluster will cause the mongos process to merge and sort the
results. Because data sharding is oriented to distributed storage, the retrieval process is parallelized.
Considering the use of parallel processing, “MapReduce” functional modules will be evaluated in
future research work.

Figure 8. The result of storage experiment.

Remote Sens. 2020, 12, 972 15 of 18

Figure 8. The result of storage experiment.

Figure 9. The result of storage experiment with different Level on SSI model.

As can be seen in Table 3, in the same situation, the retrieval speed of the multi-node cluster is
slightly faster than that of standalone database, and the advantages are not obvious. The main reason
is the choice of shard key which is also crucial for retrieval speed. The quality of the shard key
determines whether the data are evenly distributed in shards. If a proper slice key is selected, data
will be written to only one shard. Data will not be inserted into other shards until the shard threshold
is reached. Retrieval in a multi-shard cluster will cause the mongos process to merge and sort the
results. Because data sharding is oriented to distributed storage, the retrieval process is parallelized.
Considering the use of parallel processing, “MapReduce” functional modules will be evaluated in
future research work.

Figure 9. The result of storage experiment with different Level on SSI model.

As can be seen in Table 3, in the same situation, the retrieval speed of the multi-node cluster is
slightly faster than that of standalone database, and the advantages are not obvious. The main reason is
the choice of shard key which is also crucial for retrieval speed. The quality of the shard key determines
whether the data are evenly distributed in shards. If a proper slice key is selected, data will be written
to only one shard. Data will not be inserted into other shards until the shard threshold is reached.
Retrieval in a multi-shard cluster will cause the mongos process to merge and sort the results. Because
data sharding is oriented to distributed storage, the retrieval process is parallelized. Considering the
use of parallel processing, “MapReduce” functional modules will be evaluated in future research work.

Remote Sens. 2020, 12, 972 15 of 17

Table 3. The result of retrieval experiment.

Data Volume
(rows)

SSI Model
Level

Query Time on
Distributed

Environment

Query Time on
Stand-Alone Mode

Environment

9100
Level-2 0.02 s 0.02 s
Level-3 0.02 s 0.02 s
Level-4 0.02 s 0.02 s

20000
Level-2 2.31 s 2.43 s
Level-3 1.19 s 1.17 s
Level-4 0.89 s 0.95 s

30000
Level-2 6.02 s 6.16 s
Level-3 2.53 s 2.68 s
Level-4 2.40 s 2.53 s

45000
Level-2 11.64 s 11.73 s
Level-3 5.07 s 5.03 s
Level-4 4.66 s 4.82 s

5. Conclusions and Future Work

In order to solve the problem of the integrated management of big EO data, this paper proposes a
distributed multi-source remote sensing data management framework based on MongoDB and the SSI
model. In the framework, in order to express the geospatial area range and spatial position covered by
multi-source remote sensing data uniformly and establish an efficient remote sensing data organization
and spatial indexing method, the SSI model has been proposed as a spatial index of remote sensing
data. Meanwhile, we have innovatively used the GeoJSON data structure as the storage form of remote
sensing metadata and designed a complete multi-source remote sensing metadata system to provide an
index foundation for efficient data retrieval. The core part of the proposed framework is a distributed
storage cluster of remote sensing data, which provides a secure and stable data storage method for the
integration of remote sensing data. At the same time, a distributed data structure of remote sensing
data based on MongoDB was used as a data storage method in the cluster. The combination of the data
structure and spatial grid partition based on the SSI model can implement the retrieval, integration, and
sharing of big EO data. Additionally, in the case of high concurrency, multiple requested queries may
be combined into one run to reduce the number of database queries. The purpose of this framework is
not only to provide a distributed management idea for the integration of multi-source remote sensing
data, but also to provide a theoretical data structure foundation for the parallel computing of big
EO data.

Experiments have been designed to verify the feasibility of the framework and evaluate the
performance of remote sensing data integration and retrieval. This paper has made a comparison of
the time required to insert the same volume of remote sensing data into a standalone database and a
multi-node database cluster. The results showed that the integrated management method of remote
sensing data with the distributed mode had better performance. At the same time, with the increase of
the level of spatial grid partition on the SSI model, the time consumed by data storage will increase
and reach a stable state. However, the level of the grid cannot be reduced in order to reduce the storage
time, because the spatial range of remote sensing data required is different. We also used the OLC
code in the SSI model as the retrieval foundation to test the performance of standalone database and
multi-node database cluster. As a result, the speed in the distributed environment was slightly faster
than the storage method in the standalone environment. Similarly, with the increase of the level of
spatial grid partition in the SSI model, the time consumed in querying data will be reduced and reach
a stable state, which is consistent with the storage experiment. The reason for this may be due to
the existence of an automatic balancing mechanism, where remote sensing data are accelerated to be
allocated to different shards, and the sharding mechanism does not work during retrieval; hence, the

Remote Sens. 2020, 12, 972 16 of 17

retrieval speed in a distributed environment is not changed. In addition, the factors of insufficient data
and the selection of the shard key are also important reasons.

This article has basically implemented the integration of multi-source remote sensing data but has
not yet applied the theory of big EO data to practical research work. Future work will be based on the
parallel computing of big EO data and spatial data mining. In addition, authors of this paper have
also performed parallel preprocessing on vector data in a shapefile format. Since integrating many
different data in the same environment requires many pre-processing steps, it can take a lot of time
and computer resource costs. Therefore, future work will focus on the spatial data with distributed
data structures, combined with high-performance algorithms and parallel computing environments in
order to provide a scientific basis for the use of big data in different fields.

Author Contributions: K.Z. and J.W. conceived and designed the research; Y.C. and J.Y. implemented the method
and performed the experiments; all the authors reviewed and edited the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was funded by the National Key R&D Program of China (2018YFC0604001-3), B&R Team
of Chinese Academy of Sciences (2017-XBZG-BR-002), and National Natural Science Foundation of China
(No.U1803117, No.U1803241).

Acknowledgments: We would like to thank Xinjiang Laboratory of Mineral Resources and Digital Geology of the
Chinese Academy of Sciences for guidance and full support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, D. Opportunities for Geomatics. Geomat. Inf. Sci. Wuhan Univ. 2004, 29, 753–756.
2. Jeansoulin, R. Review of Forty Years of Technological Changes in Geomatics toward the Big Data Paradigm.

ISPRS Int. J. Geo-Inf. 2016, 5, 155. [CrossRef]
3. Geoffrey, B. The challenges of a Big Data Earth. Big Earth Data 2018, 2, 1–7.
4. Guo, H. Big Earth data: A new frontier in Earth and information sciences. Big Earth Data. 2017, 1, 4–20.

[CrossRef]
5. United Nations Office for Outer Space Affairs. Available online: https://www.unoosa.org/ (accessed on 15

October 2019).
6. Pixalytics. Specialises in the Transition of Academic Knowledge to Commercial Opportunity and Public

Understanding. Available online: https://www.pixalytics.com (accessed on 15 October 2019).
7. Fan, J.; Yan, J.; Ma, Y.; Wang, L. Big Data Integration in Remote Sensing across a Distributed Metadata-Based

Spatial Infrastructure. Remote Sens. 2017, 10, 7. [CrossRef]
8. Huang, X.; Wang, L.; Yan, J.; Deng, Z.; Wang, S.; Ma, Y. Towards Building a Distributed Data Management

Architecture to Integrate Multi-Sources Remote Sensing Big Data. In Proceedings of the 20th International
Conferences on High Performance Computing and Communications, Exeter, UK, 28–30 June 2018; pp. 83–90.
[CrossRef]

9. Liang, J.; Gong, J.; Sun, J.; Zhou, J.; Li, W.; Li, Y.; Liu, J.; Shen, S. Automatic Sky View Factor Estimation from
Street View Photographs—A Big Data Approach. Remote Sens. 2017, 9, 411. [CrossRef]

10. Han, G.; Chen, J.; He, C.; Li, S.; Wu, H.; Liao, A.; Peng, S. A web-based system for supporting global land
cover data production. ISPRS J. Photogramm. Remote Sens. 2015, 103, 66–80. [CrossRef]

11. Liu, G.; Li, C.; Tian, W.; Li, Z. Distributed geospatial data service based on OpenSearch. In Proceedings of
the 2nd IEEE International Conference on Computer and Communications, Chengdu, China, 14–17 October
2016; pp. 100–104. [CrossRef]

12. Kokoulin, A. Methods for large image distributed processing and storage. In Proceedings of the Eurocon,
Zagreb, Croatia, 1–4 July 2013; pp. 1606–1609. [CrossRef]

13. Durbha, S.S.; King, R.L. Semantics-enabled framework for knowledge discovery from Earth observation
data archives. Trans. Geosci. Remote Sens. 2005, 43, 2563–2572. [CrossRef]

14. Kou, W.; Yang, X.; Liang, C.; Xie, C.; Gan, S. HDFS enabled storage and management of remote sensing data.
In Proceedings of the 2nd IEEE International Conference on Computer and Communications, Chengdu,
China, 14–17 October 2016; pp. 80–84. [CrossRef]

http://dx.doi.org/10.3390/ijgi5090155
http://dx.doi.org/10.1080/20964471.2017.1403062
https://www.unoosa.org/
https://www.pixalytics.com
http://dx.doi.org/10.3390/rs10010007
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2018.00043
http://dx.doi.org/10.3390/rs9050411
http://dx.doi.org/10.1016/j.isprsjprs.2014.07.012
http://dx.doi.org/10.1109/CompComm.2016.7924673
http://dx.doi.org/10.1109/EUROCON.2013.6625191
http://dx.doi.org/10.1109/TGRS.2005.847908
http://dx.doi.org/10.1109/CompComm.2016.7924669

Remote Sens. 2020, 12, 972 17 of 17

15. Jing, W.; Tian, D. An improved distributed storage and query for remote sensingdata. In Proceedings of the
2017 International Conference on Identification, Information and Knowledge in the Internet of Things, Qufu,
China, 19–21 October 2018; pp. 238–247. [CrossRef]

16. Szuba, M.; Ameri, P.; Grabowski, U.; Meyer, J.; Streit, A. A Distributed System for Storing and Processing
Data from Earth-Observing Satellites: System Design and Performance Evaluation of the Visualisation Tool.
In Proceedings of the 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
Cartagena, Colombia, 16–19 May 2016; pp. 169–174. [CrossRef]

17. Ma, Y.; Wu, H.; Wang, L.; Huang, B.; Ranjan, R.; Zomaya, A.; Jie, W. Remote sensing big data computing:
Challenges and opportunities. Futur. Gener. Comput. Syst. 2015, 51, 47–60. [CrossRef]

18. Feng, M.; Zhang, T.; Li, S.; Jin, G.; Xia, Y. An improved minimum bounding rectangle algorithm for regularized
building boundary extraction from aerial LiDAR point clouds with partial occlusions. Int. J. Remote Sens.
2019, 41, 300–319. [CrossRef]

19. Yang, C.; Goodchild, M.; Huang, Q.; Nebert, D.; Raskin, R.; Xu, Y.; Fay, D. Spatial cloud computing: How can
the geospatial sciences use and help shape cloud computing? Int. J. Digit. Earth 2011, 4, 305–329. [CrossRef]

20. Wang, X.; Wang, S.; Wei, W. Study on remote sensing image metadata management and issue. In Proceedings
of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005;
pp. 612–615. [CrossRef]

21. Devarakonda, R.; Palanisamy, G.; Wilson, B.E.; Green, J.M. Mercury: Reusable metadata management, data
discovery and access system. Earth Sci. Inf. 2010, 3, 87–94. [CrossRef]

22. Kang, Y.; Park, I.; Rhee, J.; Lee, Y. MongoDB-Based Repository Design for IoT-Generated RFID/Sensor Big
Data. IEEE Sens. J. 2016, 16, 485–497. [CrossRef]

23. Liu, Y.; Wang, Y.; Jin, Y. Research on the improvement of MongoDB Auto-Sharding in cloud environment. In
Proceedings of the 7th International Conference on Computer Science & Education, Melbourne, Australia,
14–17 July 2012; pp. 851–854. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.procs.2018.03.071
http://dx.doi.org/10.1109/CCGrid.2016.19
http://dx.doi.org/10.1016/j.future.2014.10.029
http://dx.doi.org/10.1080/01431161.2019.1641245
http://dx.doi.org/10.1080/17538947.2011.587547
http://dx.doi.org/10.1109/IGARSS.2005.1526249
http://dx.doi.org/10.1007/s12145-010-0050-7
http://dx.doi.org/10.1109/JSEN.2015.2483499
http://dx.doi.org/10.1109/ICCSE.2012.6295203
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Method
	Multi-Source Remote Sensing Data Integration Framework
	Spatial Segmentation Indexing Model
	Geo-JavaScript Object Notation (GeoJSON)-Based Distributed Remote Sensing Data Description Method
	Distributed Storage of Multi-Source Remote Sensing Data Based on MongoDB

	Experiment
	Datasets and Environment
	SSI Model-Based Remote Sensing Data Storage and Retrieval Experiment

	Experiment Result and Analysis
	Conclusions and Future Work
	References

