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Abstract: Routine maintenance of drainage systems, including structure inspection and dredging, 
plays an essential role in disaster prevention and reduction. Autonomous systems have been 
explored to assist in pipeline inspection due to safety issues in unknown underground 
environments. Most of the existing systems merely rely on video records for visual examination 
since sensors such as a laser scanner or sonar are costly, and the data processing requires expertise. 
This study developed a compact platform for sewer inspection, which consisted of low-cost 
components such as infrared and depth cameras with a g-sensor. Except for visual inspection, the 
platform not only identifies internal faults and obstacles but also evaluates their geometric 
information, geo-locations, and the block ratio of a pipeline in an automated fashion. As the 
platform moving, the g-sensor reflects the pipeline flatness, while an integrated simultaneous 
localization and mapping (SLAM) strategy reconstructs the 3D map of the pipeline conditions 
simultaneously. In the light of the experimental results, the reconstructed moving trajectory 
achieved a relative accuracy of 0.016 m when no additional control points deployed along the 
inspecting path. The geometric information of observed defects accomplishes an accuracy of 0.9 cm 
in length and width estimation and an accuracy of 1.1% in block ratio evaluation, showing 
promising results for practical sewer inspection. Moreover, the labeled deficiencies directly increase 
the automation level of documenting irregularity and facilitate the understanding of pipeline 
conditions for management and maintenance. 
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1. Introduction 

Unavoidably, global climate change brings powerful earthquakes and short-delay massive 
rainfall incidents. Countries worldwide are eager to invest heavily in long-term solutions to reduce 
the loss of life, property, environment, and economy, in which underground pipelines carrying out 
the transportation of drainage, sewage, and natural gas can be deemed as one of essential 
infrastructure. In terms of improving floods, regional drainage, and urban wastewater management, 
both upgrading existing drainage systems and maintaining sewer pipelines are critical components 
of infrastructure construction. Pipes may suffer from erosion, damage, deformation, leakage, 
siltation, obstruction, and other defects due to long-term deterioration. These defects may not only 
reduce the design efficiency of the drainage system but also cause the road surface to collapse due to 
the loss of foundations. When encountering heavy rain, any of each is the reason leading to flooding. 
As a result, a routine pipeline inspection is compulsory to provide early detection of safety hazards 
and preventive measures and assist in reconstructing the underground spatial distribution, avoiding 
construction blind spots, and accidentally digging pipelines to cause a casualty. 

Currently, sewer inspection mainly relies on a manual field survey, which is difficult and 
tedious. Operators have to stay underground and face potential hazards due to the closed and under-
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ventilated environment. The on-site conditions of pipelines are recorded with images and a sketch 
for locations, and then assessed by technicians. However, without the help of experienced operators 
and detail pipeline diagrams, the pipeline conditions might be misinterpreted, and the locations of 
abnormal parts might be incorrect due to the limited space and inaccessibility of small pipelines. 
Thus, how to provide a reliable interpretation and accurate locations of pipeline defects safely still 
need to be addressed. To this end, specific robots were developed to replace human resources by 
going into underground pipelines for inspection. The systems can be classified as autonomous and 
cable-tethered robots according to their operating methods [1,2]. Autonomous robots typically 
equipped a variety of high-end sensors with a digital map to infer their geolocations. The biggest 
problem is the endurance of the battery power and the difficulty in arranging and removing 
equipment from the maintenance hole of a pipeline without a cable connection [3]. By contrast, cable-
tethered robots can be retrieved by pulling back a cable, but the cable length restricts the inspection 
range. 

On the other hand, robots can be classified into wheeled, tracked, snaking, caterpillar, and screw 
types according to their moving pattern. Wheeled and tracked robots usually have an excellent 
capability to adapt to uneven paths, while snaking and caterpillar ones are suitable for bending ways. 
Screw robots provide a simple structure but are slow in moving [4–7]. For missions of sewer 
inspection, commercial robots or platforms often embedded delicate sensors such as sonar, LiDAR, 
poisonous gas detector, or locator. The volume of these robots would not be suitable for small 
pipelines, and the maintenance cost and the equipment prices are usually high. Thus, most of the 
current inspecting robots mainly rely on closed-circuit television (CCTV) to collect optical images for 
experienced operators to examine the conditions of the pipelines, in which defects in pipes in terms 
of structure and functionality can be read as Table 1. It can be understood that visual-based inspection 
relies on sufficient lighting, which is lacked in a pipeline environment. However, providing artificial 
lights often leads to unbalanced illumination within the narrow pipeline, degrading the quality of 
visual imaging. Moreover, in the absence of quantitative data, manual visual inspection would be 
subjective and may lead to omission and errors. Since the global positioning system (GPS) signals are 
not available in underground pipelines, locations of defects are typically determined by timestamp 
or rough distance measurement. Indeed, in most cases, the position accuracy may conform to the 
requirement for region renovation. Still, the positioning reliability should be improved, considering 
the operation time and cost of excavation engineering is expensive. 

Table 1. Pipeline defects. 

Structure Functionality 
rupture, deformation, dislocation, 
disjoint, leakage, corrosion, branch 

pipeline insertion, crack 

deposition, scaling, obstacles, 
roots, ponding, dam head, 

scum 
 
Traditional methods usually applied image edge line detection [8], image infiltration [9], and 

local binary mode [10] to assist in visual inspection on images of CCTV. Recently, learning-based 
methods such as the convolutional neural network (CNN) have achieved promising performance in 
object recognition and thus provide a new opportunity for abnormal identification of pipeline 
circumstances [11]. Various variants like region-based convolutional neural networks (R-CNN), fast 
R-CNN, faster R-CNN, and you only look once (YOLOv3) can be found in the literature [12–14]. For 
example, [15] used a convolutional neural network (CNN) to detect concrete cracks and compared 
the results with conventional edge detection approaches, namely Canny and Sobel algorithms. This 
study suggested that CNN revealed better detection results concerning completeness and accuracy. 
However, learning-based methods require satisfactory training samples, which would increase the 
difficulty in data collection and processing. Given the-state-of-art learning-based models in the 
literature, the mask region-based convolutional neural network (Mask-RCNN) [16], which uses 
feature pyramid networks (FPN) to solve the issue of different scale and size of training data and to 
search for targets through region proposal network (RPN), achieves superior performance in object 
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recognition. In addition, the image masks of identified targets can support more information 
regarding target shapes or areas. Thus, Mask-RCNN was leveraged for pipeline defect recognition in 
this study. 

In this study, a pipeline inspection platform consisted of low-cost components, such as infrared 
and depth cameras, as well as a g-sensor, is proposed. The inspection focuses on reporting structural 
and functional defects, obstacles, and flatness of a pipeline. Moreover, the moving trajectories of the 
platform can assist the reconstruction of a 3D pipeline map. With the help of a deep-learning 
approach, defects can be automatically identified along with semantic labels. The trajectory of the 
platform is determined by integrating image pose estimation with simultaneous localization and 
mapping (SLAM) techniques [17,18], improving the accuracy of positioning and the efficiency of 
establishing documents. Obstacles in the front are identified, and the pipeline block ratio can be 
estimated consequently. Moreover, signals derived from the g-sensor further reflect the flatness of a 
pipeline, in which abnormal pipeline regions are determined based on an adaptive threshold without 
manual intervention. Provided that the geolocation of the starting point in a pipe has been known, 
the actual moving trajectory of the platform can then be reconstructed. The proposed platform can 
provide not only precise geolocations but also a high level of automation and feasibility for decision 
support in routine sewer inspection. 

2. Concepts and Methodology 

This study integrated multiple sensors consisted of a Kinect depth camera, a pair of infrared 
cameras, a g-sensor, and raspberry pi (a small single-board computer) on a small caterpillar platform. 
As shown in Figure 1, the depth camera was set forward, while two infrared cameras were placed on 
the two sides of the platform to collect the information of lateral pipeline surfaces. The front depth 
camera, which consisted of three built-in sensors, acquires infrared, optical, and depth images 
simultaneously and generates point clouds from the depth information automatedly. The g-sensor 
was placed near the center of the mass to reflect the vibration of the platform. Notably, the boresight 
angles, lever-arm, and camera calibration have been conducted beforehand. 

 

Figure 1. Sensors and configuration used in this study. 

Table 2 shows the collected data types where the depth camera can simultaneously acquire 
depth (512 × 424 pixels), optical (1920 × 1080 pixels), and infrared (512 × 424 pixels) images providing 
radiation and depth information in a scene. Typically, infrared imaging has the same limitations as 
any optical camera that depends on reflected light energy leading to short imaging range and poor 
contrast. Active infrared imaging projects a beam of near-infrared energy, so when it bounces off an 
object, an imager can detect the infrared energy and convert it into an electronic signal for imaging, 
which would be more adaptable to a pipeline environment. In this study, infrared images acquired 
from the lateral infrared cameras are introduced to the defect recognition of internal pipeline surfaces. 
In contrast, data acquired by the front depth camera are used to estimate the pipeline block ratio and 
identify abnormalities that obstruct the pipeline. The blocking rates and identification of the obstacles 
can reveal whether the pipeline demands urgent for maintenance, supporting the formulation of a 
management plan and increasing the automation level of documenting abnormalities. In addition, 
depth information rendered in the local coordinate system of depth camera can describe geometric 
conditions within a pipeline. To this end, point cloud SLAM is carried out to register the depth 
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information of each timestamp and combined with infrared image pose estimation to determine the 
moving trajectory of the platform. Finally, the vertical accelerating variation reported by the g-sensor 
can show the pipeline flatness along the moving path, indicating silt conditions within a pipeline. 

Table 2. The collected data types. 

Infrared Image 
(512 ൈ 424) 

Depth Image 
(512 ൈ 424) Point Clouds 

   
 
Figure 2 demonstrates a hypothetical state in a pipeline when five datasets are acquired. Image 

data, including infrared and depth information, are obtained respectively from the three sensors at 
each timestamp, in which point clouds based on the local coordinate system of the depth camera can 
be generated simultaneously. The data capture rate and platform moving rate should associate to 
obtain sufficient image overlaps for subsequent analysis, which is of importance for keyframe 
selection. As shown in Figure 2, the three sensors are synchronized and associated with each other 
by prior calibration, and the black square indicates the predetermined location of the starting point. 
The path of the depth camera expresses the trajectory of the platform. Notably, a pipeline map is not 
necessary to be known in advance but the global coordinates of a starting point to determine the 
datum of the movement in practice. Inevitably, the absence of control points would lead to a drift of 
overall SLAM trajectory due to the accumulated errors among each frame. This study combined the 
estimates derived from the point cloud SLAM and infrared image pose estimation (image SLAM) to 
determine the positions of the platform at each timestamp, reducing the drift effects. 

 

Figure 2. Illustration of image data collection. 

As inspecting platform moving, point cloud SLAM finds transformation to align newly acquired 
data with the current one while the platform is moving, updating the pose of the platform. 
Concurrently, new infrared images are respectively added to the front, left, and right image 
sequences to carry out image pose estimation, in which the calculations of point cloud and image 
SLAM are independent threads. However, the poses of the depth camera derived from point cloud 
SLAM are treated as initial values to define the scale factor of the image models, and the final 
positions of the platform are determined by examining the estimates of the three image SLAM 
threads, reducing the drift effect. 
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Figure 3. The block diagram of the proposed scheme. 

Figure 3 shows the block diagram of the proposed data processing, in which the input data 
comprises infrared and depth images as well as accelerating signals obtained during a pipeline 
inspection. The working scheme is composed of five sections, including obstacle identification, point 
cloud SLAM, image triplet pose estimation (image SLAM), internal defect identification, and flatness 
analysis to achieve intelligent pipeline inspection. The front depth and infrared images are applied 
to realize the platform positioning as well as to identify whether obstacles exist along the pipeline. If 
obstructions are detected, their cross-section areas can be computed to report the block ratio of the 
pipe. Similarly, the left and right infrared image sequences are not only applied to platform 
positioning but also used to identify the internal defects of the pipeline surfaces. Notably, to ease the 
drift effects due to the absence of control points in a pipeline, the platform trajectory is determined 
by taking both the pose results derived from the point cloud SLAM and the image pose estimation 
into account. In addition, by analyzing the acceleration signals, the flatness along the pipeline can be 
reflected, and the abnormal areas can be further indicated. The following sections present the details 
of all these processes. 

2.1. Positioning in a Pipeline 

Practically, a node of a pipeline, which often is a manhole with a known geodetic coordinate, 
would be assigned as a starting point representing the initial platform position. This study exploited 
point cloud SLAM and image pose optimization (image SLAM) to build a cost-efficient way to realize 
odometry in a pipeline. Thus, the relative poses and the moving directions of the platform concerning 
the previous time step can be determined based on the local coordinate system sequentially. 
Furthermore, the geodetic location of the starting point and that of the prior manhole would be used 
to calculate azimuth of each position to compute the geodetic coordinates of each estimated position 
derived from the SLAM process. In cases, inspecting operators merely need to use the location of a 
manhole as a reference and measure the distances of defects for documentation. Under this 
circumstance, the resultant platform positions of this study are unnecessary to link to a global 
coordinate system. Indeed, the mid and low-end sensors adopted in this study might not provide 
accurate depth measurements or high image resolution, which would affect the positioning quality 
of the platform but remain supporting the demand for underground pipeline management.  

This study leveraged the well-known Iterative Closest Point (ICP) algorithm [19] along with 
specific disposal to conduct the point cloud SLAM. As the platform moves and generates a point 
cloud, the ICP defines the optimal transformation between the new point cloud and the referenced 
one to determine the platform position. The computation iteratively minimizes the sum of squares of 
offset distances between the closest points within the two datasets. Let 𝑃஺ and 𝑃஻ be two sets of 
point clouds, respectively, ICP estimates the best transformation to minimize the error function: 𝑇஺஻ = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑒(𝑇(𝑃஺,𝑃஻)), (1) 
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where T is the transformation between these two sets of point clouds and 𝑒(𝑃஺,𝑃஻) indicates the error 
function. However, the original ICP assumes that a point set is a subset of the other. Thus, its quality 
and robustness are easily impaired by factors such as noise, outliers, resolution differences, and, in 
particular, insufficient overlapping geometry [20]. Nevertheless, ICP has attracted much attention 
from various communities because of the practical and straightforward idea. Numerous variants 
have been developed to improve the accuracy and robustness of the original ICP [21–25]. The 
configuration of ICP-based SLAM methods among extensive variants can be induced into four parts, 
which consisted of data refinement, matching exploration, outlier rejection, and convergence 
mechanism [26]. Generally, several filters are applied to eliminate singular points and noises of point 
clouds for data refinement. In addition, to render more geometric information, normal vectors of each 
point can be computed based on their K nearest neighbors [27]. Matching exploration finds presumed 
point pairs between two datasets by carrying out point-to-point or point-to-plane distance 
thresholding, in which point-to-plane distance thresholding is particularly suitable for environments 
that partly composed of planar structures. Moreover, the distance ratio matching [28] using the ratio 
of the closest and the second closest points verifies the reliability and robustness of a match. Finally, 
the convergence mechanism determines if the iterative calculation is convergent. In each iteration, 
ICP concludes a transformation consisted of rotation and translation parameters, in which the 
translation parameters can be used to recover the movement of the inspecting platform while the 
rotation parameters can describe the variation in platform orientation between in this period. In cases 
that the incremental parameters of rotation and translation below predetermined thresholds, the 
iterative process terminates. On the other hand, the iterative process is deemed as divergence if the 
number of iterations exceeds a given threshold. 

In the aspect of infrared image pose estimation, this process combines the estimates of the point 
cloud SLAM with calibrated parameters to provide initial values of each frame straightforwardly. In 
addition, the calculation is conducted in image triplets to gain robust matches with the stable 
intersecting geometry of rays. Consequently, a nonlinear least-square adjustment based on three-
view geometry can be formulated in a Gauss–Helmer model, which provides the basis of the 
incremental bundle adjustment for subsequently added images. 

 
Figure 4. The geometry of a point triplet. 

As shown in Figure 4, the rotation matrix 𝑅௜  and translation vector 𝑡௜  compose the relative 
orientation, in which the first image triplet defines the reference coordinate system whose initial 
values for relative orientation are given by the estimates of the point cloud SLAM. Thus, the 
orientation parameters can go through a nonlinear least-square adjustment for optimization. The 
object function describing the three-view geometry can be read as: 

𝑈(𝑅௜ , 𝑡௜) = ൞𝑏ଵ,ଶା ∙ ൫𝑟ଵ,ଶା,ଵ ൈ 𝑟ଵ,ଶା,ଶ൯ = 0𝑏ଵ,ଷା ∙ ൫𝑟ଵ,ଷା,ଵ ൈ 𝑟ଵ,ଷା,ଷ൯ = 0𝑏ଶ,ଷା ∙ ൫𝑟ଶ,ଷା,ଵ ൈ 𝑟ଶ,ଷା,ଷ൯ = 0, (2) 

where 𝑅௜  and 𝑡௜  are the rotation matrix and translation vector, respectively.  𝑏௝,௜ା  represents the 
baseline vector ൫𝑏ଵ,ଶା = 𝑡ଶ െ 𝑡ଵ … 𝑒𝑡𝑐. ൯ and 𝑟௝,௜ା represents the imaging beam of the conjugate point in 
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each image. When three images are available, the scale-invariant feature transform (SIFT) descriptor 
[28] is adopted to extract image features, and a cross-search strategy [29] along with a quasi-random 
sample consensus (RANSAC) [30] is applied to determine corresponding point triplets in the images. 
In cases that the number of triple correspondences is lower than a predefined threshold, the new 
image is ignored, and matching proceeds for the next newly collected image. 

Since the relative pose estimation of an image triplet with calibrated cameras has 11 degrees of 
freedom, the minimal required observations are four-point triplets disregarding degenerate cases, 
which can be formulated by the Gauss–Helmert model: 𝑤 = 𝐴𝜉 ൅  𝐵(𝑦 ൅ 𝑒),  𝑒~(0,𝛴 = 𝜎଴ଶ𝑃ିଵ), (3) 

where 𝑦, 𝑒, 𝑤, 𝜉, and 𝑃 denote the observation vector, the error vector, the discrepancy vector, the 
vector of incremental unknowns, and the weight matrix, respectively; 𝐴  and 𝐵  are the partial 
derivative coefficient matrices concerning unknowns and observations, respectively.  

Since the infrared cameras keep sensing as the inspecting platform moves, a new collected image 
will go through SIFT feature extraction and find corresponding point triplets with the two previous 
oriented images to form a new image triplet. Similarly, the pose approximations of the new image 
can be derived from the estimates of point cloud SLAM for subsequent refinement. The adjustment 
should be conducted incrementally and carried out based on sliding image triplets to work with 
image sequences. Therefore, the Gauss–Helmert model in Equation (3) can be reformulated into a 
Gauss–Markov model by rearranging as  𝑤 െ 𝐵𝑦 = 𝐴𝜉 ൅  𝐵𝑒 . Then, let 𝑦ത = 𝑤 െ 𝐵𝑦  be the new 
observation vector and 𝑒̅ = 𝐵𝑒 be the new error vector. The linear model is yielded: 𝑦ത = 𝐴𝜉 ൅ 𝑒̅, 𝑒̅~(0,𝛴௘̅ = 𝐵𝛴𝐵் = 𝜎଴ଶ𝑃തିଵ), (4) 

In the formulation of incremental least-square adjustment, the unknown vector can be divided 
into two components. The first portion 𝜉ଵcontains the exterior orientation parameters of the images 
that have been included in the previous calculation, whereas the second portion 𝜉ଶ indicates the 
exterior orientation parameters of the newly collected image whose initial values can be derived from 
the point cloud SLAM process. Similarly, the observation vector consists of two components 𝑦ଵ and 𝑦ଶ, representing the observations that have been used in the previous calculation as well as the new 
observations from the current image triple. Therefore, Equation (4) can be extended as [31]: 

ቂ𝑦ଵ𝑦ଶቃ = ൤𝐴ଵଵ 0𝐴ଶଵ 𝐴ଶଶ൨ ൤𝜉ଵ𝜉ଶ൨ ൅ ቂ𝑒ଵ𝑒ଶቃ (5) 

where the first row of Equation (5) indicates the adjustment based on 𝑦ଵ  to determine 𝜉ଵ  only, 
whereas the second row expresses the relationship between the new observation 𝑦ଶ  and the 
unknown parameters both in 𝜉ଵ and in 𝜉ଶ. Finally, the details of the incremental solution for the 
unknown parameters can be referred to [29,31]. The positions of the inspecting platform are 
reconstructed by integrating the resultant poses derived from both left and right infrared image 
sequences in the mapping coordinate system.  

 

Figure 5. The geometry of a point triplet. 
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As illustrated in Figure 5, the reconstruction is done by applying a coordinate transformation 
between the depth camera frame and the two infrared camera frames, respectively. As stated above, 
the pose estimation of each camera is an independent thread but founded on the same coordinate 
system. Let the positions of the left and right infrared cameras at 𝑡 timestamp be expressed as 𝐿(௧)ூ௟ , 
and 𝐿(௧)ூ௥ , respectively. The left infrared camera frame is related to the depth camera frame by a rigidly 
defined lever arm 𝑟ூ௟஽ and boresight matrix 𝑅ூ௟஽ while the right infrared camera frame is associated 
with the depth camera frame by 𝑟ூ௥஽ and 𝑅ூ௥஽ . Similarly, the front infrared camera frame is related to 
the depth camera frame by a rigidly defined lever arm 𝑟ூ௙஽  and boresight matrix 𝑅ூ௙஽ . Thus, the 
positions based on the depth camera frame can be read as: 

൞𝐿ூ௟(௧)஽ = 𝑅ூ௟஽𝐿(௧)ூ௟ ൅ 𝑟ூ௟஽𝐿ூ௥(௧)஽ = 𝑅ூ௥஽ 𝐿(௧)ூ௥ ൅ 𝑟ூ௥஽𝐿ூ௙(௧)஽ = 𝑅ூ௙஽ 𝐿(௧)ூ௙ ൅ 𝑟ூ௙஽ , (6) 

where 𝐿(௧)௜ = ൣ𝑥(௧)௜ 𝑦(௧)௜ 𝑧(௧)௜ ൧் , 𝑖 ∈ ሼ𝐷, 𝐼𝑙, 𝐼𝑟, 𝐼𝑓ሽ  indicates the depth, front, left, or right cameras. 
Consequently, the 𝐿ூ௟(௧)஽ , 𝐿ூ௥(௧)஽ , and 𝐿ூ௙(௧)஽  are weighted to determine the position of the platform at 𝑡 timestamp as: 𝐿(௧)௉ = 𝛼 ∙ 𝐿ூ௟(௧)஽ ൅ 𝛽 ∙ 𝐿ூ௥(௧)஽ ൅ 𝛾 ∙ 𝐿ூ௙(௧)஽ (𝛼 ൅ 𝛽 ൅ 𝛾⁄ ), (7) 

where 𝐿(௧)௉  describes the positions of the platform at 𝑡  timestamp. 𝛼 , 𝛽 , and 𝛾  indicate the 
posterior standard deviation of unit weight of each pose estimation, respectively. 

2.2. Internal Defect Identification 

Regarding the pipeline defects listed in Table 1, this study focused on detecting the cracks of 
inner pipeline surfaces as well as the obstacles along the pipeline and further examining the 
geometric attributes of the anomalies. The internal defect identification is applied to the images 
acquired from the front and lateral infrared cameras by leveraging learning-based image recognition 
techniques. Deep learning approaches for image recognition have been widely explored in recent 
years, which provide a revival of the classic artificial-intelligence method of neural networks, e.g., 
[32–36]. Among the state-of-the-art approaches such as the YOLO or faster R-CNN that integrates 
feature extraction, region proposal, classification, and bounding-box regression into a unified, the 
Mask-RCNN model with a feature pyramid network backbone was leveraged in this study. 
Additionally, a transfer learning strategy [37] was performed referring to the pre-trained weights of 
the Microsoft COCO [38] for specific labels of cracks. The applied model was trained on the common 
defects consisted of over five labeled instances in 1000 images to identify pipeline abnormality. With 
the help of image bounding boxes and masks, the locations and shapes of the identified anomalies 
can be revealed. For a crack instance, the principal and second axes of its masks can be defined by 
the principal component analysis (PCA). Therefore, as shown in Figure 6, the length of this crack can 
be determined via the extreme points along the principal axis and estimated by using the conception 
of ground sample distance (GSD). Similarly, the maximum and minimum width of the crack can be 
observed along the second axis, providing geometric information about the identified cracks. 

 
Figure 6. The principal component analysis (PCA) principal and second axes of a crack. 
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On the other hand, the infrared images covering the front conditions are applied to identify 
anomalies that obstruct a pipeline based on the same Mask R-CNN module. If a defect is detected 
and identified, its sectional area is estimated by using the conception of GSD. The average depth of 
the obstacle mask defines the object distance from the platform, therefore the GSD can then be 
computed by the proportional relations depicted in Figure 7. 

 

Figure 7. The estimation of the sectional area. 

In addition, the area in object space covered by a pixel is defined as the square of GSD. 
Consequently, the sectional area of the obstacle can be roughly estimated by counting the pixel 
number within the mask. Thus, a blockage ratio that takes the sectional area of an obstacle to be 
divided by that of a pipeline can be computed as: 

𝑏 = 𝐴୭ୠୱ୲ୟୡ୪ୣ𝐴୮୧୮ୣ୪୧୬ୣ ൈ 100%, (8) 

where 𝑏  represents the blockage ratio; 𝐴୭ୠୱ୲ୟୡ୪ୣ  and 𝐴୮୧୮ୣ୪୧୬ୣ  indicate the sectional areas of an 
obstacle and a pipeline, respectively. The rate would reflect the situation of obstruction in a pipeline, 
supporting the decision for pipeline management. 

2.3. Flatness and Slope Analysis of a Pipeline 

The inspecting platform reflects the flatness of a pipeline by analyzing the vertical acceleration 
behavior obtained from the embedded g-sensor revealing the effects of functional defects of a pipe 
such as sediments, ponding, or scum. 

 

Figure 8. The demonstration of the acceleration behavior. 

If the platform goes through an anomaly, the g-sensor will occur apparent vertical acceleration 
variation, as depicted in Figure 8. Most of the existing methods exam these conspicuous signals with 
a predefined threshold to determine abnormal areas along the path. However, how to provide a 
reliable threshold adaptably is still needed to be addressed. This study applied an adaptable 
thresholding method to detect abnormal vibration, reflecting the flatness in a pipeline referring to 
[39]. To this end, this study took 1 Hz as a unit to compute the standard deviation of the vertical 
acceleration signals in this epoch. The average of the standard deviation of all current units is 
calculated, and thus the discrepancy of each unit towards all current units in amplitude can be read 
as [39]: 
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𝐷௨(௜) = 𝑎௦௧ௗ௨(௜) 𝑎௔௩௚ൗ , (9) 

where 𝑎௦௧ௗ௨(௜) indicates the standard deviation of the i-th unit; 𝑎௔௩௚ represents the mean of all current 𝑎௦௧ௗ௨(௜) 𝐷௨(௜) is a constant describing the amplitude multiple of the i-th unit relative to the whole current 
units. The range of 𝐷௨(௜)  is ranged from 0 to 3, expressing the relative roughness level, and the 
expression is applied to the vertical acceleration of each unit to determine whether abnormal signals 
occur. If the 𝐷௨(௜) of a unit is more significant than 1, the unit is categorized into an abnormal one. 
The judgment can be read as: 𝐷௨(௜) ൐  1 ∈ 𝐺௔௕௡௢௥௠௔௟ , (10) 

where 𝐺௔௕௡௢௥௠௔௟ represents the group of abnormal units. The magnitude 𝐷௨(௜) of each unit will be 
updated when an itinerary is finished. Consequently, the irregular sections in a pipeline can be 
determined obviating the need for manual setting a predefined threshold.  

3. Validation and Analysis 

As illustrated in Figure 9, a controllable environment that simulated a section of a box culvert 
was used to evaluate the proposed indoor positioning and the internal defect identification methods. 
Figure 9 shows the floor plan of the testing field, in which the straight distance between the starting 
and ending points is 5.40 m. A local coordinate system originated at the starting point was established 
by using theodolite equipment, and the coordinates of the centers of three obstacles, a bump, seven 
checkpoints, and the endpoint were set along the path accordingly. 

 

Figure 9. The floor plan of the testing field. 

Regarding the configuration of the platform, a Kinect depth camera was set forward, while two 
infrared cameras were placed facing the left and right sides of the platform, respectively. The three 
sensors had been synchronized, and the data collection rate was about 16 Hz. The timestamps 𝑡௜ of 
keyframes were selected regarding the overlapping ratios derived from left and right image 
sequences, respectively. In this case, the inspecting platform patrolled from the starting point to the 
ending point in a one-direction enclosed path. Table 3 shows a fraction of the collected data 
comprising infrared images in three directions as well as depth image and point clouds that are inputs 
for the proposed method. 
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Table 3. A faction of the collected data. 

 𝒕𝟎 𝒕𝟐 𝒕𝟒 𝒕𝟕 

Front IR 

    

Right IR 

    

Left IR 

    

Depth Image 

    

Point Cloud 

    

Figure 10a illustrates the result of the point cloud SLAM. In contrast, Figure 10b uses red color 
lines to depict the poses of the moving platform at eight timestamps along with the actual path in 
yellow color, in which a slight drift occurred as the platform moving forward. The overall registration 
quality reported by the interior accuracy of ICP was 0.028 m. However, the root-mean-square error 
(RMSE) of the registration derived from checkpoints showed a deviation of 0.067 m. Subsequently, 
the platform poses were introduced to the estimation of infrared image orientation as initial values 
for further refinement. 

(a) (b)  

Figure 10. The on-site point cloud (a), and the estimated (red) and actual (yellow) moving trajectories 
(b). 

The left part of Figure 11 depicts the refined positions of the platform in the point cloud with the 
same timestamps. On the other hand, the right part of Figure 11 shows the refined coordinates in 
which the distance parallel to the Z-axis is about 5.43 m revealing a deviation of 3 cm regarding the 
actual value, namely a relative accuracy of 0.005 m.  
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Figure 11. The refined positions derived from the image simultaneous localization and mapping 

(SLAM). 

On the other hand, Figure 12 highlights the discrepancy in the checkpoint accuracy of the image 
and point cloud SLAM, in which the checkpoints are set along the moving trajectory and ordered by 
the distance from the origin, as illustrated in Figure 9. In light of Figure 12, the drift effects do turn 
conspicuous while the moving length of the platform increases. The point cloud SLAM revealed an 
RMSE of 0.093 m in platform positioning. In contrast, the proposed SLAM reflected an RMSE of 0.064 
m recovering a more accurate moving trajectory, in which the most significant positioning error is 
about 0.09 m, namely a relative accuracy of 0.016 m. 

 

Figure 12. The positioning deviation resulted from image and point cloud SLAM. 

Table 4 demonstrates partial results of the defect identification, in which the obstacles in the 
heading direction are not only detected but also their sectional areas are estimated. In addition, the 
internal defects are identified in the left infrared images whose length, width, and area are evaluated, 
respectively. The distance of each obstacle profile is computed by the average depth information of 
its identified mask so that the relevant GSD can roughly estimate the sectional area. On the other 
hand, the lateral distances are determined regarding the platform positions in the point cloud. The 
internal defects such as cracks and flaking are identified, as shown in Table 4, where the length and 
the width of the crack are about 75 cm and 15 mm, respectively. The areas of the flaking regions are 
about 347 cmଶ and 1949 cmଶ, respectively. In addition, the flatness analysis based on acceleration 
signals does reflect the bump set along the path, showing its feasibility. Details on the acceleration 
analysis can be referred to [30] for more discussion. 

Nevertheless, by manual checking, the values of the geometric information seem overestimated 
around േ0.9 cm in this case, especially in the width of the cracks. Still, the area estimates of flaking 
regions and the obstacles in the front can approach the actual values. The obstacles in the forward 
direction are all detected and identified correctly. However, the loss rate of the internal defects is 
about 5% since the capability of the low-end sensor restricts the effectiveness of the recognition 
process. 

Table 4. The results of the internal defect identification. 
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Front IR Imagery 

  
Avg. depth Bag: 2.70 m; Box: 4.09 m; Ball: 7.08 m Box: 2.12 m; Ball: 5.02 m 
GSD  Bag: 1.4 mm; Box:2.4 mm; ball:4.4 mm Box: 1.2 mm; Ball: 2.6 mm 
Sectional area (cmଶ) Bag: 830.28; Box: 909.67; Ball: 414.11 Box: 837.23; Ball: 452.71 

Left IR Imagery 

  
Depth  0.9 m 1.8 m 
GSD  1.1 mm 2.2 mm 
Length of crack  755 mm N/A 
Width of crack Max: 17 mm; Min: 13 mm N/A 
Area of flaking  347.45 cmଶ 1949.16 cmଶ 

For further assessment, a tube with a small diameter, as shown in Figure 13, is used to have an 
insight into the estimation of the block ratio in a pipeline, and tiny cracks are applied to the defect 
identification. In this case, a stone with the known size is placed with different poses to simulate 
obstacles in the pipeline, and the internal defect identification is then conducted to detect the barriers 
and estimate the block ratio, reflecting the pipeline condition. 

 
Figure 13. The tube with a small diameter. 

Figure 14(a) to (d) illustrate the four identified obstacles with a correct stone label of stone no 
matter the difference in object distances. Table 5 indicates the quantitative results of the evaluation, 
in which the block ratios reveal a deviation of around േ1.1% compared to the manual assessment, 
reporting the faithful status of the pipeline and highlighting the effectiveness of the proposed method. 

 

Figure 14. The visual results of the identified obstacles. 

 

 

Bag 
Ball Box 

Crack Flaking 

Flaking 

Box 
Ball 
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Table 5. The evaluated results of the internal defect identification. 

 Object (a) Object (b) Object (c) Object (d) 
Distance 162 mm 138 mm 153 mm 171 mm 

GSD 0.047 mm 0.040 mm 0.044 mm 0.049 mm 
Sectional area of pipeline 113.04 cmଶ 113.04 cmଶ 113.04 cmଶ 113.04 cmଶ 
Sectional area of obstacle 11.14 cmଶ 18.79 cmଶ 9.37 cmଶ 11.71 cmଶ 

Block ratio 9.85 % 16.62 % 8.29 % 10.36 % 

Moreover, to gain insight into the effectiveness of the defect identification for tiny crack 
detection, an assessment of the completeness and the length estimation is carried out and then 
verified with those derived from the manual measurement. Figure 15(a) to (d) depict the four results 
of tiny crack detection, while Table 6 shows the quantitative indices regarding the detecting 
completeness of cracks. 

 

Figure 15. The four results of tiny crack detection. 

Table 6. The quantitative indices of the crack detection. 

 Crack (a) Crack (b) Crack (c) Crack (d) 
Estimated length of tiny crack 12.56 cm 27.91 cm 21.27 cm 35.83 cm 

Detection rate 32.3 % 58.2 % 54.7 % 62.6 % 
In the light of Figure 15 and Table 6, cracks (a) and (b) express the same break but reveal a 

noticeable difference of 25.9% in the detection rates. It implies that the repeatability of the Mask-
RCNN model in detecting tiny cracks is unstable, leading to inadequate completeness. The loss rate 
of crack detection is about 40%. Nevertheless, once the amount and multiplicity of the training 
samples are increased, the effectiveness should be improved. 

4. Discussions 

Compared to those studies that conduct SLAM only based on point clouds or image graphs 
[18,27,40], the main difference of this study is the optimization of the platform positioning. Most 
studies find the poses of a platform by minimizing the positional error of points matched between 
two consecutive datasets. These processes usually lead to a vast linearized system to be solved at 
every iteration. By contrast, this study integrated point cloud and three-way images to conduct the 
SLAM process. As rigorous pose estimation of image sequences demands initial values for a 
nonlinear solution, estimates result from point cloud SLAM can be used to define the scale of image 
models and treated as approximations to converge rapidly and prevent resulting in local minima. In 
addition, by leveraging the learning-based image recognition technique, the proposed system can not 
only identify internal pipeline defects but also recognize obstacles in the heading direction. The 
geometric attributes of these targets and the block ratio of a pipeline can be further computed to 
aware of pipeline conditions for management and maintenance. Additionally, the unstable 
performance of a low-cost g-sensor affects the performance of reflecting the pipeline flatness. 
Different devices may lead to variant evaluation results. Therefore, the proposed system leveraged 
an adaptable thresholding method to analyze the acquired acceleration signals. The determination 
results can be more consistent regardless of the performance of a g-sensor device.  

Indeed, the current experimental condition was certainly ideal compared to real sewer 
environments. This study focused on the validation of the proposed method and evaluated the 
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effectiveness and feasibility of this phase, considering the policy restrictions and safety of the crew. 
Typically, the real conditions of a poor-performance sewer pipeline are often in a mess. The 
inspecting platform may confront numerous functional defects, such as deposition, obstacles, roots, 
ponding, and scum, resulting in a lot of noise in the collected image or point cloud data. Similarly, if 
sewer environment conditions are mostly symmetric and repetitive patterns or low textures, 
inevitably, disqualified pose estimation and a high loss rate of object recognition would occur. 
Nevertheless, the proposed system can be deemed as an alternative to assist manual sewer inspection 
cost-effectively and more securely. 

5. Conclusions 

This study presented an intelligent pipeline inspection platform consisted of low-cost 
components. The experiment results validate the effectiveness of the proposed positioning strategy 
and internal defect identification. By integrating the pose estimates derived from the point cloud 
SLAM and three-way image SLAM, the reconstructed moving trajectory of the platform can mitigate 
the drift effects achieving a relative accuracy of 0.016 m when no additional control points deployed 
along the inspecting path. In addition, the geometric information of observed defects accomplishes 
an accuracy of 0.9 cm in length and width estimation and an accuracy of 1.1% in block ratio 
evaluation. The inspecting platform not only provides visualization of the identified entities and 
expresses geometric information such as block ratio of a pipeline and the sizes of crack defects but 
also capable of indicating the geolocations of identified incidents. The identified deficiencies can be 
labeled directly increasing the automation level of documenting irregularity and facilitate the 
understanding of pipeline conditions for management and maintenance.  

To increase the working flexibility and feasibility, future improvements following the proposed 
method will explore other auxiliary sensors such as inertial measurement unit (IMU) to facilitate 
initial pose estimation. IMU data would support the computation stability, even the point cloud and 
image data are contaminated by noise due to unfavorable on-site conditions. Moreover, the proposed 
will tend to increase the amount and the multiplicity of the training samples regarding pipeline 
defects or explore other radial bands to improve the effectiveness of the defect identification process. 
Last but not least, this study will seek collaboration with the authority to conduct an actual field 
survey in the future. 
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